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Let A be the problem of minimizing c l x l  + . . . + c,x, subject to certain constraints on 
x = ( x , ,  . . . , x,), and let B be the problem of minimizing ( a ,  + a , x l  + . . . + o,,x,)/(b, + 
b ,x ,  + . . . + b,x,) subject to the same constraints, assuming the denominator is always 
positive. It is shown that if A is solvable within O [ p ( n ) ]  comparisons and O[q(n ) ]  additions, 
then B is solvable in time O[p(n)(q(n)  +p (n ) ) ] .  This applies to most of the "network" 
algorithms. Consequently, minimum ratio cycles, minimum ratio spanning trees, minimum 
ratio (simple) paths, maximum ratio weighted matchings, etc., can be computed withing 
polynomial-time in the number of variables. This improves a result of E. L. Lawler, namely, - - 
that a minimum ratio cycle can be computed within a time bound which is polynomial in the 
number of bits required to specify an instance of the problem. A recent result on minimum 
ratio spanning trees by R. Chandrasekaran is also improved by the general arguments 
presented in this paper. Algorithms of time-complexity O(IEJ . I vJ2. log1 VJ) for a minimum 
ratio cycle and O(IE1. log21 VJ .log IoglVI) for a minimum ratio spanning tree are devel- 
oped. 

1. Introduction. Numerous combinatorial optimization problems can be formu- 
lated as linear minimization problems subject to certain constraints. Let us denote 

Problem A: 
Minimize c , x , +  . . . + cnxn 
s.t. x = (xl,  . . . , x,,) E D. 

As examples we might mention the problems of the shortest (simple) path, the 
minimum spanning tree, the maximum weighted matching, the minimum cut, the 
traveling salesman, the Chinese postman, and a variety of scheduling problems. 

In view of the examples given above, the following generalization of A is interesting 
both from the applicative and the theoretical aspects. We denote 

Problem B: 

Minimize (a,, + a,xl  + . . . + a,,x,)/(b, + blxl  + . . . + bnx,,) 

s.t. X E D  

(assuming the denominator is always positive). 
One example of a practical ratio minimization is that of minimizing cost-to-time 

ratio. Dantzig, Blattner and Rao [ 5 ]  and Lawler [8] introduced the problem of the 
minimum cost-to-time ratio cycle in a graph. This problem applies to finding optimal 
ship routing. 

Our general result in this paper relates the time complexity of problem B to that of 
problem A. It turns out that whenever A has a good algorithm, then the same is true 
for B. 

An algorithm for the minimum ratio cycle problem is given by Lawler 19, Chapter 
3, $131. The time bound for Lawler's algorithm depends on the numerical values of 
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the parameters, namely, "the number of computational steps is bounded by a 
polynomial function in the number of bits required to specify an instance of the 
problem." The theorem proved in the present paper provides improved algorithms, in 
the sense that the time bound is a polynomial function in the number of the variables 
and does not depend on the numerical values of the parameters. Karp [7] solves the 
minimum cycle mean problem (i.e., the special case of the minimum cost-to-time ratio 
cycle, when all times bV are equal) in time O(I E I . / VI), where E is the edge set and V 
is the vertex set of the graph. The theorem proved in this paper implies an o ( I E ) ~ .  
IvI2) for the general minimum ratio cycle. This is reduced further to O(IE1. 
1 v l 2  log1 VI) by considering special features of the negative cycle algorithms. 

In a recent paper, Chandrasekaran [3] computes a minimum ratio spanning tree in 
time O(IEIZ log1 VJ). His argument is specific to the spanning tree problem, even 
though it can be extended to finding bases in matroids, minimizing ratio functions. 
Our theorem improves this bound, yielding 0 [I E (* . (log log1 v This is reduced 
further to 0(IEllog2J Vjlog log1 Vl) by considering special features of minimum span- 
ning tree algorithms. 

Additional references for ratio minimization can be found in Lawler's book [9, p. 
1071. This paper is organized as follows. In $2 we prove a basic theorem, providing a 
general algorithm for problem B. An example of the general idea is presented in $3. In 
54 we discuss ways of accelerating the algorithm, and the case where problem A has a 
comparisons algorithm is discussed in $5. In $56 and 7 we provide algorithms for the 
minimum ratio spanning tree and the minimum ratio cycle, respectively, which are 
based on the acceleration techniques. In an appendix we provide an algorithm for 
finding the minimum of n linear functions in time O(n log n). This algorithm turns 
out to be useful in accelerating the general algorithm for ratio minimization. 

2. The general algorithm. Our main result here is the following theorem. 

THEOREM. If problem A is solvable within O(p(n)) comparisons and O(q(n)) 
additions then problem B is solvable in time O(p(n)(q(n) + p(n))). 

PROOF. A rather standard trick for solving ratio minimization problems is as 
follows. Given problem B, pick a real number t and solve problem A with c, = a, - tb, 
( i  = 1, . . . , n) under the same constraints. 

Suppose that u is the optimal value of problem A. If o turns out to be equal to 
tb, - a, then t is the optimal value of problem B and the optimal solution x of 
problem A (with respect to t) is also an optimal solution of problem B. On the other 
hand, if u < tb, - a, then a smaller t should be tested and if u > tb, - a, then a 
greater t should be tested. This procedure continues until the "correct" value t* (t* is 
characterized by the property that the optimal value u(t*) of problem A w.r.t. t* 
equals t*b, - a,) is found. The key question is how many values of t have to be tested 
before the "correct" one t* is found. We shall prove that the number of these tests is 
not greater than the number of comparisons made by the algorithm which is available 
for problem A. We refer to this algorithm as the A-algorithm. 

Given the data for problem B, consider the different paths, depending on the value 
of t, that the A-algorithm may follow when solving problem A with c, = ai - tb,, 
i = 1, . . . , n. These paths form a directed tree where branching points correspond to 
comparisons made by the algorithm. 

At the start the data are linear functions (possibly constants) of t ,  defined over the 
entire real line. Additions generate some more linear functions of t. Consider the first 
comparison made by the algorithm. Since the algorithm compares two linear func- 
tions of t, the outcome of the comparison may depend on t. However, in any case 
there will be at most one critical value t,, say, such that for all t < t,, one of the 
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functions compared is greater than or equal to the other, and for t > t ,  the other 
function is greater than or equal to the first one. Thus, the comparison may partition 
the real line into two rays of values which are equivalent from the point of view of the 
outcome of the comparison. The comparison corresponds to a branching point with 
an outgoing degree of 2, and the two subtrees correspond to the rays [ - a ,  t,] and 
It,, GO]. All the functions previously generated by the algorithm are linear over these 
rays. Even if a function g(t) = Min( f ,(t), f2(t)) is generated at the point of compari- 
son, then g(t) is still linear over [ -  oo, t,] and [t,, oo]. Additions made after the flrst 
comparison but prior to the second one will generate functions which are linear over 
the two rays. 

By induction, every branching point corresponds to a comparison between two 
functions of t which are linear over some interval [e, fl (- oo < e < f < oo) which is 
associated with the branching point. Thus, there is at most one critical value t' in the 
interval. The outgoing degree of the branching point is 2 and the two complementary 
subintervals [e, t'] and [r', fl correspond to the two subtrees rooted at the branching 
point. All functions generated prior to the next comparison (in either subtree) are 
linear over the respective subinterval. Furthermore the endpoints are also associated 
with intervals and the optimal solution given at any endpoint is in fact a linear 
function of t over the interval associated with the endpoint. 

Our observation gives rise to the following algorithm for problem B. Essentially, the 
algorithm solves problem A parametrically over an interval, which reduces throughout 
the computation, searching for the "correct" value t*. At each branching point 
reached in the tree of the A-algorithm, the corresponding critical value of t is tested 
by running the A-algorithm with t fixed at the critical value. Then the appropriate 
branch is selected and the next branching point is considered. At the end, the optimal 
value of problem A will be given in the form of a linear function v(t) defined over an 
interval [ e , n  which contains t*. The value t* is then calculated by solving v(t*) 
= t*b, - a,. 

Following is a detailed description of an algorithm for problem B. 
The description is quite general. However, we will illustrate particular cases in 

which it will be clear how the general principle is implemented. For the convenience 
of notation we write [ -  oo, oo] = (x  : - oo < x < oo) and, similarly, if d E [ -  oo, oo] 
then[ -oo ,d ]={x :  - w < x d d ) a n d [ d , o o ] = ( x : d < x < m ) .  

The B-algorithm. 
0. Initialize with [e, f ]  = [- oo, oo] and define c,(t) = a, - tb,, i = 1, . . . , n. 
1. Follow the A-algorithm for minimizing c,(t)x, + . . . + c,(t)x, (x E D), simul- 

taneously for all t in [e,fl, from the start or from the recent point of resumption, to 
the next point of comparison. If there are no more comparisons and the A-algorithm 
terminates then go to 5; otherwise, let the A-algorithm make a pause at the point of 
comparison and go to 2. 

2. If gl(t) and g,(t) are the two linear functions that have to be compared over 
[e, f], then solve the equation g,(t) = g,(t). If there is no unique solution in [e, f ]  then 
resume the A-algorithm and go to 1 (the outcome of the comparison is independent of 
t over [e, f]); otherwise go to 3. 

3. Let r' denote the unique solution of g,(t) = g,(t) over [e, f]. Solve the problem: 
minimize c,(tl)x, + . . . + c,,(tf)x, ..ibject to x E D by employing the regular A- 
algorithm (all data are constant). If the optimal value o equals t'b, - a, then 
terminate (x is an optimal solution for B and t* = 0); otherwise set f = I' if u < t'b, - 
a, and set e = t' if u > t'b, - a,. 

4. Resume the A-algorithm for the parametric problem over [e, fl and go to 1. 
5. The optimal value of problem A is a linear function u(t) over [e, f]. The correct 

value t* may be found by solving o(t*) = t*b, - a,. Optimal solutions x ( t )  are given 
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in the form of a linear function over [e, f]. An optimal solution for problem B will be 
X* = ~ ( t * ) .  

Obviously, the number of critical values of t tested by the A-algorithm is bounded 
by the total number of comparisons made during one run of the A-algorithm itself. 
This completes the proof of the theorem. 

3. An example: Finding a minimum ratio cycle. The general B-algorithm will be 
demonstrated by the problem of the minimum cost-to-time ratio in a directed graph. 

Let aii and bii denote the cost and time, respectively, of traversing an arc (i, j )  
(bv > 0 for i # j, aii = bii = 0, i = 1, . . . , n). We wish to find a directed cycle such 
that the ratio of the total cost to the total time of traversing the cycle is minimized. 
The corresponding A-problem is to find the shortest simple cycle in a directed graph 
with distances cii. The distances may take negative values. 

This problem could be formulated as minimizing 2 cgxy where x = (xq) is a 
zero-one matrix and minimization is taken with respect to the set D of all zero-one 
matrices, such that the arcs ( I ,  j )  for which xii = 1 form a simple directed cycle. 
Floyd's algorithm for all-pairs shortest paths (see [9]) could be employed as the 
A-algorithm in this case. Essentially Floyd's algorithm will be used as a negative 
cycles detector. Negative cycles can be detected in time O(l E 1 . 1 VI) (see [6], [7], [9]) 
and hence an upperbound of o ( I E ~ ~ .  I v(*) for the minimum ratio cycle is implied. 
However, we will later derive an O(IE I - ( vI2 log1 VI) bound. 

Define u;'")(t) to be the length (with respect to the distances ck,(t) = a,, - tb,,) of a 
shortest simple path from i to j allowing only nodes in the set (1, . . . , m - 1) to serve 
as intermediate nodes. The corresponding B-algorithm is the following (all bookkeep- 
ing with respect to the actual paths and cycles found is omitted). 

An 0(n6) algorithm for minimum ratio cycles: 
0. Initiate with [e, f ]  = [ -  oo, oo] and uj1)(t) = a,. - tb,. (1 < i , j < n). Set i = j = m 

= 1. 
1. Solve UJ .~) (~)  = u$)(t) + u$)(t). 
2. If there is a unique solution t' in [e,fl then go to 3; otherwise go to 4. 
3. Test the graph with distances c,,(t') for negative cycles. If there is a zero cycle 

and no negative cycles then terminate (the zero cycle is a minimum ratio cycle); 
otherwise, let f = t' if there is a negative cycle and let e = t' if all cycles are positive. 

4. Set uim+')(t) = Min[u$")(t), u$')(t) + u,$)(t)]. (This is effective and u$'"''')(t) will 
be linear over [e, f].) 

5. I f j < n s e t j = j +  l a n d g o t o  1 ; i f j S n a n d i < n s e t j =  l , i = i +  1 ,andgoto  
l ; i f i = j = n a n d m < n s e t i = j = l , m = m +  l , a n d g o t o l ; i f i = j = n a n d m = n  
then go to 6. 

6. Find k such that u$+')(f) < 0 and terminate. (The minimum ratio cycle is the 
shortest (w.r.t. c,(f)) simple cycle which contains k; the "correct" t* is precisely e.) 

The claim in step 6 follows from the fact that for each i, u$'+')(t) is linear over 
[e,fl. Moreover, uF+')(e) = 0, uF+')(f) < 0 (i = 1, . . . , n) and for some k (1 < k 
< n) u$+')(f) < 0. Thus, the maximum value of t for which there is no negative cycle 
is precisely e. The cycle found by the algorithm has zero length (w.r.t. c,(t)) if t = e. 

Since Floyd's algorithm runs in time 0(n3), it follows that the B-algorithm based on 
it runs in time 0(n6). 

4. Accelerating the B-algorithm. The general idea of the B-algorithm could be 
summarized as follows. The A-algorithm is employed parametrically over an interval 
[e, f]. Whenever a comparison between two linear functions c,(t), c2(t) has to be 
made, an updating of the interval is considered. The result of the comparison could be 
a piecewise linear function, c,(t) = Min{c,(t), c2(t)), say, over [e, f]. The function c,(t) 
could have one breaking-point at most. If there is such a point, then it is tested by 
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running the regular A-algorithm at that point, and the appropriate subinterval of 
linearity is selected. Thus, the number of test-runs of the A-algorithm may be as large 
as the number of comparisons performed by the A-algorithm. 

As a matter of fact, in many cases we do not need so many test-runs of the 
A-algorithm. A test at a breaking point could be postponed for a while in the 
following manner. The parametric A-algorithm could be decomposed into stages. At 
the beginning of a stage all the functions are linear over some interval [e, fl. During 
the stage some more linear functions may be generated, and also some piecewise 
linear functions over [e, fl are generated. The parametric A-algorithm should make a 
pause when, for the first time, a piecewise linear function, generated previously during 
the present stage, has to be compared to some other function. 

If e = to < t, < . . . < tk = f are all the breaking-points of piecewise linear func- 
tions generated during the present stage, then all of our functions are linear over each 
subinterval [ti.- ,, ti] ( i  = 1, . . . , k). It will not be necessary to test all of these points, 
provided that they are already sorted, since the subinterval [t,- ,, t,] that contains t* 
(see 93) can be found by a binary search. This amounts to only OOog k) test-runs of 
the A-algorithm. Then the interval is updated: [e, f ]  = [t, - ,, t,] and the following stage 
starts. Similarly, when the parametric A-algorithm terminates, the appropriate subin- 
terval [t,- ,, t,] of the final [e, fl, which contains t*, is found by means of a binary 
search. 

The idea of storing critical values is especially simple to implement when the 
regular A-algorithm itself has the structure of stages or iterations. For example, 
Floyd's algorithm for alLpairs shortest paths, which we used to detect negative cycles, 
has an adequate structure of n iterations. The piecewise linear functions generated 
during one iteration do not have to be compared to any function before the following 
iteration starts. Thus, an accelerated B-algorithm for a minimum ratio cycle could 
operate as follows. 

Start with [e,fl = [ -  m, oo] and uf)(t) = a, - tbV. Assume, by induction, that for 
some m (1 < m < n) all the functions u$")(t) ( i  = 1, . . . , n, j = 1, . . . , n) are linear 
over an interval [e, fl which is known to contain t* (t* < f). Compute all solutions of 
the equations uF)(t) = uz)(t) + u,$')(t) over [e, f]. This requires 0(n2) time. Sort the 
set of solutions to form a sequence e = to < t, < . . . < t, = f, spending no more than 
0(n210g n) time. Search for the first I (1 < I < k) such that t* < t,. This requires 
O(1og n) test-runs of Floyd's algorithm and hence 0(n310g n) time. Obviously, the 
functions uij."+')(t) are linear over [t,-,, t,], which will serve as the interval [e,fl 
during the next iteration. Since there are altogether n iterations, the overall time 
bound is 0(n410g n). 

We have been using Floyd's algorithm just for demonstrating the general idea. An 
upper-bound of O(I E I . I v12 log1 VI) for the minimum ratio cycle problem will be 
derived later. 

5. Comparison algorithms. Another way of accelerating the B-algorithm applies 
to cases where the A-algorithm uses only comparisons of input elements. In such a 
case, we start from n linear functions, and all of the breaking-points of piecewise 
linear functions that might be generated by the algorithm are contained in the set of 
at most n(n - 1)/2 intersection points of the original functions. Thus, one could 
compute all of these intersection poin's beforehand, sort them, and then search for the 
interval which contains t* and over which all of the functions will be linear during the 
entire computation. The computation and sorting of the breaking-points require 
0(n210g n) time, while the search requires O(log n) test-runs of the A-algorithm. 
If T(n) is a time bound for the A-algorithm, then an overall time bound is 
O(Max[T(n), nZ] . log n). 

We might note further that the set S of intersection points does not have to be 
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sorted. If a linear-time median-finding procedure (see [2]) may be used, then the 
appropriate interval could be found as follows. Find the median t' of S and run the 
A-algorithm at t'. Then, according to the result of the test-run, drop a half of S and 
find the median of the remaining half. Repeat this process until only two elements of 
S are left. This procedure requires no more than O(1og n) test-runs of the A- 
algorithm. The rest of the computation consists of computing the intersection points 
and median-findings in sets of sizes smaller than n2, f n2, $ n2, etc. All these require 
0(n2) time, and hence an overall time bound is 0(Max[n2, T(n)log n]). 

As an example for the application of the acceleration technique presented in this 
section, we might mention the problem of finding a minimum ratio spanning tree [3]. 
Here we start with the linear functions a,, - tb,, associated with the edges (u, u) E E 
of an undirected connected graph. The number of intersection points is bounded by 
I E 12. The minimum spanning tree problem has many algorithms using only compari- 

P sons (see [4], [lo]). Since O(IE llogl VI) is an upper bound for the minimum spanning 
tree, the time bound for the minimum ratio problem that follows from our technique 
in the present section is o ( IE~~) .  The algorithm which supports this time bound 
coincides essentially with Chandrasekaran's algorithm [3], the only difference being 
the idea of using linear-time median-finding repeatedly, instead of presorting the set 
of intersection points. The latter yields an o(I E 1210gl vI) bound. However, in the 
following section we beat these bounds down to ~ ( I ~ l l o g ~ J  Vllog log1 V / ) .  

6. Minimum ratio spanning trees. An efficient algorithm for a minimum ratio 
spanning tree is obtained if Sollin's algorithm [l,  p. 1791 is employed as the parametric 
A-algorithm. Test-runs could be made by any O(I E (log log) VI) minimum spanning 
tree algorithm (see [4], [ 101). 

Sollin's algorithm consists of at most O(log1 VI) iterations and in each one of them 
the minimum weight edge incident upon a vertex has to be found for each vertex. 
When employed parametrically, Sollin's algorithm generates at each vertex u a 
function which is equal to the minimum of an edge-weight in E, (E, is the set of edges 
incident upon v )  linear functions. The amount of time required for computing all 
intersection points of these linear functions, i.e., o ( / E ~ ~ ) ,  dominates the relatively low 
upper-bound of the minimum spanning tree problem. However, we show in the 
Appendix that the calculation of all breaking-points of the minimum of n linear 
functions could be carried out in time O(n log n). This implies that one can find all 
breaking-points of the functions, representing the minimum weight edges incident 
upon all vertices, in time O(I Ellog1 VI). Thus, a minimum ratio spanning tree can be 
found as follows. 

For every edge (u, u) E E let c,,(t) = a,, - tb,,. At the first stage find all breaking- 
points of the functions g,(t) = Min{c,,(t) : (u, u) E E )  (u E V). Merge all sequences 
of breaking-points associated with the different vertices, to form a sequence - oo = I, 

< t, < . . . < t, = m. Search for the first I such that the minimum spanning tree with 
respect to the weights cv,(t,) has a negative total weight, and set e = t,- ,, f = t,. For 
each v identify an edge (a, u) such that g,(t) = cv,(t) for every t, t,-, < t < 1,. These 
edges (except some that might have to be removed in order to prevent possible cycles) 
will belong to the minimum ratio spanning tree. Identify the groups of vertices that 
are connected by these edges. By induction, during the computation we have a forest 
consisting of subtrees T,, . . . , T,. If m = 1 then the forest is the tree sought. For 
every component T., let g,(t) (e < t < f) denote the minimum weight (with respect to 
c,,(t)) of an edge linking T, to another component. Find all breaking-points of the 
g,(t)'s ( i  = 1, . . . , m )  over [e, f ]  and merge the m sequences to a sequence e = to 
< . . . < t, =f. Search for the appropriate subinterval It,_,, t,], identify the cor- 
responding edges, and update [e,  f] = [t,- ,, t,]. From the set of new edges delete one 
per each cycle (of new edges) and add the rest to the forest. The number of 
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components of the new tree will be at most a half times the number of components of 
the previous one. The process is repeated until the forest has a unique component, in 
which case it is the minimum spanning tree with respect to the weights c,,(t), for every 
t in the final interval [e, f ] .  Thus, this tree has zero weight with respect to c,,(t*), and 
hence minimizes the given rational objective function. 
In procedure MRST, the set T collects the edges of the final spanning tree. The set 

VS contains the vertex sets corresponding to the connected components of the 
spanning tree found so far. E( W )  is the set of edges linking th vertex set W to some 
other vertex sets. ES is the collection of the E(W)'s. MST(t) is a procedure that 
returns the weight of a minimum spanning tree with respect to c,, = a, - tb,,. 

Procedure MRST; 
begin T t G ;  V S t G ;  E S t Q ) ;  
for each vertex u E V do 

begin 
add the singleton set { u )  to VS;  
add the edge set E ( { o ) )  
= {all the edges incident upon u )  to ES; 

end 
e c - c o ;  f t c o ;  
while I VS I > 1 do 
begin 
for each vertex set W E VS do 

begin 
for each edge (v ,  u') E E( W )  if u' E W 
then delete (u, u') from E( W ) ;  
construct the sequence BP(W)  of 
breaking-points of the function 
gw(t) = Min{a,, - tb,, : (u,  u) E E ( W ) )  
in the interval [e , f l  (procedure PMIN); 

end 
merge the sequences BP( W )  ( W E V S )  into 
a sequence BP; 
search BP for the first t' such that 
MST(t') < 0; 
f t  t'; e t the predecessor of t' in BP; 
T ' c Q ) ;  
for each vertex set W E VS do 

begin 
find the edge (u, 0') in E( W )  such 
that g,(t) = a,, -- tb,, for every 
t in [e, f l ;  
add (o,  v') to T';  

end 
for each edge (u,  0') E T' do 

begin 
if the set W E VS containing o and 
the set W' E VS containing c' are 
distinct then do 
begin 
in VS,  replace W and W' by W u W ' ;  
in ES, replace E( W )  and E ( W 1 )  by 
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E( W) U E( W'); 
add (v, v') to T;  

end 
end 

end 
output T; 

end MRST. 

The number of iterations is bounded by O(log1 VI). In every iteration the computa- 
tion of all breaking-points, as well as merging the sequences, does not require more 
than O(IE1. logJVI) time. The search involves O(loglVl) test-runs of a minimum 
spanning tree procedure, and hence amounts to O(I E I . log1 V1- log log1 VI) computa- 
tional steps. Thus, the overall time bound is O(IE I log2/ V( . log log1 VI). 

To summarize, procedure MRST calls MST(t) 0(log21 VI) times. Chandrasekaran's 
algorithm calls MST(t) O(log1 V() times, but on the other hand has to spend at least 
O(J E 12) time for some other steps. 

7. Minimum ratio cycles. Procedure MRC for finding a minimum ratio cycle is 
based on Karp [7]. The given graph may be assumed to be strongly connected, since 
otherwise the strongly connected components can be found in time O(1 VI + /El), 
which is dominated by the overall time bound obtained in any case, and then each 
component could be handled independently. 

A vertex s is chosen arbitrarily, and for every vertex v E V and k (i = 0, 1, . . . , n 
= I VI) we denote by Fk(o; t) the minimum weight (with respect to c,,(t) = a,, - tb,,) 
of an edge progression of length k from s to u (Fk(v; t) = oo if no such edge 
progression exists). I t  is proved in [7] that the graph with the weights c,,(t) contains a 
negative cycle if and only if there is a vertex o such that for every k (0 < k < n - 1) 
Fn(v; t) < Fk(u; 1). If this is the case then the minimum-weight edge progression of 
length n from s to v contains a negative cycle. 

If t is confined to an interval over which Fk(v; t )  is a linear function of t, then we 
represent Fk (v; t) = Gk(v) + t - Hk(v) Also, if the edge progression corresponding to 
F,(v; t) is independent of t over the interval under consideration then we denote by 
Ik(v) the predecessor of u in that edge progression. 

The values Fk(o; t) can be computed by Fk(u; t) = Min{Fk-,(u; t) + a,, - 
tb,, : (u, o) E E )  (k = 1, . . . , n), starting from F,(s; t )  = 0 and Fdv; t) = oo for 
v # s. Whenever Fk(v; t) will have to be computed, t will have already been confined 
to an interval over which each Fk- ,(u; t) ((u, u) E E )  is linear. Then, all breaking- 
points of the functions Fk(v; t) over that interval of t could be found in time 
O(IEl1ogl VO. 

Procedure NCD(t) is a negative cycle detector that returns YES if the graph with 
the weights c,,(t) contains a negative cycle, and NO otherwise. Procedure MRC 
computes the functions Fk(r;; t) (k = 0, 1, . . . , n, u E V) in an interval [e, f] over 
which each one of them is linear, and which is also known to contain the critical 
number t* = Max{t : NCD(r) = NO). Moreover, the edge progression corresponding 
to F,(v; t) is independent of t over [e, f]. This interval is then narrowed further, using 
a similar type of technique, to an interval [e, f] which contains t *  (t* < f), and such 
that Fn(v; t) does not intersect Fk(v; t )  in [e, f]  (excluding the possibility of coinci- 
dence over the entire interval) for every vertex u and k, k = 0, 1, . . . , n - 1. Since 
r* < f, it follows that there is a vertex o* such that Fn(u*; f) < Fk(o*; f) for every k, 
k = 0, 1, . . . , n - 1. This implies that Fn(v*; t*) < Fk(c*; t*) for every such k. How- 
ever, the edge progression corresponding to Fn(o* ; t *) certainly contains a cycle. It 
follows that this cycle must be of weight zero with respect to c,,(t*). Thus, this cycle is 
a minimum ratio cycle. 
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Procedure MRC ; 
begin e t - cc ; f c oo ; Go(s) t 0; Ho(s) t 0; 
for each vertex v # s do 

begin 
Go(t;) t oo ; Ho(c) t 0 ;  

end 
for k t  1 until n do 

begin 
for each vertex u E V construct the sequence 
BP(v) of all breaking-points of the function 
g,(t) = Min{Gk-,(u) + a, + t[Hk-,(u)  - b,,]: 
(u ,  v )  E E )  in [e, fl (procedure PMIN); 
merge the sequences BP(v) ( u  E V )  into a 
sequence BP 
search BP for the first t' such that 
NCD(tl) = YES;  
f t t'; e c the predecessor of t' in BP; 
for each vertex v E V do 

begin 
identify the vertex u such that 
g,(t) = Gk- ,(u) + a,, + dHk- ,(u) - b,1 
for t E [e, fl; 
Gk(v)+ G k - l ( ~ )  + a,; 
Hk(v)+Hk- , ( 4  - bu,; 
Ik(v)+ U ;  

end 
end 

S + { e , f >  
for each vertex v E V do 

begin 
for k c 0 until n - I do 

begin 
if Hn(v) # Hk(v)  then do 
begin 
t t  [Gk(v) - Gn(u)I/[Hn(v) - Hk(v)l; 
if t E [e, f ]  then add t to S ;  

end 
end 

end 
sort S ;  
search S for the first t' such that 
NCD(t') = YES;  f t t ' ;  e c the predecessor of 
1' in S ;  
for each vertex v do 

begin 
while x = 0 and k < n - 1 do 
begin 
if Gn ( v )  + fHn ( 0 )  > Gk ( v )  + fHk (0 )  

then x t  1 ;  
k t k +  1 

end 
i f x  = O  then go to 1 
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end 
1 S t { u ) ;  x t O ;  u , t v ;  k c n +  1; 

while x = 0 do 
begin k t k - 1 ; 
uk- 1 +- Ik(uk); 
i f u k - , $ S t h e n a d d u k - ,  t o S e l s e x t 1 ;  . 

end 
identify 1 ( k  4 1 4 n) such that uk-,  = u,; 
output U k -  ,, U k ,  . . . , u,; 

end MRC. 

The computation of Gk(u) and Hk(v) for all vertices and some fixed k requires 
O(IE(log( V J )  time for finding the sequence of breaking-points, and then O(log1 VI) 
test-runs of a negative cycle detector are required for narrowing the interval. Thus, all 
the quantities of the form Gk(u) and H,(u) are computed in time O ( I E I . ~ V ~ ~ .  
log/ VI). The terminal narrowing of the interval requires the computation of O(I vI2) 
values and O(log1 VI) test-runs. Thus, the overall bound is O(IE1 . ( ~ 1 ' .  log] VI). 

Appendix: An O(n log n) algorithm for the minimum of n linear functions. Let 
a,, . . . , a,, b,, . . . , b, be given real numbers and let g(t)  = Min{ g(t;  i )  = air + b, : i 
= 1 ,  . . . , n) .  Obviously, g(t)  is concave and piecewise linear with at most n linear 
pieces. In order to describe g(t)  completely, it suffices to specify all of its breaking- 
points - oo = to < t ,  < . . . < $+, = 00, together with indices k, ,  . . . , k,+,, such that 
g(t)  = g(t;  k,) for all t and i ( i  = 1, . . . , j + 1) satisfying ti-, < t < ti. 

The following algorithm is based on the fact that the slopes of the linear pieces of 
g(t)  form a monotone decreasing sequence. The first step requires sorting the set 
{(a,,  b,),  . . . , (a,, b,)) according to the order >, defined by (a,, 6,) > (a,, b,) if and 

I only if either a, > aj or a, = a, and b, < $. Then we may assume that a ,  > a, > . . . 
> a,. Denote g(m)(t) = Min{g(t;  i) : i = 1, . . . , m ) ,  m = 1 ,  2, . . . , n. Suppose that 
for some m < n all the breaking-points - oo = to < t ,  < . . . < $+, = oo of g@)(t) are 
known, together with indices k, ,  . . . , k,+ , such that g(m)(t) = g(t;  k,) for t i - ,  < t < ti. 

I 

The graph of g,+,(t) either intersects the graph of g(m)(t) at most at one point, or 
coincides with its rightmost linear piece. If g(m)($) = ak,$ + bk, < gm+,(r,) then the 
intersection point t* (if at all) of g(m)(t) and g,, ,(t) is the rightmost breaking-point of 
g("+')(t). In fact, g("'+I)(t) coincides with g(")(t) over [ -  oo, t*], and with g,+ ,(t) over 
[t*, oo]. If g(,)(t,) = gm+ ,($) then g("+')(t) coincides with g(m)(t) over [- cv, $1 and 
with g,+,(t) over [$, oo]. The remaining case is g(m)($) > g,,,+,($). In this case a 
binary search over 1, . . . , j finds the first i such that g(m)(t,) > g,,,, ,(ti). The intersec- 
tion point t* of g(")(t) and g,+,(t) lies in this case in [ti-,, t,]. Again g(m+')(t) 
coincides with g(")(t) over [ -  oo, t*] and with g,+ ,(t) over [I*,  oo]. 

Procedure PMIN ; 
begin 
sort {(a, ,  b,), . . . , (a,, b,,)) according to the 
order > defined by (aibi) > (a,, b,) if 
either a, > a, or a, = 9 and bi < b,; 
j t O ;  k c  1; 
for m t 2 until n do 

begin 
if j = 0 then do 
begin 
if a,,, # a ,  then do 
begin 
j t  1; k,+-m; t ,  t ( b ,  - b,)/(a,  - a,); 
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end 
else go to 1 ; 

end 
else if am # a,, + , then do 
begin 
x t a , t  + bk,; yta,,,i', + b,: 
i/ x <$ then do 
begin 

$ + I  +(bm - bkl+l)/(akl+l - am); 
k,+,+-m; j t j  + 1; 

end 
else if x > y then do 
begin 
search for the first i such that 
a,t, + b, > amt, + b,; 
j t  i ;  k,,, t m 

end 
end 

1 end 
end PMIN. 

Procedure PMIN runs in O(n log n) time. We note that the data structure for 
PMIN could simply be an array with a pointer, since all deletions are of terminal 
portions of a set and all insertions are made at the end of the set. 

We also note that any algorithm for finding the minimum of n linear functions, 
using only comparisons, requires O(n log n) time. This is implied by the fact that the 
sorting problem is reducible to minimum finding problem in the following manner. 
Suppose that a set S = { a , ,  . . . , a,,) of real numbers has to be sorted, and assume 
that all the elements of S are distinct. Let g,(t) = ait + a:, i = 1, . . . , n. If i # j then 
g,( t )  intersects ~ ( t )  at the point -ai  - a,. This implies that g ( t )  = Min{ g, ( t )  : i 
- - 1, . . . , n )  consists of precisely n linear pieces whose slopes constitute a monotone 
decreasing sequence. This sequence is in fact the sorted set S. 

References 
[I] Berge, C. and Ghouila-Houri, A. (1965). Programming, Games and Transportation Networks. Wiley, 

New York. 
[2] Blum, M., Floyd, R. W., Pratt, R., Rivest, R. L. and Tarjan, R. E. (1972). Time Bounds for Selection. 

J. Compur. System Sci. 7 448-461. 
[3] Chandrasekaran, R. (1977). Minimum Ratio Spanning Trees. Networks. 7 335-342. 
[4] Cheriton, D. and Tajan, R. E. (1976). Finding Minimum Spanning Trees. SIAM J. Comput. 5 

724-742. 
[5] Dantzig, G. B., Blattner, W. and Rao, M. R. (1967). Finding a Cycle in a Graph with Minimum Cost 

to Time Ratio with Appl~cation to a Sh:p Routing Problem. In Theov of Graphs, P. Rosenstiehl, ed. 
Dunod, Paris, and Gordon and Breach, New York. 77-84. 

[6] Johnson, D. 9 .  (1973). Algorithms for Shorest Paths. Ph.D. dissertation, Cornell University, Ithaca, 
New York. 

[7] Karp, R. M. (June 1977). A Characterization of the Minimum Cycle Mean in a Digraph. Memoran- 
dum No. UCB/ERL M77/47, Electronic Research Laboratory, College of Engineering, University 
of California at Berkeley. 

(81 Lawler, E. L. (1967). Optimal Cycles i I Doubly Weighted Linear Graphs. In Theory o j  Graphs, P. 
Rosenstiehl, ed. Dunod, Paris, and Gordon and Breach, New York. 209-214. 

PI -- . (1976). Combinatorial Optimization: Networks and Matroids. Holt, Rinehart and Winston, 
New York. 

(101 Yao, A. C. (1975). An O(lE(10g log/ V ( )  Algorithm for Finding Minimum Spanning Trees. Informarion 
Processing Lett. 4 21-23. 

TEL AVIV UNIVERSITY, TEL AVIV, ISRAEL 




