ON THE COMPLEXITY OF SOLVING THE
GENERALIZED SET PACKING PROBLEM APPROXIMATELY

Nimrod Megiddof

Abstract. The generalized set packing problem (GSP) is as follows. Given
a family F of subsets of M = {1,---,m} and a vector b € R™, find a subfamily
F' C F of maximum cardinality such that for every ¢« € M, ¢ does not belong to more
than b; members of F'. The subproblem (GSPy) consists of those instances of (GSP)
where each member of M belongs to at most k& members of F. It is shown that for
every k, if there is a polynomial-time approximation algorithm for (GSPy) with a
positive performance ratio then GS Py, has a polynomial approximation scheme. This
generalizes a result of Garey and Johnson with regard to the maximum independent

set problem in a graph.
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The generalized set packing problem is the following integer linear programming prob-

lem:
Maximize el
(GSP) subject to Az <b
x e {0,1}"

where A € {0,1}™*™ is a zero-one matrix, b € Z™ is an integral vector, and e denotes
a vetor of 1’s. For an application of the problem, consider a scheduling problem where
jobs require processing during certain time intervals. Thus, A;; equals 1 if and only if
job j requires processing during the ¢-th period. The value of b; gives the number of jobs
that can run in parallel during the 2-th period. The problem is to select a set of jobs of

maximum cardinality which can be processed subject to the constraints.

The definitions in the present paragraph are taken from [GJ]. Given an instance [
of (GSP), denote by opt(I) the value of its optimal solution. If F' is an approximation
algorithm for (GSP), let F(I) denote the value of the solution delivered by A, and let
r(F) = inf/{F(I)/opt(I)}. The ratio r(F') is the worst-case performance ratio of the
algorithm F. An approzimation scheme is an algorithm F that receives together with the
problem another parameter e > 0. Thus, for a fixed € there is an 1mplicit algorithm F,
that is derived from F. If for every e > 0 the derived algorithm F, runs in polynomial time

and has a performance ratio r(F.) > 1 — e then F is said to be a polynomial approzimation

scheme [GJ].

The maximum independent set problem is a special case of (GSP) where A has exactly
two 1’s in each row (i.e., A is the node-arc incidence matrix of some graph), and b = e.

Garey and Johnson [GJ] proved the following:

Proposition 1. If the mazimum independent set problem has a polynomaual-time
approximation algorithm with a positive performance ratio then it also has a polynomial

approximation scheme.

We show that Proposition 1 can be extended to a parameterized family of subproblems
of the generalized set packing problem. For every integer k > 2, let (GS Py ) denote the set
of instances of (GSP) where the matrix A has at most k& 1’s per row. A generalization of

Proposition 1 is as follows.



Proposition 2. For every k > 2, if there 1s a polynomial-time approzimation
algorithm for (GSPy) with a positive performance ratio then there is a polynomial ap-

prozimation scheme for (GSPy).

Proof: The proof generalizes Garey and Johnson’s proof of Proposition 1. Consider
an instance of (GSPy), given by a pair (A4,0) (A € {0,1}*", b € Z™). We produce
from (A4, b) another instance (A4,5), A € {0,1}™*7 b € Z™ (where i < mn(n*~"' 4 1)
and 7 = n?) as follows (see an example below). The rows of A are of two types. The
first mn rows are of the first type and are obtained by placing n copies of the matrix A
in a diagonal configuration. Also, the first mn entries of b contain n copies of b. The
other rows are of the second type and produced as follows. From each row ¢ of A with
ki 1's (k; < k) we produce n* rows of A. Specifically, a typical row is produced from
the ¢’th row of A in the following way. For each j such that A;; =1, pick a number (;,
n(j —1)+1 < ¢; < nj. Given the choices (;, create a row of A by placing 1’s in the
k; positions of the form ¢; and 0’s in all the other positions. Obviously, for each ¢ the
number of different ways to choose the ¢;’s is n*i. The corresponding entry of b is set to
b;. Consider the generalized set packing problem with (A, b). The number of variables is
n? and it is convenient to use here doubly indexed ones z;;,, defined by zj;, = T (j—1)+h-
Under this equivalence, the symbols Az and e’ z are well-defined. Consider any zero-one
solution 2 = (z;3,) of the system Az <b. Denote ) = (z;1,---,2;,)7 (j = 1,---,n) .
It is easy to see that #(/) is a solution of the system Az < b. Now, denote yi = 11, zjn
(j =1,---,n) . We claim that y = (y1,---,¥n)? is a zero-one solution of Az < b. For
if A;y > b; for some row ¢ then by choosing ¢; (for each j such that A;; = 1) so that

y; = zjt; , we identify a row ¢’ of A for which Az > by. Moreover,

elz = Z elad = Z eT2d < (eTy)max{eT 2’} < max {(eTy)z,maX{(eij)z}} .
j jiyi =1 ’ ’
On the other hand, if y = 20 = 2' (j = 1,---,n) then ¢’z = (T2')?. Thus, if the
optimal value of the given problem is equal to V' then the optimal value of the problem
with (4, b) is equal to V2. Now, suppose there exists a polynomial-time approximation
algorithm F' whose performance ratio is r > 0. Let z denote the solution given by F
for the system with (A4,5). Thus, (e72)/V? > r. Let * denote one of the vectors
y, oo 2™ 5o that e”z* is maximal. It follows from the above that (eTz*)/V >

/7. This means that there is also a polynomial-time approximation algorithm with a
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performance ratio of /7. Repeating this arguement sufficiently many times, we see that

for every € > 0 a ratio of 1 — € can be guaranteed. g

Example 3. Consider the pair

Here the pair (4,5) is the following:
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