# ON THE COMPLEXITY OF SOLVING THE GENERALIZED SET PACKING PROBLEM APPROXIMATELY 

Nimrod Megiddo $\dagger$


#### Abstract

The generalized set packing problem (GSP) is as follows. Given a family $F$ of subsets of $M=\{1, \cdots, m\}$ and a vector $b \in R^{m}$, find a subfamily $F^{\prime} \subset F$ of maximum cardinality such that for every $i \in M, i$ does not belong to more than $b_{i}$ members of $F^{\prime}$. The subproblem $\left(G S P_{k}\right)$ consists of those instances of (GSP) where each member of $M$ belongs to at most $k$ members of $F$. It is shown that for every $k$, if there is a polynomial-time approximation algorithm for $\left(G S P_{k}\right)$ with a positive performance ratio then $G S P_{k}$ has a polynomial approximation scheme. This generalizes a result of Garey and Johnson with regard to the maximum independent set problem in a graph.


$\dagger$ IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, and School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

The generalized set packing problem is the following integer linear programming problem:
(GSP)

$$
\begin{aligned}
\text { Maximize } & e^{T} x \\
\text { subject to } & A x \leq b \\
& x \in\{0,1\}^{n}
\end{aligned}
$$

where $A \in\{0,1\}^{m \times n}$ is a zero-one matrix, $b \in Z^{m}$ is an integral vector, and $e$ denotes a vetor of 1's. For an application of the problem, consider a scheduling problem where jobs require processing during certain time intervals. Thus, $A_{i j}$ equals 1 if and only if job $j$ requires processing during the $i$-th period. The value of $b_{i}$ gives the number of jobs that can run in parallel during the $i$-th period. The problem is to select a set of jobs of maximum cardinality which can be processed subject to the constraints.

The definitions in the present paragraph are taken from [GJ]. Given an instance $I$ of $(G S P)$, denote by $\operatorname{opt}(I)$ the value of its optimal solution. If $F$ is an approximation algorithm for $(G S P)$, let $F(I)$ denote the value of the solution delivered by $A$, and let $r(F)=\inf _{I}\{F(I) / \operatorname{opt}(I)\}$. The ratio $r(F)$ is the worst-case performance ratio of the algorithm $F$. An approximation scheme is an algorithm $\bar{F}$ that receives together with the problem another parameter $\epsilon>0$. Thus, for a fixed $\epsilon$ there is an implicit algorithm $F_{\epsilon}$ that is derived from $\bar{F}$. If for every $\epsilon>0$ the derived algorithm $F_{\epsilon}$ runs in polynomial time and has a performance ratio $r\left(F_{\epsilon}\right) \geq 1-\epsilon$ then $\bar{F}$ is said to be a polynomial approximation scheme [GJ].

The maximum independent set problem is a special case of (GSP) where $A$ has exactly two 1's in each row (i.e., $A$ is the node-arc incidence matrix of some graph), and $b=e$. Garey and Johnson [GJ] proved the following:

Proposition 1. If the maximum independent set problem has a polynomial-time approximation algorithm with a positive performance ratio then it also has a polynomial approximation scheme.

We show that Proposition 1 can be extended to a parameterized family of subproblems of the generalized set packing problem. For every integer $k \geq 2$, let $\left(G S P_{k}\right)$ denote the set of instances of (GSP) where the matrix $A$ has at most $k$ 1's per row. A generalization of Proposition 1 is as follows.

Proposition 2. For every $k \geq 2$, if there is a polynomial-time approximation algorithm for $\left(G S P_{k}\right)$ with a positive performance ratio then there is a polynomial approximation scheme for $\left(G S P_{k}\right)$.

Proof: The proof generalizes Garey and Johnson's proof of Proposition 1. Consider an instance of $\left(G S P_{k}\right)$, given by a pair $(A, b)\left(A \in\{0,1\}^{m \times n}, b \in Z^{m}\right)$. We produce from $(A, b)$ another instance $(\bar{A}, \bar{b}), \bar{A} \in\{0,1\}^{\bar{m} \times \bar{n}}, \bar{b} \in Z^{\bar{m}}$ (where $\bar{m} \leq m n\left(n^{k-1}+1\right)$ and $\bar{n}=n^{2}$ ) as follows (see an example below). The rows of $\bar{A}$ are of two types. The first $m n$ rows are of the first type and are obtained by placing $n$ copies of the matrix $A$ in a diagonal configuration. Also, the first $m n$ entries of $\bar{b}$ contain $n$ copies of $b$. The other rows are of the second type and produced as follows. From each row $i$ of $A$ with $k_{i}$ 1's $\left(k_{i} \leq k\right)$ we produce $n^{k_{i}}$ rows of $\bar{A}$. Specifically, a typical row is produced from the $i$ 'th row of $A$ in the following way. For each $j$ such that $A_{i j}=1$, pick a number $\ell_{j}$, $n(j-1)+1 \leq \ell_{j} \leq n j$. Given the choices $\ell_{j}$, create a row of $\bar{A}$ by placing 1 's in the $k_{i}$ positions of the form $\ell_{j}$ and 0 's in all the other positions. Obviously, for each $i$ the number of different ways to choose the $\ell_{j}$ 's is $n^{k_{i}}$. The corresponding entry of $\bar{b}$ is set to $b_{i}$. Consider the generalized set packing problem with $(\bar{A}, \bar{b})$. The number of variables is $n^{2}$ and it is convenient to use here doubly indexed ones $z_{j h}$, defined by $z_{j h} \equiv x_{n(j-1)+h}$. Under this equivalence, the symbols $\bar{A} z$ and $e^{T} z$ are well-defined. Consider any zero-one solution $z=\left(z_{j h}\right)$ of the system $\bar{A} z \leq \bar{b}$. Denote $x^{(j)}=\left(z_{j 1}, \cdots, z_{j n}\right)^{T}(j=1, \cdots, n)$. It is easy to see that $x^{(j)}$ is a solution of the system $A x \leq b$. Now, denote $y_{j}=\prod_{h} z_{j h}$ $(j=1, \cdots, n)$. We claim that $y=\left(y_{1}, \cdots, y_{n}\right)^{T}$ is a zero-one solution of $A x \leq b$. For if $A_{i} y>b_{i}$ for some row $i$ then by choosing $\ell_{j}$ (for each $j$ such that $A_{i j}=1$ ) so that $y_{j}=z_{j \ell_{j}}$, we identify a row $i^{\prime}$ of $\bar{A}$ for which $\bar{A}_{i^{\prime}} z>\bar{b}_{i^{\prime}}$. Moreover,

$$
e^{T} z=\sum_{j} e^{T} x^{j}=\sum_{j: y_{j}=1} e^{T} x^{j} \leq\left(e^{T} y\right) \max _{j}\left\{e^{T} x^{j}\right\} \leq \max \left\{\left(e^{T} y\right)^{2}, \max _{j}\left\{\left(e^{T} x^{j}\right)^{2}\right\}\right\}
$$

On the other hand, if $y=x^{(j)}=x^{\prime}(j=1, \cdots, n)$ then $e^{T} z=\left(e^{T} x^{\prime}\right)^{2}$. Thus, if the optimal value of the given problem is equal to $V$ then the optimal value of the problem with $(\bar{A}, \bar{b})$ is equal to $V^{2}$. Now, suppose there exists a polynomial-time approximation algorithm $F$ whose performance ratio is $r>0$. Let $z$ denote the solution given by $F$ for the system with $(\bar{A}, \bar{b})$. Thus, $\left(e^{T} z\right) / V^{2}>r$. Let $x^{*}$ denote one of the vectors $y, x^{(1)}, \cdots, x^{(n)}$ so that $e^{T} x^{*}$ is maximal. It follows from the above that $\left(e^{T} x^{*}\right) / V \geq$ $\sqrt{r}$. This means that there is also a polynomial-time approximation algorithm with a
performance ratio of $\sqrt{r}$. Repeating this arguement sufficiently many times, we see that for every $\epsilon>0$ a ratio of $1-\epsilon$ can be guaranteed.

Example 3. Consider the pair

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 0
\end{array}\right] \quad b=\left[\begin{array}{l}
2 \\
1
\end{array}\right]
$$

Here the pair $(\bar{A}, \bar{b})$ is the following:

$$
\bar{A}=\left[\begin{array}{lllllllll}
1 & 1 & 1 & & & & & & \\
1 & 1 & 0 & & & & & & \\
& & & 1 & 1 & 1 & & & \\
& & & 1 & 1 & 0 & & & \\
& & & & & & 1 & 1 & 1 \\
& & & & & & 1 & 1 & 0 \\
1 & & & 1 & & & 1 & & \\
1 & & & 1 & & & & 1 & \\
1 & & & 1 & & & & & 1 \\
1 & & & & 1 & & 1 & & \\
1 & & & & 1 & & & 1 & \\
1 & & & & 1 & & & & 1 \\
1 & & & & & 1 & 1 & & \\
1 & & & & & 1 & & 1 & \\
1 & & & & & 1 & & & 1 \\
& 1 & & 1 & & & 1 & & \\
& 1 & & 1 & & & & 1 & \\
& 1 & & 1 & & & & & 1 \\
& 1 & & & 1 & & 1 & & \\
& 1 & & & 1 & & & 1 & \\
& 1 & & & 1 & & & & 1 \\
& 1 & & & & 1 & 1 & & \\
& 1 & & & & 1 & & 1 & \\
1 \\
& 1 & & & & 1 & & & 1 \\
2 \\
1 \\
& & 1 & 1 & & & 1 & & \\
& & 1 & 1 & & & & 1 & \\
2 \\
2 \\
& & 1 & 1 & & & & & 1 \\
& & 1 & & 1 & & 1 & & \\
& & 1 & & 1 & & & 1 & \\
2 \\
& & 1 & & 1 & & & & 1 \\
& & 1 & & & 1 & 1 & & \\
& & 1 & & & 1 & & 1 & \\
& & 1 & & & 1 & & & 1 \\
1 & & & 1 & & & & & \\
1 & & & & 1 & & & & \\
1 & & & & & 1 & & & \\
& 1 & & 1 & & & & & \\
& 1 & & & 1 & & & & \\
& 1 & & & & 1 & & & \\
2 \\
& & 1 & 1 & & & & & \\
& & 1 & & 1 & & & & \\
& & 1 & & & 1 & & & \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right] \quad \bar{b}=\left(\begin{array}{ll}
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2 \\
2
\end{array}\right]
$$

## Reference

[GJ] M. R. Garey and D. S. Johnson, Computers and intractibility: A Guide to the theory of NP-completeness, W. H. Freeman, San Francisco, 1979.

