ON THE COMPLEXITY OF SOLVING THE GENERALIZED SET PACKING PROBLEM APPROXIMATELY

Nimrod Megiddo†

Abstract. The generalized set packing problem (GSP) is as follows. Given a family F of subsets of $M = \{1, \dots, m\}$ and a vector $b \in R^m$, find a subfamily $F' \subset F$ of maximum cardinality such that for every $i \in M$, i does not belong to more than b_i members of F'. The subproblem (GSP_k) consists of those instances of (GSP) where each member of M belongs to at most k members of F. It is shown that for every k, if there is a polynomial-time approximation algorithm for (GSP_k) with a positive performance ratio then GSP_k has a polynomial approximation scheme. This generalizes a result of Garey and Johnson with regard to the maximum independent set problem in a graph.

[†] IBM Almaden Research Center, 650 Harry Road, San Jose, California 95120-6099, and School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel.

The generalized set packing problem is the following integer linear programming problem:

$$\begin{array}{ll} \text{Maximize} & e^T x \\ \\ (GSP) & \text{subject to} & Ax \leq b \\ \\ & x \in \{0,1\}^n \end{array}$$

where $A \in \{0,1\}^{m \times n}$ is a zero-one matrix, $b \in Z^m$ is an integral vector, and e denotes a vetor of 1's. For an application of the problem, consider a scheduling problem where jobs require processing during certain time intervals. Thus, A_{ij} equals 1 if and only if job j requires processing during the i-th period. The value of b_i gives the number of jobs that can run in parallel during the i-th period. The problem is to select a set of jobs of maximum cardinality which can be processed subject to the constraints.

The definitions in the present paragraph are taken from [GJ]. Given an instance I of (GSP), denote by opt(I) the value of its optimal solution. If F is an approximation algorithm for (GSP), let F(I) denote the value of the solution delivered by A, and let $r(F) = \inf_{I} \{F(I)/opt(I)\}$. The ratio r(F) is the worst-case performance ratio of the algorithm F. An approximation scheme is an algorithm \overline{F} that receives together with the problem another parameter $\epsilon > 0$. Thus, for a fixed ϵ there is an implicit algorithm F_{ϵ} that is derived from \overline{F} . If for every $\epsilon > 0$ the derived algorithm F_{ϵ} runs in polynomial time and has a performance ratio $r(F_{\epsilon}) \geq 1 - \epsilon$ then \overline{F} is said to be a polynomial approximation scheme [GJ].

The maximum independent set problem is a special case of (GSP) where A has exactly two 1's in each row (i.e., A is the node-arc incidence matrix of some graph), and b = e. Garey and Johnson [GJ] proved the following:

Proposition 1. If the maximum independent set problem has a polynomial-time approximation algorithm with a positive performance ratio then it also has a polynomial approximation scheme.

We show that Proposition 1 can be extended to a parameterized family of subproblems of the generalized set packing problem. For every integer $k \geq 2$, let (GSP_k) denote the set of instances of (GSP) where the matrix A has at most k 1's per row. A generalization of Proposition 1 is as follows.

Proposition 2. For every $k \geq 2$, if there is a polynomial-time approximation algorithm for (GSP_k) with a positive performance ratio then there is a polynomial approximation scheme for (GSP_k) .

Proof: The proof generalizes Garey and Johnson's proof of Proposition 1. Consider an instance of (GSP_k) , given by a pair (A,b) $(A \in \{0,1\}^{m \times n}, b \in \mathbb{Z}^m)$. We produce from (A,b) another instance $(\overline{A},\overline{b}), \overline{A} \in \{0,1\}^{\overline{m} \times \overline{n}}, \overline{b} \in Z^{\overline{m}}$ (where $\overline{m} \leq mn(n^{k-1}+1)$ and $\overline{n} = n^2$) as follows (see an example below). The rows of \overline{A} are of two types. The first mn rows are of the first type and are obtained by placing n copies of the matrix Ain a diagonal configuration. Also, the first mn entries of \overline{b} contain n copies of b. The other rows are of the second type and produced as follows. From each row i of A with k_i 1's $(k_i \leq k)$ we produce n^{k_i} rows of \overline{A} . Specifically, a typical row is produced from the i'th row of A in the following way. For each j such that $A_{ij} = 1$, pick a number ℓ_j , $n(j-1)+1 \leq \ell_j \leq nj$. Given the choices ℓ_j , create a row of \overline{A} by placing 1's in the k_i positions of the form ℓ_j and 0's in all the other positions. Obviously, for each i the number of different ways to choose the ℓ_i 's is n^{k_i} . The corresponding entry of \overline{b} is set to b_i . Consider the generalized set packing problem with $(\overline{A}, \overline{b})$. The number of variables is n^2 and it is convenient to use here doubly indexed ones z_{jh} , defined by $z_{jh} \equiv x_{n(j-1)+h}$. Under this equivalence, the symbols $\overline{A}z$ and e^Tz are well-defined. Consider any zero-one solution $z = (z_{jh})$ of the system $\overline{A}z \leq \overline{b}$. Denote $x^{(j)} = (z_{j1}, \dots, z_{jn})^T$ $(j = 1, \dots, n)$. It is easy to see that $x^{(j)}$ is a solution of the system $Ax \leq b$. Now, denote $y_j = \prod_h z_{jh}$ $(j=1,\cdots,n)$. We claim that $y=(y_1,\cdots,y_n)^T$ is a zero-one solution of $Ax\leq b$. For if $A_i y > b_i$ for some row i then by choosing ℓ_j (for each j such that $A_{ij} = 1$) so that $y_j=z_{j\ell_j}$, we identify a row i' of \overline{A} for which $\overline{A}_{i'}z>\overline{b}_{i'}$. Moreover,

$$e^T z = \sum_j e^T x^j = \sum_{j:y_i=1} e^T x^j \le (e^T y) \max_j \{e^T x^j\} \le \max \left\{ (e^T y)^2, \max_j \{(e^T x^j)^2\} \right\}.$$

On the other hand, if $y=x^{(j)}=x'$ $(j=1,\cdots,n)$ then $e^Tz=(e^Tx')^2$. Thus, if the optimal value of the given problem is equal to V then the optimal value of the problem with $(\overline{A},\overline{b})$ is equal to V^2 . Now, suppose there exists a polynomial-time approximation algorithm F whose performance ratio is r>0. Let z denote the solution given by F for the system with $(\overline{A},\overline{b})$. Thus, $(e^Tz)/V^2>r$. Let x^* denote one of the vectors $y,x^{(1)},\cdots,x^{(n)}$ so that e^Tx^* is maximal. It follows from the above that $(e^Tx^*)/V \geq \sqrt{r}$. This means that there is also a polynomial-time approximation algorithm with a

performance ratio of \sqrt{r} . Repeating this argument sufficiently many times, we see that for every $\epsilon > 0$ a ratio of $1 - \epsilon$ can be guaranteed.

Example 3. Consider the pair

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \end{bmatrix} \qquad b = \begin{bmatrix} 2 \\ 1 \end{bmatrix} .$$

Here the pair $(\overline{A}, \overline{b})$ is the following:

	Γ1	1	1						٦		$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$
	1	1	0	-1	-1	1					$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
				1 1	1 1	1 0					2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
				1	Т	U	1	1	1		$\begin{vmatrix} 1 \\ 2 \end{vmatrix}$
$\overline{A} =$		1 1 1 1 1 1 1 1	1	1 1 1 1 1 1	1 1 1 1 1		1	1	0		1
	1					1 1 1	1				2
	1							1	1		$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
	1						1		1		$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
	1 1 1 1 1							1			$\begin{bmatrix} 2\\2 \end{bmatrix}$
									1		2
							1				2
								1	-		$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$
	1						1		1		$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
							1	1			$\left\lfloor \frac{2}{2} \right\rfloor$
						1		_	1		$\begin{bmatrix} -1 \\ 2 \end{bmatrix}$
							1				2
								1	-		$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$
							1		1	$\overline{b} =$	$\begin{bmatrix} 2 \\ 2 \end{bmatrix}$
						1	1	1			$\left\lfloor \frac{2}{2} \right\rfloor$
				1		1		_	1		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
							1				2
			1	1				1	_		$\begin{vmatrix} 2 \end{vmatrix}$
			1 1	1	1		1		1		$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$
			1		1 1		T	1			$\left\lfloor \frac{2}{2} \right\rfloor$
			1		1			_	1		$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$
			1 1			1	1				2
						1		1			2 2 1
	1		1	1		1			1		$\begin{vmatrix} 2 \\ 1 \end{vmatrix}$
	1 1			1	1						
	1				Т	1					1 1
		1		1							1
		1 1			1						1 1
		1	4	4		1					
			1 1	1	1						1 1
			1		Т	1					$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$
	-		_			-			_		

Reference

[GJ] M. R. Garey and D. S. Johnson, Computers and intractibility: A Guide to the theory of NP-completeness, W. H. Freeman, San Francisco, 1979.