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Parallel algorithms for various versions of the stable
matching problem are presented� The algorithms are
based on the primal�dual interior path�followingmethod
for linear programming� The main result is that a stable
matching can be found in O��

p
m� time by a polynomial

number of processors� where m is the total length of
preference lists of individuals�

�� Introduction

In this paper we consider networks made of gates of
constant size� We focus of non�expansive networks �to
be de�ned below�� The problems of evaluating the
gate to which a network converges� and of �nding a
stable con�guration in a network� are quite simple in
the context of sequential computation� they can all be
solved in linear time in the scatter�free case �a special
case� Mayr and Subramanian �	
�� and in quadratic
time in the general nonexpansive case �Feder ��
�� An
interesting question is the existence of sublinear parallel
algorithms with a polynomial number of processors�

We present parallel algorithms for the above prob�
lems which run in O��

p
I� time� with a polynomial num�

ber of processors� where I is the size of the input and
f�I� � O��g�I�� means there exists a constant k such
that f�I� � g�I��log I�k� Our approach is based on for�
mulating the problems as linear programming problems
and solving them with the primal�dual interior path�
following method�

As an application� the problem of stable matching
�

 can be solved in O��

p
m� time� where m is the

total length of the preference lists of individuals� The
approach is by means of interior point methods in linear
programming�

In Sections � and 
 we introduce networks of
gates and the concepts of nonexpansive and convergent
networks� The material in these sections is from Feder
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� In Section � we study the relation between these
concepts and linear programming� In Section 	 we
obtain the general result of recognizing stability in a
network� This result is then applied to the stable
matching problem in Section ��

�� Gates and Networks

A �boolean� assignment is a mapping x � S � f�� �g
with a domain S � S�x�� An element i � S�x� is a
coordinate of x� and the image x�i� is its value� Given
a set of coordinates T � S�x�� we denote by xT the
restriction of x to the set T � If T � fig �i � S�x��
then xT is denoted by xi� If x and y are assignments
with S�x� � S�y� � �� then xy denotes the union of
the two assignments� with S�xy� � S�x� � S�y�� In
particular� if S�x� � f�� �� � � �� ng� then x � x�x� � � �xn�
With a slight abuse of notation� we shall identify each
xi with its value x�i�� For example� the statement
x � x�x�x� � ��� indicates that S�x� � f�� �� 
g and
�x����x����x�
�� � ��� �� ��� Two assignments x and y
are consistent if xi � yi for all i � S�x� � S�y��

A gate is a mapping g � f�� �gI � f�� �gO from
assignments on the input set I � I�g� to assignments
on the output set O � O�g�� The coordinates in I�g�
and O�g� are called inputs and outputs of g� respectively�
The gate g is a k�input� ��output gate if jI�g�j � k

and jO�g�j � �� Given a gate g� an assignment x

with S�x� � I�g� and a coordinate set T � O�g�� the
restriction gx�T of the gate g is the gate g� obtained from
g by discarding the outputs not in T and discarding
the inputs in S�x� after assigning to them the values
given by x� More formally� the gate g� has inputs
I�g�� � I�g� n S�x�� outputs O�g�� � O�g� � T � and
satis�es g��y� � g�xy�T �

A network is a set of gates that share neither inputs
nor outputs� This means that if N is a network and g

and g� are distinct gates in N � then I�g�� I�g�� � � and
O�g� � O�g�� � �� On the other hand� given two �not
necessarily distinct� gates g� g� in N � it may happen that
an output of g is also an input of g�� If i � O�g�� I�g���
then we say that output i of gate g and input i of gate g�

are linked� By the disjointness property� every input is
linked to at most one output� and every output is linked
to at most one input� These links induce a topology

�
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on the network that can be described by a directed
multigraph on the gates of the network� i�e�� a directed
graph with the gates as the vertices� with a directed
edge from g to g� for every output of g linked to an
input of g�� loops and parallel edges are allowed� If the
underlying directed multigraph of a network is acyclic�
the network is called a circuit�

The transition function of a network N is a single
gate f which is equivalent to the entire network as we
explain below� The gate f has I�f� �

S
g�N I�g� and

O�f� �
S
g�N O�g�� and satis�es y � f�x� if and only

if yO�g� � g�xI�g�� for all gates g � N � Note that if f is
the transition function of N � then the networks N and
N � � ffg have the same transition function� we shall see
that� for many purposes� they can actually be treated
as the same network� The set R�N � � I�f� � O�f�
of a network N with transition function f is the set
of coordinates of the network N � It consists of three
disjoint subsets� the set of links L�N � � I�f� � O�f��
the set of inputs I�N � � I�f� n O�f�� and the set of
outputs O�N � � O�f� n I�f� of the network�

A con�guration of a network N is an assignment u
on the coordinate set R�N �� and consists of an input
assignment uI�N�� an output assignment uO�N�� and an
internal assignment uL�N�� A network N can be used
to de�ne an associated mapping on the con�gurations
of N � Given two con�gurations x and y of a network
N with transition function f � we write y � N �x� if
yI�N� � xI�N� and yO�N��L�N� � f�xI�N��L�N��� In
other words� all gates are evaluated using the values
assigned to their inputs by x as inputs� thus obtaining
at their outputs the values for the con�guration y� the
inputs to the network are not outputs of any gate� and
thus keep their value from x� A con�guration x is stable
if N �x� � x� Thus� a con�guration x is stable if it
satis�es f�xI�f�� � xO�f� for the transition function f

or� equivalently� g�xI�g�� � xO�g� for each gate g � N �
i�e�� if it satis�es all the gate equations�

The k�th iterate of a mapping � on a set U is the
mapping � �k� de�ned inductively by letting � ����z� � z

and � �k����z� � � �� �k��z�� for all z � U � A periodic
point of � is a z such that � �p��z� � z for some
p � �� The least such p is the period of z� A
�xed point of � is a periodic point of period �� We
are particularly interested in the iterates and periodic
points of the mapping associated with a network N �
It will sometimes be useful to look at the iterates
N �k� in terms of the transition function f of the
network� For this purpose� we de�ne two restrictions
of f given an input assignment for the network� Given
an assignment x on I�N �� the output function of
the network is the mapping gx � fx�O�N�� and the

internal function of the network is the mapping hx �
fx�L�N�� so that if z is an assignment on L�N �� then
f�xz� � gx�z�hx�z�� If y is an assignment on O�N ��
then N �xyz� � xgx�z�hx�z�� and N �k����xyz� �

x gx�h
�k�
x �z�� h

�k���
x �z� for all k � �� The periodic

points of the mapping associated with N are called
periodic con�gurations� the �xed points are precisely the
stable con�gurations� The periodic con�gurations xyz
consistent with an input assignment x are determined
by the choice of a periodic point z of the internal

function hx� For if z has period p and z� � h
�p���
x �z��

then the periodic con�guration must have z � hx�z��
and y � gx�z��� Thus� the periodic con�gurations
are the con�gurations xgx�z��hx�z�� with z� a periodic
point of hx�

�� Nonexpansive Mappings and Convergent

Networks

The distance d�x�y� between two assignments x and y
on a set S is de�ned by

d�x�y� �
X
i�S

jxi � yij �

A gate g is nonexpansive if for any two assignments x
and y on I�g��

d�g�x�� g�y�� � d�x�y� �

A network N is said to be convergent if for every
input assignment x there exists an output assignment
y such that every con�guration consistent with x maps
to a con�guration consistent with y under su�ciently
many iterations of N � More precisely� for every con�g�
uration u consistent with x� there exists an integer k�
such that N �k��u� is consistent with y for all k � k��
Since every con�guration maps to a periodic con�gu�
ration for su�ciently large k� and every periodic con�
�guration maps to itself for in�nitely many values of
k� the condition of convergence is equivalent to the re�
quirement that every periodic con�guration consistent
with x must also be consistent with y� Recall that
the periodic con�gurations of N are the con�gurations
xgx�z�hx�z�� where z is a periodic point of hx and the
mappings gx� hx are the output and internal functions
of N �see Section ��� The condition de�ning convergent
networks becomes then the statement that gx�z� � y

for all periodic points z of hx� If a network N is con�
vergent� then for every input assignment x there is a
unique corresponding output assignment y for N � and
we say that N converges to the gate g with I�g� � I�N �
and O�g� � O�N � that computes g�x� � y�
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The notion of a convergent network evolved out of
discussions between the �rst author and Ashok Subra�
manian� and was motivated by the following observa�
tion�

Lemma ���� Every network of nonexpansive gates
converge to a nonexpansive gate�

Proof� Let f be the transition function of a net�
work N of nonexpansive gates� given by f�xz� �
gx�z�hx�z�� where gx and hx are the output and in�
ternal functions� Let z and z� be periodic points of hx�
Under these conditions�

d�gx�z�� gx�z
��� � d�hx�z�� hx�z

��� �

� d�f�xz�� f�xz��� � d�xz�xz��

� d�z� z�� � d�hx�z�� hx�z
��� �

so d�gx�z�� gx�z
��� � � and gx�z� � gx�z

��� Therefore�
the output y � gx�z� depends only on x� and not on
the choice of a periodic point z� This shows that the
network is convergent� and converges to some gate g�
where g�x� � gx�z� for all periodic points z of hx�

Given two input assignments x and x�� let z and
z� be periodic points of hx and hx� � respectively� that
are closest to each other� In particular� d�z� z�� �
d�hx�z�� hx� �z���� Then

d�gx�z��gx� �z��� � d�hx�z�� hx��z���

� d�f�xz�� f�x�z��� � d�xz�x�z��

� d�x�x�� � d�z� z��

� d�x�x�� � d�hx�z�� hx��z��� �

Thus� d�g�x�� g�x��� � d�gx�z�� gx��z��� � d�x�x��� so
the gate g is nonexpansive�

�� Convergent Networks and Linear

Programming

��� Linear characterizations of stability� Let N
be a nonexpansive network with transition function f �
A con�guration x is stable if and only if for every
con�guration a�

d�f�aI�f���xO�f�� � d�aI�f��xI�f�� ������

For every �xed a� this is a linear inequality in terms of
x since� for example�

d�a�x� �
X
i�ai��

xi �
X
i�ai��

��� xi� �

De�nition ���� Denote by A the system of all the
linear inequalities ����� corresponding to the con�gura�
tions a� the inequalities � � xi � �� and the initial
assigments xI�N� � aI�N� for some �xed input assign�
ment aI�N��

Proposition ���� The system A has a solution�

Proof� The nonexpansive mapping f can be ex�
tended into a continuous nonexpansive mapping �f on
the full hypercube ��� �
m� by de�ning

�f �x� �
X
a

Y
i�I�f�

w�x�a� i�f�a��

where the sum ranges over all f�� �g�con�gurations a�
and

w�x�a� i� �

�
xi if ai � �
�� xi otherwise �

For two assignments y and z on L�N �� we say that
g�y� � z if �f �aI�N�y� � zu for some assignment u
on O�N �� By Brouwer�s theorem� g has a �xed point
y� i�e�� g�y� � y� Such a point aI�N�yu satis�es the

conditions in A by nonexpansiveness of �f �

Proposition ���� Given an input f�� �g
�assignment aI�N�� the system A has a unique solution
for those variables corresponding to the coordinates in
O�N � which coincides with the value of the gate to which
the network converges�

Proof� Let x be a solution of A as proven in Propo�
sition ���� Let z be an integer periodic con�guration
closest to x� We claim that� as in the proof of Lemma

��� where nonexpansiveness was used to establish con�
vergence for networks� the conditions in A imply that
the outputs of the network take the same values for
both x and z� Unfortunately� the size of A is exponen�
tial since there are �m choices for a� However� we may
consider the gates g � N separately� and require instead

d�g�b��xO�g�� � d�b�xI�g�� ������

where b ranges over the possible input assignments for
g� When the gates are of constant size� this gives a
number of constraints that is linear in the number of
gates�

De�nition ���� Denote the system of linear in�
equalities ������ � � xi � �� and xI�N� � aI�N� by
B�

��� The primal�dual path following method�

Consider a linear program of the form

�P �

Minimize cTx

subject to Ax � b

x � � �
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The dual of �P � is

�D�

Maximize b
T
y

subject to ATy � s � c

s � � �

The central path of this primal�dual pair �P�D�
�Megiddo ��
� consists of all the points �x�y� s� that
satisify the constraints of �P � and �D� together with
the equations

xisi � � �i � �� �� � � ��

where � varies over the positive reals� The duality gap
associated with �x�y� s� is given by

cTx � bTy � sTx �

Kojima�Mizuno and Yoshise ��
 and Monteiro and Adler
��
 developed good algorithms for tracing the primal�
dual central path� They showed� in particular� that for
any constant � � �� given an initial triple �x��y�� s�� on
the central path� the duality gap sTx can be reduced in
O�
p
N log��s��Tx��� iterations to at most ��

��� Special form linear programs�

De�nition ���� A linear programming problem is
said to be of special form if it calls for minimizing ��
where � is a sum of terms of one of the forms xi or ��xi
for variables xi� subject to constraints � � �� where �
is a sum of terms of one of the forms xi� � � xi� �xi�
xi� �� All variables are constrained also by � � xi � ��
which can also be viewed as constraints � � � when
written as �xi � � and xi � � � �� We assume that a
minimum has value � � ��

Theorem ��	� A linear program of the special
form of size m can be put into an equivalent form such
that for any constant � � �� after O�

p
m logm� itera�

tions� the duality gap of the current solution is at most
��

Proof� First� we ensure that in each �� the number
of terms of one of the forms �xi or xi � � is precisely
one plus the number of terms of one of the forms xi or
��xi� The di�erence between these two numbers can be
decreased by one by adding an �arti�cial� variable xi to
� with � � xi � �� or increased by one by subtracting
such an arti�cial variable from �� and adding xi to the
objective function �� �We show below the equivalence
to the original problem��

Second� we ensure that if the coe�cient of xi in �

is ci� then the sum of the coe�cients of this xi in all the

terms � is � � ci� This sum can be decreased by one
by adding a constraint �xi � �� or increased by one by
adding a constraint xi � � � ��

Third� for each constraint � � �� we introduce a
�slack� variable 	 � � and replace the constraint by
� � 	 � ��

The optimum of the resulting problem is still equal
to �� so at the optimum all the arti�cial variables that
were added to the objective function vanish�

Now the primal problem has a solution with all
variables set to �

� by the �rst condition enforced above�
The dual problem has a solution with all yi � �� and
all si � �� by the second condition enforced above� This
solution is on the central path� Starting the algorithmof
��
 or ��
 from this point� it takes O�

p
m logm� iterations

to get to a point where the duality gap is at most �� Note
that the transformation increased the size of the linear
program only by a constant factor� giving the stated
bound�

��� Convergent network evaluation� The linear
programming problem associated with a nonexpansive
network N is�

Minimize d�aI�N��xI�N��

subject to d�g�b��xO�g��� d�b�xI�g�� � �

� � xi � � �

where aI�N� is the input assignment to the network� g
ranges over gates and b ranges over input assignments�
The linear program is thus of the special form as in
De�nition ��	� so Theorem ��� can be applied�

The duality gap can be reduced below any constant
� � �� Let a be a periodic con�guration consistent with
the input assignment aI�N� which is closest to x� Thus�

d�f�aI�f��L�N��xL�N�� � d�aL�N��xL�N�� �

On the other hand� when the linear program is put into
the equivalent form� we obtain

d�f�aI�f���xO�f�� �
X

yi � d�aI�f��xI�f�� �

where the �yi�s are the arti�cial variables that were
added to the objective function� This can be rewritten
as

d�aO�N��xO�N�� � d�f�aI�f��L�N��xL�N��

� d�aL�N��xL�N�� � d�aI�N��xI�N�� �
X

yi

because f�aI�f��O�N� � aO�N�� On the other hand�

d�aI�N��xI�N�� �
X

yi � � �
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since all the yi�s appear in the objective function� so by
combining the three inequalities we get

d�aO�N��xO�N�� � � �

Provided that � 
 �
�
� this can be used to obtain the

value of aO�N�� which is the output value produced by
the gate to which the nonexpansive network converges�

It is observed in Goldberg� Plotkin� Shmoys� and
Tardos ��
 that one iteration of the interior point
algorithm can be performed in O�log�N � time in
the concurrent�read concurrent�write �CRCW� PRAM
model with N� processors� Thus� we have the following�

Theorem ��
� For any �xed integer k� and for any
nonexpansive network N with gates of at most k inputs
and outputs� the gate to which N converges can be eval�
uated in O�

p
m logm� iterations� and an overall paral�

lel time of O�
p
m log�m� on an m��processor CRCW

PRAM�

�� Convergent Networks and Stable

Con�gurations

Let f be a nonexpansive gate with I�f� � O�f� � T �
A �xed point of f is an assignment a on T such that
f�a� � a�

For a subset S � T � we de�ne the projection fS to
be the gate g with I�g� � O�g� � S such that g�a� � b

if and only if for every periodic point� z� of fa�TnS �
there exists a z� such that f�az� � bz�� Thus� if f is
the transition function of a network N � then fS can be
de�ned as the gate to which the network N converges�
The following is from Feder ��
�

Lemma ����

�i� A nonexpansive mapping f has a �xed point if and
only if for every S � T with jSj � �� fS has a �xed
point�

�ii� A con�guration a is a �xed point of f if and only
if for all S � T with jSj � �� aS is a �xed point of
fS �

�iii� In �ii�� if f is the transition function of a network
N � then S may be restricted to sets of two elements
that are inputs or outputs of the same gate�

Corollary ���� The set of �xed points of f can
be characterized as an instance of the ��satis�ability
problem with clauses �xi 	� ai�
 �xj 	� aj� for all i� j� ai�
and aj such that aiaj is not a �xed point of ffi�jg� If f is
the transition function of a network N � then fi� jg may
be restricted to two elements that are inputs or outputs
of the same gate�

It follows that the question of deciding whether a non�
expansive network has a stable con�guration reduces to
�m evaluations of gates to which nonexpansive networks
converge� and the search for a stable con�guration re�
duces to �

�
m

�

�
evaluations of such gates� in fact only

O�m� evaluations are needed here if for some �xed in�
teger k the gates have at most k inputs and outputs�
Since ��SATISFIABILITY is in the class� we obtain�

Theorem ���� For any �xed integer k� there ex�
ists an m	�processor O�

p
m log�m� time CRCW PRAM

algorithm that �nds a stable con�guration in a nonex�
pansive network with gates of at most k inputs and out�
puts�

	� Network Stability and Stable Matching

De�nition 	��� The X�gate is a ��input� ��output
gate which on inputs x�� x� produces outputs y�� y��
such that

�y�� y�� �

�
��� �� if �x�� x�� � ��� ��
�x�� x�� otherwise �

It is easy to see that the X�gate is nonexpansive� Sub�
ramanian ��
 showed that the stable matching problem
can be viewed as the problem of �nding a stable con�
�guration of a network of X�gates� The coordinates of
the network are pairs ij� where i is the name of an in�
dividual and � � j � �i� where �i is the length of the
preference list of individual i� If the jth choice of indi�
vidual i is individual i�� and the j�th choice of individual
i� is individual i� then the network has an X�gate with
the coordinates i�j � �� and i��j� � �� as inputs� and
the coordinates ij and i�j� as outputs� The input i� has
the value xi� � �� Thus� in a stable con�guration� the
values xij for a �xed individual i are monotonically non�
increasing� If there is an index j such that xi�j��� � �
and xij � �� then i is matched to its jth choice� There
can be at most one such index� The outputs i�i indicate
whether i is matched to some partner� and are indepen�
dent of the choice of stable matching�

It is of interest to see what the conditions de�ned by
the linear program correspond to in the case of X�gates
and comparators�

Proposition 	��� Two pairs �x�� x��� �y�� y�� �
f�� �g� satisfy the X�gate relation y�y� � X�x�x�� if
and only if they satisfy the following linear system�

�X�

y� � x� ��

y� � x� ��

with � � max��� x�� x� � �� �
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Proof� Recall that

X���� � X���� � ��� X���� � ��� X���� � �� �

For a � ��� X�a� � �� and the nonexpansiveness
condition is

��� y�� � y� � ��� x�� � x� �

whereas for a � ��� X�a� � �� and the nonexpansive�
ness condition is

y� � ��� y�� � x� � �� � x�� �

Thus�

� � x� � y� � x� � y� �

On the other hand� for a � ��� X�a� � �� and the
nonexpansiveness condition is

y� � y� � x� � x� �

which is equivalent to � � �� whereas for a � ���
X�a� � �� and the nonexpansiveness condition is

y� � y� � ��� x�� � �� � x�� �

which is equivalent to

�x� � y�� � �x� � y�� � �x� � �x� � � �

or

� � x� � x� � � �

From the results in the last two sections� we obtain�

Theorem 	���

�i� For n individuals with preference lists �over the set
of individuals� of total length m� the set of people
that are matched in stable matchings can be found
in O�

p
m log�m� time on an m��processor CRCW

PRAM�

�ii� If a stable matching exists� then it can be found
in O�

p
m log�m� time on an m	�processor CRCW

PRAM�

�iii� A characterization of all the stable matchings by
means of a ��satis�ability instance can be found
within the bounds in �ii��
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