A Sublinear Parallel Algorithm for Stable Matching

Tomas Feder*

Parallel algorithms for various versions of the stable
matching problem are presented. The algorithms are
based on the primal-dual interior path-following method
for linear programming. The main result is that a stable
matching can be found in O*(y/m) time by a polynomial
number of processors, where m is the total length of
preference lists of individuals.

1. Imtroduction

In this paper we consider networks made of gates of
constant size. We focus of non-expansive networks (to
be defined below). The problems of evaluating the
gate to which a network converges, and of finding a
stable configuration in a network, are quite simple in
the context of sequential computation; they can all be
solved in linear time in the scatter-free case (a special
case, Mayr and Subramanian [5]), and in quadratic
time in the general nonexpansive case (Feder [1]). An
interesting question is the existence of sublinear parallel
algorithms with a polynomial number of processors.

We present parallel algorithms for the above prob-
lems which run in O*(+/T) time, with a polynomial num-
ber of processors, where I is the size of the input and
f(I) = O*(g(I)) means there exists a constant k& such
that f(I) < g(I)(log I)*. Our approach is based on for-
mulating the problems as linear programming problems
and solving them with the primal-dual interior path-
following method.

As an application, the problem of stable matching
[3] can be solved in O*(y/m) time, where m is the
total length of the preference lists of individuals. The
approach is by means of interior point methods in linear
programming.

In Sections 2 and 3 we introduce networks of
gates and the concepts of nonexpansive and convergent
networks. The material in these sections is from Feder

~ *IBM Almaden Research Center, 650 Harry Road, San Jose,
CA 95120

tIBM Almaden Research Center, 650 Harry Road, San Jose,
California 95120-6099, and School of Mathematical Sciences, Tel
Aviv University, Tel Aviv, Israel. Research supported in part by
ONR contract N00014-91-C-0026.

{Department of Computer Science, Stanford University, Stan-
ford, CA 94305

Nimrod Megiddof

Serge A. Plotkin?

[1]. In Section 4 we study the relation between these
concepts and linear programming. In Section 5 we
obtain the general result of recognizing stability in a
network. This result is then applied to the stable
matching problem in Section 6.

2. Gates and Networks

A (boolean) assignment is a mapping : S — {0, 1}
with a domain S = S(#). An element i € S(x) is a
coordinate of @, and the image x(¢) is its value. Given
a set of coordinates 7' C S(&), we denote by ar the
restriction of @ to the set 7. If T' = {i} (: € S(=))
then @7 is denoted by z;. If @ and y are assignments
with S(x) N S(y) = 0, then @y denotes the union of
the two assignments, with S(zy) = S(z) U S(y). In
particular, if S(z) = {1,2,...,n}, then ® = 2129 ... 2,.
With a slight abuse of notation, we shall identify each
z; with its value ®(i). TFor example, the statement
x = ryx2x3 = 011 indicates that S(x) = {1,2,3} and
(2(1),2(2),2(3)) = (0,1,1). Two assignments @ and y
are consistent if z; = y; for all i € S(&) N S(y).

A gate is a mapping ¢ : {0,1} — {0,1}9 from
assignments on the input set 7 = I(g) to assignments
on the output set O = O(g). The coordinates in I(g)
and O(g) are called inputs and outputs of g, respectively.
The gate ¢ is a k-input, f-output gate if |I(g)] = &
and |O(g)| = ¢. Given a gate g, an assignment @
with S(a) C I(g) and a coordinate set 7" C O(g), the
restriction gg 7 of the gate g is the gate ¢’ obtained from
g by discarding the outputs not in 7" and discarding
the inputs in S(x) after assigning to them the values
given by ®. More formally, the gate g’ has inputs
I(¢") = I(g) \ S(x), outputs O(¢') = O(g) N T, and
satisfies ¢'(y) = g(xy) .

A network is a set of gates that share neither inputs
nor outputs. This means that if N is a network and ¢
and ¢’ are distinct gates in N, then I(¢)NI(g") = 0 and
O(g) NO(g’) = 0. On the other hand, given two (not
necessarily distinct) gates g, ¢’ in N, it may happen that
an output of ¢ is also an input of ¢'. If ¢ € O(g) N I(g¢’),
then we say that output 7 of gate ¢ and input ¢ of gate ¢’
are linked. By the disjointness property, every input is
linked to at most one output, and every output is linked
to at most one input. These links induce a topology

on the network that can be described by a directed
multigraph on the gates of the network, z.e., a directed
graph with the gates as the vertices, with a directed
edge from g to ¢’ for every output of g linked to an
input of ¢’; loops and parallel edges are allowed. If the
underlying directed multigraph of a network is acyclic,
the network is called a circuit.

The transition function of a network N is a single
gate f which is equivalent to the entire network as we
explain below. The gate f has I(f) = UgEN I(g) and
O(f) = U en Olg), and satisfies y = f(=x) if and only
ifyory) = g(x1(y)) for all gates g € N. Note that if f is
the transition function of N, then the networks N and
N’ = {f} have the same transition function; we shall see
that, for many purposes, they can actually be treated
as the same network. The set R(N) = I(f) U O(f)
of a network N with transition function f is the set
of coordinates of the network N. It consists of three
disjoint subsets: the set of links L(N) = I(f) N O(f),
the set of inputs I(N) = I(f) \ O(f), and the set of
outputs O(N) = O(f) \ I(f) of the network.

A configuration of a network N 1s an assignment wu
on the coordinate set R(N), and consists of an input
assignment wj(n), an output assignment UO(N)s and an
internal assignment wp(ny. A network N can be used
to define an associated mapping on the configurations
of N. Given two configurations ® and y of a network
N with transition function f, we write y = N(a) if
yrvy = 2wy and yovyornyy = f@ivunayy)- In
other words, all gates are evaluated using the values
assigned to their inputs by @ as inputs, thus obtaining
at their outputs the values for the configuration y; the
inputs to the network are not outputs of any gate, and
thus keep their value from @. A configuration « is stable
if N(#) = «. Thus, a configuration @ is stable if it
satisfies f(x(s)) = ®o(ys) for the transition function f
or, equivalently, g(®(,)) = ®o(,) for each gate g € N,
1.e., 1f 1t satisfies all the gate equations.

The k’th iterate of a mapping 7 on a set U is the
mapping 7(¥) defined inductively by letting 7(")(2) = z
and 75D () = 7(7")(2)) for all z € U. A periodic
point of 7 is a z such that 7P)(z) = 2 for some
p > 1. The least such p i1s the period of z. A
fized point of 7 is a periodic point of period 1. We
are particularly interested in the iterates and periodic
points of the mapping associated with a network N.
It will sometimes be useful to look at the iterates
N®) in terms of the transition function f of the
network. For this purpose, we define two restrictions
of f given an input assignment for the network. Given
an assignment @ on I(N), the output function of
the network is the mapping gz = fx o), and the

Feder, Megiddo, and Plotkin

wnternal function of the network is the mapping hge =
fz,L(vy, so that if z is an assignment on L(N), then
flez) = ge(2)hz(z). If y is an assignment on O(N),
then N(xyz) = ®gx(z)he(z), and NFTD(zyz) =
x ggg(hgf)(z)) hg,f“)(z) for all & > 0. The periodic
points of the mapping associated with N are called
periodic configurations; the fixed points are precisely the
stable configurations. The periodic configurations xzyz
consistent with an input assignment @ are determined
by the choice of a periodic point z of the internal
function hg. For if z has period p and 2z’ = hgf;_l)(z),
then the periodic configuration must have z = hg(2')
and y = ggz(z’). Thus, the periodic configurations
are the configurations @gg (2)he(2") with 2’ a periodic
point of hg.

3. Nonexpansive Mappings and Convergent
Networks

The distance d(®,y) between two assignments @ and y
on a set S is defined by

d(way) :Z|xi_yi| .

€S

A gate g is nonexpansive if for any two assignments x
and y on I(g),

d(g(®), g(y)) < d(=,y) .

A network N is said to be convergent if for every
input assignment @ there exists an output assignment
y such that every configuration consistent with @ maps
to a configuration consistent with y under sufficiently
many iterations of N. More precisely, for every config-
uration w consistent with @, there exists an integer kg
such that N(¥)(u) is consistent with y for all k > k.
Since every configuration maps to a periodic configu-
ration for sufficiently large k, and every periodic con-
figuration maps to itself for infinitely many values of
k, the condition of convergence 1s equivalent to the re-
quirement that every periodic configuration consistent
with @& must also be consistent with y. Recall that
the periodic configurations of N are the configurations
xgx(z)hx(2z), where z is a periodic point of hg and the
mappings gz, hg are the output and internal functions
of N (see Section 2). The condition defining convergent
networks becomes then the statement that gz(z) = v
for all periodic points z of hg. If a network N is con-
vergent, then for every input assignment @ there 1s a
unique corresponding output assignment y for N, and
we say that N converges to the gate ¢ with I(g) = I(N)
and O(g) = O(N) that computes g(x) = y.

A sublinear parallel algorithm for stable matching

The notion of a convergent network evolved out of
discussions between the first author and Ashok Subra-
manian, and was motivated by the following observa-
tion.

Lemma 3.1. Every network of nonexpansive gates
converge to a nonexpansive gate.

Proof. Let f be the transition function of a net-
work N of nonexpansive gates, given by f(wz) =
x(2)hx(z), where ga and hg are the output and in-
ternal functions. Let z and 2’ be periodic points of hg.
Under these conditions,

d(gz(z), gz (2))+d(haz(z) ha(2')) =
d(f(®z), f(zz")) < d(xz,zz")
Id(,2') = d(ha(z), he(2))

so d(gx(z),92(2")) = 0 and gx(z) = gz (z'). Therefore,
the output y = gx(2) depends only on @, and not on
the choice of a periodic point z. This shows that the
network is convergent, and converges to some gate g,
where g(®) = gg(z) for all periodic points z of hg.

Given two input assignments x and @', let z and
z' be periodic points of hg and hg/, respectively, that
are closest to each other. In particular, d(z, z') <

d(hg(2), ha(z")). Then

A(ga(2),92 (') + d(ha(2), ha ()
= d(f(w2), f(a'2) < d(wz,a')
= d(w,a) + d(z,2)
< d(w,a) + d(ha(2), ha!(2)) .
Thus, d(g(x), g(a') = d(ga(2), g2:(2') < d(x. '), s0

the gate ¢ is nonexpansive.

4. Convergent Networks and Linear

Programming

4.1 Linear characterizations of stability. Let NV
be a nonexpansive network with transition function f.
A configuration « is stable if and only if for every
configuration a,

(4.1) d(f(ars), o)) < dlagy, ®1¢5)) -

For every fixed a, this is a linear inequality in terms of

x since, for example,
IR oyIE

dla,x) =
i:a;,=0 ira;=1

Definition 4.1. Denote by A the system of all the
linear inequalities (4.1) corresponding to the configura-
tions @, the inequalities 0 < z; < 1, and the initial
assigments x;(y) = aj(y) for some fixed input assign-
ment ayn).

Proposition 4.2. The system A has a solution.

Proof. The nonexpansive mapping f can be ex-
tended into a continuous nonexpansive mapping f on
the full hypercube [0, 1]™, by defining

ZH azaz

a iel(f)

fla),

where the sum ranges over all {0, 1}-configurations a,
and

if a; = 1

otherwise .

w(xe,a,i) = { {fi_ .
For two assignments y and z on L(N), we say that
g(y) = z if flayn)y) = zu for some assignment u
on O(N). By Brouwer’s theorem, ¢ has a fixed point
y, i.e., g(y) = y. Such a point ajn)yu satisfies the

conditions in A by nonexpansiveness of f.

Proposition 4.3. Given an input {0,1}
-assignment arny, the system A has a unique solution
for those variables corresponding to the coordinates in
O(N) which coincides with the value of the gate to which
the network converges.

Proof. Let @ be a solution of A as proven in Propo-
sition 4.2. Let z be an integer periodic configuration
closest to ®. We claim that, as in the proof of Lemma
3.1, where nonexpansiveness was used to establish con-
vergence for networks, the conditions in A imply that
the outputs of the network take the same values for
both @ and z. Unfortunately, the size of A is exponen-
tial since there are 2™ choices for a. However, we may
consider the gates g € N separately, and require instead
(4.2) d(g(b), mo(g)) < d(b, ®1(g))
where b ranges over the possible input assignments for
¢. When the gates are of constant size, this gives a
number of constraints that is lineer in the number of
gates.

Definition 4.4. Denote the system of linear in-
equalities (4.2), 0 < x; < 1, and ®py) = ayw) by
B.

4.2 The primal-dual path following method.
Consider a linear program of the form

Minimize ¢’ @
subject to Ax = b
x>0.

(P)

The dual of (P) is

Maximize bTy
(D) subject to ATy +s=c

s>0.

The central path of this primal-dual pair (P, D)
(Megiddo [6]) consists of all the points (#,y,s) that
satisify the constraints of (P) and (D) together with
the equations

TS = p (i=1,2,..)

where p varies over the positive reals. The duality gap
associated with (x,y, s) is given by

Te—bly=s"z.

Kojima, Mizuno and Yoshise [4] and Monteiro and Adler
[7] developed good algorithms for tracing the primal-
dual central path. They showed, in particular, that for
any constant 6 > 0, given an initial triple (2°, y°, s%) on
the central path, the duality gap s” 2 can be reduced in
O(VN log((s%)T x°)) iterations to at most 6.

4.3 Special form linear programs.

Definition 4.5. A linear programming problem is
said to be of special form if it calls for minimizing ¢,
where ¢ 1s a sum of terms of one of the forms z; or 1 —x;
for variables z;, subject to constraints ¥ < 0, where ¢
is a sum of terms of one of the forms x;, 1 — z;, —a;,
z; — 1. All variables are constrained also by 0 < z; < 1,
which can also be viewed as constraints ¢y < 0 when
written as —z; < 0 and z; — 1 < 0. We assume that a
minimum has value ¢ = 0.

Theorem 4.6. A linear program of the special
form of size m can be put into an equivalent form such
that for any constant & > 0, after O(/mlogm) itera-
tions, the duality gap of the current solution is at most

5.

Proof. First, we ensure that in each 1, the number
of terms of one of the forms —x; or x; — 1 is precisely
one plus the number of terms of one of the forms x; or
1—=x;. The difference between these two numbers can be
decreased by one by adding an “artificial” variable z; to
¥ with 0 < z; < 1, or increased by one by subtracting
such an artificial variable from v, and adding z; to the
objective function ¢. (We show below the equivalence
to the original problem.)

Second, we ensure that if the coefficient of z; in ¢
18 ¢;, then the sum of the coefficients of this x; in all the

Feder, Megiddo, and Plotkin

terms 1 is 1 — ¢;. This sum can be decreased by one
by adding a constraint —z; < 0, or increased by one by
adding a constraint ; — 1 < 0.

Third, for each constraint ¥ < 0, we introduce a
“slack” variable &« > 0 and replace the constraint by

Y4+ a=0.

The optimum of the resulting problem is still equal
to 0, so at the optimum all the artificial variables that
were added to the objective function vanish.

Now the primal problem has a solution with all
variables set to % by the first condition enforced above.
The dual problem has a solution with all y; = —1 and
all s; = 1, by the second condition enforced above. This
solution is on the central path. Starting the algorithm of
[4] or [7] from this point, it takes O(y/mlog m) iterations
to get to a point where the duality gap is at most 6. Note
that the transformation increased the size of the linear
program only by a constant factor, giving the stated

bound.

4.4 Convergent network evaluation. The linear
programming problem associated with a nonexpansive
network N is:

Minimize d(an), ®r(n))

subject to d(g(b), ®o(y)) — d(b,®1(4)) <0
where aj(y) 1s the input assignment to the network, g
ranges over gates and b ranges over input assignments.

The linear program is thus of the special form as in
Definition 4.5, so Theorem 4.6 can be applied.

The duality gap can be reduced below any constant
6 > 0. Let a be a periodic configuration consistent with
the input assignment ay(x) which is closest to . Thus,

d(f(ars))o(zy, ®Lv)) > dlarny, TLN)) -

On the other hand, when the linear program is put into
the equivalent form, we obtain

d(flarp), woi) — Y v < d(arsy, zr(p)

where the —y;’s are the artificial variables that were
added to the objective function. This can be rewritten
as

d(ao(ny, ®o(w)) +d(f(ar) Livy, ®ri))
< d(aL(N), wL(N)) + d(aI(N)a ZBI(N)) + Z Yi

because f(as(s))on) = @o(n). On the other hand,

d(arny, 2r(ny) + Zyz’ <o,

A sublinear parallel algorithm for stable matching

since all the y;’s appear in the objective function, so by
combining the three inequalities we get

d(aony, ®o(n)) < 6 .

Provided that § < %,

value of ag(n), which is the output value produced by

this can be used to obtain the

the gate to which the nonexpansive network converges.

It is observed in Goldberg, Plotkin, Shmoys, and
Tardos [2] that one iteration of the interior point
algorithm can be performed in O(log” N) time in
the concurrent-read concurrent-write (CRCW) PRAM
model with N3 processors. Thus, we have the following:

Theorem 4.7. For any fized integer k, and for any
nonexpansive network N with gates of at most k inputs
and outputs, the gate to which N converges can be eval-
uated in O(\/mlogm) iterations, and an overall paral-
lel time of O(\/ﬁlog?’ m) on an m3-processor CRCW
PRAM.

5. Convergent Networks and Stable
Configurations
Let f be a nonexpansive gate with I(f) = O(f) = T.

A fized point of f is an assignment @ on T such that
fla) = a.

For a subset S C T', we define the projection fg to
be the gate ¢ with I(g) = O(g) = S such that g(a) = b
if and only if for every periodic point, 2z, of fgq1\s,
there exists a z’ such that f(az) = bz’. Thus, if f is
the transition function of a network IV, then fg can be
defined as the gate to which the network N converges.
The following is from Feder [1].

Lemma 5.1.

(i) A nonexpansive mapping [has a fized point if and
only if for every S CT with |S| =1, fs has a fized
point.

(ii) A configuration a is a fired point of f if and only
if for all S C T with |S| = 2, as is a fized point of
Is.

(iil) In (i), if [is the transition function of a network
N, then S may be restricted to sets of two elements
that are inputs or outputs of the same gate.

Corollary 5.2. The set of fired points of f can
be characterized as an instance of the 2-satisfiability
problem with clauses (x; # a;)V(x; # a;) for alli, j, a;,
and a; such that a;a; s not a fived point of fr; ;1. If f s
the transition function of a network N, then {i,j} may
be restricted to two elements that are inputs or outputs
of the same gate.

It follows that the question of deciding whether a non-
expansive network has a stable configuration reduces to
2m evaluations of gates to which nonexpansive networks
converge, and the search for a stable configuration re-
duces to 4(”;) evaluations of such gates; in fact only
O(m) evaluations are needed here if for some fixed in-
teger k the gates have at most £ inputs and outputs.

Since 2-SATISFIABILITY is in the class, we obtain:

Theorem 5.3. For any fized integer k, there ex-
ists an m*-processor O(\/mlog® m) time CRCW PRAM
algorithm that finds a stable configuration in a nonex-
pansive network with gates of at most k inputs and out-
puts.

6. Network Stability and Stable Matching

Definition 6.1. The X-gate is a 2-input, 2-output
gate which on inputs x;,xzs produces outputs yi,ys,
such that

(y1,92) = {(0’0)

(z1,22)

lf (1‘1, l‘z) = (1, 1)

otherwise .

It is easy to see that the X-gate is nonexpansive. Sub-
ramanian [8] showed that the stable matching problem
can be viewed as the problem of finding a stable con-
figuration of a network of X-gates. The coordinates of
the network are pairs ij, where ¢ 1s the name of an in-
dividual and 0 < j < ¢;, where ¢; is the length of the
preference list of individual ¢. If the jth choice of indi-
vidual 7 is individual ¢/, and the j’th choice of individual
i’ 1s individual 7, then the network has an X-gate with
the coordinates ¢(j — 1) and ¢(j' — 1) as inputs, and
the coordinates 75 and 7'j" as outputs. The input 70 has
the value ;0 = 1. Thus, in a stable configuration, the
values z;; for a fixed individual ¢ are monotonically non-
increasing. If there is an index j such that x;;_;) =1
and z;; = 0, then ¢ is matched to its jth choice. There
can be at most one such index. The outputs #¢; indicate
whether 7 is matched to some partner, and are indepen-
dent of the choice of stable matching.

It is of interest to see what the conditions defined by
the linear program correspond to in the case of X-gates
and comparators.

Proposition 6.2. Two pairs (x1,22),(y1,y2) €

{0,1}? satisfy the X-gate relation y1y2 = X(x122) if
and only if they satisfy the following linear system:
v =r1 — A
(X) Yo = Lo — A
with A > max(0,2; + 22— 1) .

6

Proof. Recall that

X(00) = X(11) = 00, X(01) = 01, X(10) = 10 .
For a = 10, X(a) = 10 and the nonexpansiveness

condition 1s
I—y)+y<(1—z1)+2zs,

whereas for a = 01, X(a) = 01 and the nonexpansive-
ness condition is

v+ (1 —y2) <@+ (1 —x2) .
Thus,
A=z -y =x3—y2 .
On the other hand, for a = 00, X(a) = 00 and the

nonexpansiveness condition is

1ty <z t+a,

which is equivalent to A > 0, whereas for a = 11,
X(a) = 00 and the nonexpansiveness condition is

yi+y2 <(1—x1)+ (1 —x2),
which is equivalent to
(r1 —y1) + (v2 — y2) > 201 + 229 — 2,

or
A Z 1‘1—1—1‘2—1.

From the results in the last two sections, we obtain:
Theorem 6.3.

(i) For n individuals with preference lists (over the set
of individuals) of total length m, the set of people
that are matched in stable matchings can be found
in O(y/mlog® m) time on an m>-processor CRCW
PRAM.

(ii) If a stable matching exists, then it can be found
in O(y/mlog® m) time on an m*-processor CRCW
PRAM.

(iii) A characterization of all the stable matchings by
means of a 2-satisfiability instance can be found
within the bounds in (ii).

References

[1] T. Feder, Stable Networks and Product Graphs, doc-
toral dissertation, Stanford University (1991).

Feder, Megiddo, and Plotkin

[2] A. V. Goldberg, S. A. Plotkin, D. B. Shmoys, and
E. Tardos, “Using interior-point methods for fast paral-
lel algorithms for bipartite matching and related prob-
lems,” STAM J. Comput. 21 (1992) 140-150.

[3] D. Gusfield and R. W. Irving, The Stable Marriage
Problem: Structure and Algorithms,, MIT Press Series
in the Foundations of Computing, MIT Press, Cam-
bridge, MA, 1989.

[4] M. Kojima, S. Mizuno, and A. Yoshise, “A polynomial—
time algorithm for a class of linear complementarity
problems,” Mathematical Programming 44 (1989) 1-
26.

[5] E. Mayr and A. Subramanian, “The complexity of
circuit value and network stability,” J. Comp. Syst.
Sci. 44 (1992), 302-323.

[6] N. Megiddo, “Pathways to the optimal set in lin-
ear programming,” in: Progress in Mathematical Pro-
grammeng: Interior-Point and Related Methods, N.
Megiddo, ed., Springer-Verlag, New York, 1988, pp.
131-158.

[7] R.D. C. Monteiro and I. Adler, “Interior path following
primal-dual algorithms, Part I: Linear programming,”
Mathematical Programming 44 (1989) 27-41.

[8] A. Subramanian, “A new approach to stable match-
ing problems,” Technical Report STAN-CS-89-1275,
Dept. of Computer Science, Stanford University, 1989.

