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The subject of this paper is �nding small sample spaces for joint distributions of

n Bernoulli random variables where the probabilities of some events are prescribed�

The problem of recognizing whether the prescribed probabilities are consistent

is NP�hard� It is shown� however� that if the probabilities are consistent� then

there exists a sample space that supports them whose cardinality does not exceed

the number of events with prescribed probabilities� It is also shown that if the

probabilities are consistent with a joint distribution of n independent Bernoulli

variables� then a small sample space can be constructed in polynomial time� This

last result is useful for converting randomized algorithms into deterministic ones�

We demonstrate this technique by an application to the problem of �nding large

independent sets in sparse hypergraphs�

�� Introduction

The probabilistic method of proving existence of combinatorial objects has been very

successful �see� for example� ��� ���	 The underlying idea is as follows	 Suppose we wish
to prove the existence of at least one element of a certain type within a 
nite set �	 In
other words� the elements of � are classi
ed as �good
 and �bad
 and we wish to prove the
existence of at least one good element	 The proof then goes by constructing a probability

distribution f over � and showing that the probability of picking a good element is
positive	 Probabilistic proofs often yield probabilistic algorithms for constructing a good
element	 In particular� many randomized algorithms are special cases of this technique�

where the �good
 elements are those sequences of random bits leading to a correct answer	
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For various reasons� it is often desirable to 
nd a deterministic construction to re�
place the probabilistic one� or to convert a randomized algorithm into a deterministic
algorithm	 Obviously� this can be done by complete enumeration of the sample space �	
Unfortunately� the cardinality of the sample space is typically exponential� e�g�� the obvi�

ous sample space of n independent Bernoulli random variables contains �n points	 Thus�
we are interested in constructing a smaller sample space which supports the distribution
that is actually required by the algorithm	

Adleman ��� shows that for any randomized polynomial�time algorithm� there exists a

sample space of polynomial size that contains a good point for every possible input	 The
proof of this fact is not constructive� and therefore cannot be used for de�randomizing
algorithms	 In some cases� however� sample spaces of polynomial size are known	 In
particular� for a joint distribution f of n d�wise independent random variables� Alon�

Babai� and Itai ��� construct a sample space of cardinality O�nd� with a distribution
f � that approximates f �see also ����	 They also show that the cardinality of a sample
space of a joint distribution of n d�wise independent Bernoulli variables must be at least
��nbd��c�� this is also shown in ���	 Therefore� their construction is close to optimal for

this case of n d�wise independent variables	

In order to improve on their results� we take a somewhat di�erent approach	 Instead
of placing an upper bound on the degree of independence required by the algorithm�
we examine what are the characteristics that are required in order for the algorithm to

work	 We then construct a distribution satisfying these requirements	 In many cases�
this approach yields a sample space smaller than the one obtained by placing an upper
bound on the degree of independence	 The distribution produced by our technique is�
however� not necessarily uniform	 Therefore� although our sample space is small� the

number of uniform random variables required to generate is not necessarily small	

For the sake of simplicity� we restrict ourselves to joint distributions of n Bernoulli
random variables X�� 	 	 	 �Xn de
ned on � � f�� �gn	 Our constructions can easily be
extended to variables with larger ranges	 A distribution is a map f � �� ��� �� such thatP
x�� f�x� � �	 We de
ne the set S�f� � fx � � j f�x� � �g to be the essential sample

space of f 	

The randomness requirements of an algorithm may be described in terms of con�
straints as follows	 A constraint is an eqaulity of the form

Pr�E� �
X
x�E

f�x� � �

where E � � is an event and � � � � �	 The constraint Pr��� � � always has to be

satis
ed	 For example� the joint distribution of n independent uniform Bernoulli variables
satis
es all the constraints of the form Pr�fxg� � ���n �x � ��	

We say that a constraint Pr�E� � � is k�simple if there exist fi�� 	 	 	 � ikg � N �
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f�� 	 	 	 � ng and fb�� 	 	 	 � bkg � f�� �g such that

E � fXi� � b� � 	 	 	 � Xik � bkg �

We say that a constraint is simple if it is k�simple for some k	 Note that this natural
representation of the event as a simple constraint requires space which is at most linear
in n� whereas the number of points in the event is often exponential in n	 We will always
assume that simple constraints are represented in linear space	 Denote

��p� �� � �� p

��p� �� � p

pi � Pr�Xi � �� �i � �� 	 	 	 � n� �

We say that a simple constraint

Pr�fXi� � b� � 	 	 	 � Xik � bkg� � �

is an independence constraint if

� �
kY

j��

��pij � bj� �

For a 
xed set of pi�s� we call this constraint the independence constraint corresponding
to the event E � fXi� � b� � 	 	 	 � Xik � bkg� and denote it by I�E�	 Obviously� if
X�� 	 	 	 �Xn are independent Bernoulli variables� then their joint distribution satis
es all

the independence constraints	 Moreover� the variables X�� 	 	 	 �Xn are d�wise independent
if and only if all the independence constraints I�fXi� � b�� 	 	 	 �Xid � bdg� are satis
ed�
where i�� 	 	 	 � id � N are distinct indices and b�� 	 	 	 � bd � f�� �g	 In other words� every
event de
ned in terms of only d variables has the same probability as if the variables

were independent	

In Section � we show that for any set C of constraints� if C is consistent� i�e�� C is
satis
able by some distribution f � then there exists a distribution f � also satisfying C
such that jS�f ��j � jCj	 Thus� the cardinality of the essential sample space is not more

than the number of constraints	 The proof of this theorem includes a technique for
constructing a small sample space� but this technique is not useful for de�randomizing
algorithms since it requires exponential time	

In Section � we show that for a set C of ��simple constraints� the problem of recognizing

whether there exists a distribution f satisfying C is NP�complete	

The special case of independence constraints is important and interesting	 Random�
ized algorithms and probabilistic proofs are usually 
rst shown to work when the under�
lying random variables are independent	 If the degree of independence can be bounded�
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then the cardinality of the sample space can be reduced	 Most of the constraints which
occur in de�randomization of algorithms are independence constraints	 Let C be a set
of independence constraints de
ned using a set of pi�s as above	 In Section � we show
that for this C� a distribution with a sample space of cardinality jCj can be constructed

in polynomial time	 In particular� for any 
xed d� sample spaces of cardinality O���n�d�
can be constructed in polynomial time for any set of n d�wise independent Bernoulli
variable	 To our knowledge� this is the 
rst technique which allows the construction of
exact distributions of d�wise independent variable with arbitrary pi�s	 Previously� except

for certain special cases� only approximate distributions were constructed �see ����	

Our technique allows us to create a sample space with the minimum degree of in�
dependence required	 In Section � we show how the technique can be applied to de�
randomization of algorithms	 We discuss the problem of 
nding a large independent set

in a d�uniform hypergraph	 The underlying randomized algorithm� described in ���� was
de�randomized in the same paper for a 
xed values of d	 It was later de�randomized also
for d � O��log n�k� in ��� and ���� using di�erent techniques	 We show how this algorithm
can be de�randomized for any d	 We note� however� that the algorithms in ���� ���� and
��� are NC algorithms� whereas our technique does not seem to be e�ciently paralleliz�
able	 Moreover� a sequential polynomial time solution for the independent set problem
in hypergraphs is known� We present our derandomization process on the randomized
algorithm for this problem just to demonstrate the power of our technique	

�� Existence of small essential sample spaces

Let C be a set of constraints which includes the obvious one Pr��� � �	

De�nition ���� A distribution f that satis
es C is said to be manageable if jS�f�j � jCj	

Theorem ���� If C is consistent� then C is satis�ed by a manageable distribution�

Proof� Suppose jCj � c and C includes the obvious constraint Pr��� � �	 Let � � Rc

denote a vector containing the values � of the constraints in C	 Let m � �n� vx � f�x��

and v � �vx�x�� � Rm	 The set C can be represented by a system Av � � of linear
equations� where A � Rc�m	 Since C is assumed to be consistent� we know that this
system has a nonnegative solution	 A classical theorem in linear programming asserts

under these conditions� there exists a vector v� � � such that Av� � b and the columns
of A with indices j such that v�j � � are linearly independent	 Let f � be this solution
vector v�	 Since the number of constraints is jCj� it follows that the number of positive
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indices in f �� which is precisely the cardinality of the essential sample space of f �� is at
most jCj	
The theorem quoted in this proof can be proven constructively	 The underlying

procedure is as follows	

Algorithm ����

If the set of columns of A with indices j such that vj � � are linearly independent�
stop� otherwise� 
nd a vector u � Rm� such that uj � � for every j such that
vj � �� and Au � �	

���� Find a real number t such that v� tu � �� and for at least one index j such that vj � ��

vj � tuj � �	

�� Replace v � v � tu� and go to �	

Thus� dependent columns can be removed from a solution one at a time	 This suggests

a technique for computing a manageable distribution f � from any given distribution f 	
Alternately� the manageable distribution can be computed directly from the constraints
using a linear programming algorithm which computes basic solutions	 Unfortunately�

since Algorithm �	� handles the variables one at a time� it runs in time which is exponen�
tial in n� and often also in jCj	 Similarly� a linear programming algorithm runs in time
polynomial in m � �n	 Our goal is to 
nd a manageable distribution directly from the
constraints in polynomial time	

�� Arbitrary sets of constraints

It is often desirable to know� for an arbitrary given set of constraints C� whether or not
there exists a distribution f satisfying these constraints	 For arbitrary constraints� the
representation of the event can be very long� causing the input size to be unreasonably

large	 We� therefore� restrict attention to simple constraints whose events can be repre�
sented in space polynomial in n	 It turns out that this problem is NP�hard even when
restricted to ��simple constraints�

Proposition ���� It is NP�hard to recognize whether a set C of ��simple constraints is

consistent�

Proof� We present only the outline of the proof	 For the details� see ���	 We begin
by viewing the problem as a linear programming problem with an exponential number
of variables �m � �n�	 The dual of this problem has a variable for each constraint in

C and an exponential number of constraints	 It falls into the framework of Gr�otschel�
Lov�asz� and Schrijver ���	 We reduce the problem of minimizing a general quadratic
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form in f�� �g�variables to the separation oracle of the dual problem� showing that it is
NP�hard	 We then use the framework of ��� to deduce the NP�hardness of the original
problem	

An event E is said to be polynomially checkable if membership of any x � � in E can
be checked in time polynomial in n	

Lemma ���� If all the constraints in C pertain to polynomially checkable events� then

the consistency of C can be recognized in non�deterministic time polynomial in terms of

jCj and n�

Proof� The algorithm guesses a subset I � � of cardinality jCj	 It then solves in
polynomial time the system of equations consisting of the constraints in C� restricted
to the variables in I �the other variables are set to ��	 Note that� given the initial

guess� this system can be constructed in polynomial time� since for each constraint and
each variable in I� it takes polynomial time to check whether the variable appears in
the constraint	 A nonnegative solution to this system exists if and only if there exists a
manageable distribution whose essential sample space is I	 By Theorem �	�� we know

that a set of constraints is consistent if and only if it is satis
able by a manageable
distribution	 Therefore� C is consistent if and only if one of these subsystems has a
nonnegative solution	

Since simple constraints are always polynomially checkable �using the appropriate
representation�� we deduce the following theorem	

Theorem ���� For an arbitrary set C of simple constraints� the problem of recognizing

the consistency of C is NP�complete�

�� Quasi�independent variables

An important special case was already discussed in the introduction	 Suppose all the

constraints in C are independence constraints arising from a known set of values pi �
Pr�Xi � �� �i � �� 	 	 	 � n�	 In this case we can construct a small sample space in
polynomial time	

The assumption that the pi�s are known is important in view of the following theorem�

Theorem ���� It is NP�hard to recognize whether for a given set of simple constraints C
there exist p�� 	 	 	 � pn � ��� �� such that all the members of C are independence constraints

relative to the pi�s�
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Proof� We prove the theorem by reduction from the validity problem of boolean for�
mulas in disjunctive normal form �DNF�	 Given a DNF formula � in the variables
u�� 	 	 	 � un� we build a set C as follows	 Let � � y� � 	 	 	 � yk be a disjunct in �� where
yj � fuij � �uijg �j � �� 	 	 	 � k�� and i� � 	 	 	 � ik	 We associate with � a constraint

�fXi� � b� � 	 	 	 � Xik � bkg� �� �

where bj � � if yj � uij and bj � � if yj � �uij 	 It is clear that for any assignment 	 of

truth�values to the variables u�� 	 	 	 � un �� for true and � for false�

	��� �
kY

j��

��	�uij�� bj� � ���

where 	��� is the truth�value of � under 		
We claim that � is valid if and only if C is not a set of independence constraints for some
set of pi�s	 For the proof of the �if� direction� suppose that � is not valid� and consider
an assignment 	 of truth�values under which � is false	 De
ne pi � 	�ui�	 Since � is

false� every disjunct � in � is false	 Due to ���� this implies that every constraint in C is
satis
ed relative to these pi�s	 For the proof of the �only if� direction� suppose that C is
a set of independence constraints relative to some set of pi�s	 Consider the assignment
of true to ui for i such that pi � � and� false otherwise	 Let � be any disjunct in �	

Since the corresponding constraint is satis
ed� the product is zero� so there must be
some index ij appearing in the constraint for which ��pij � bj� � �	 Thus� by ���� �
is falsi
ed under this assignment 		 Since this holds for every �� it follows that � is

falsi
ed under 	� and is therefore not valid	

It is not clear that the problem of Theorem �	� is in NP	 The set of pi�s� relative
to which a given set of constraints is a set of independence constraints� might contain

irrational numbers even if all the input numbers are rational� as we show in the following
example�

Example ���� Consider the problem of constructing a sample space for Bernoulli vari�
ables X�� X�� and X� so that

Pr�fX� � X� � �g� � Pr�fX� � X� � �g� � Pr�fX� � X� � �g� � �
� �

The latter are independence constraints only with respect to

p� � p� � p� �
�p
�
�

Nevertheless� in many cases� the pi�s are either known or easily computable from the
constraints	 In the following discussion� let p�� 	 	 	 � pn � ��� �� be 
xed and known� and
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let C be a set of independence constraints with respect to these pi�s	 Let c � jCj be the
number of constraints	 We can now 
nd a sample space of cardinality c satisfying the
constraints in C in time polynomial in cn	

We 
rst de
ne the concept of a projected event	 Consider an event of the form

E � fXi� � b� � 	 	 	 � Xik � bkg �
Let 
 �� � 
 � n� be an integer and denote by r � r�
� the maximal index such that

ir � 
	 The 
�projection of E is de
ned by

���E� � fXi� � b� � 	 	 	 � Xik � brg �
Analogously� we call I����E�� the 
�projection of the constraint I�E�	 We now de
ne�
recursively� a sequence of distributions f�� 	 	 	 � fn� such that for each 
 �
 � �� 	 	 	 � n�� the

following conditions hold�

�i� f� is a distribution on f�� �g�	
�ii� f� satis
es the 
�projections of the constraints in C	
�iii� The cardinality of the essential sample space� S�f��� of f� is at most c	

The distribution fn will be the desired distribution	 We begin by de
ning

f������ � � � p�

f������ � p� �

This clearly satis
es all the requirements	 Now� assume that f� satis
es the above re�

quirements� and de
ne an intermediate distribution g��� by

g����x�� 	 	 	 � x�� b� � f��x�� 	 	 	 � x�� 	 ��p���� b� �b � f�� �g� � ���

Lemma ���� If f� satis�es the 
�projections of the constraints in C� then g��� satis�es

the �
� ���projections of the constraints in C�

Proof� Suppose I�E� is an arbitrary constraint in C� where E � fXi� � b� � 	 	 	 � Xik �
bkg	 For simplicity� denote Ej � �j�E� �j � �� 	 	 	 � n�	 Let r be the maximal index
such that ir � 
	 By the assumption�

f��E�� �
rY

j��

��pij � bj� �

We distinguish two cases�
Case I	 ir�� � 
� �	 In this case

E��� � f�x�� 	 	 	 � x����j�x�� 	 	 	 � x�� � E�� x��� � br��g �

�



and therefore

g����E���� �
X

x������x����E���

g����x�� 	 	 	 � x����

�
X

�x������x���E��x����br��

g����x�� 	 	 	 � x����

�
X

�x������x���E�

g����x�� 	 	 	 � x�� br���

�
X

�x������x���E�

f��x�� 	 	 	 � x����p���� br���

� ��p���� br���f��E��

� ��p���� br���
rY

j��

��pij � bj�

�
r��Y
j��

��pij � bj� �

Thus� g��� satis
es the independence constraint I�E����	

Case II	 ir�� 
� 
 � �	 In this case

E��� � f�x�� 	 	 	 � x����j�x�� 	 	 	 � x�� � E�� x��� � f�� �gg �
and thus

g����E���� �
X

�x������x�����E���

g����x�� 	 	 	 � x����

�
X

�x������x���E��x����f	��g

g����x�� 	 	 	 � x����

�
X

�x������x���E��x����	

g����x�� 	 	 	 � x���� �
X

�x������x���E��x�����

g����x�� 	 	 	 � x����

� ��p���� ��
rY

j��

��pij � bj� � ��p���� ��
rY

j��

��pij � bj�

�
rY

j��

��pij � bj� �

Thus� g��� satis
es the constraint I�E����	

If jS�f��j � c� then jS�g����j � �c� since each point with positive probability in S�f��
yields at most two points with positive probabilities in S�g����	 Therefore� g��� does
not satisfy requirement �iii�	 But g��� is a nonnegative solution to the system of linear
equations de
ned by the �
 � ���projections of the constraints in C	 Therefore� we may

use Algorithm �	� to reduce the cardinality of the sample space to c	 Let f��� be the
resulting distribution	 It clearly satis
es all three requirements	
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This procedure takes n � � iterations	 Each iteration requires at most O�m�� arith�
metic operations for running Algorithm �	� to reduce the cardinality of the sample space	
Therefore� the entire algorithm runs in O�nm�� operations	 Note that the number of op�
erations does not depend on the magnitudes of the numbers in the input	

Our algorithm can easily be extended to operate on variables with more than two

possible values	 Let ri be the number of values in the range of Xi	 The sample space of
g��� will consist of vectors �x�� 	 	 	 � x�� �� where �x�� 	 	 	 � x�� � S�f�� and � is in the range
of Xi	 Then�

jS�g����j � r���jCj �
The proof goes through as above but the number of operations in one iteration is
O�rim��	 The total number of operations is O��

Pn
i�� ri�m

�� � O�rnm��� where r �
maxfr�� 	 	 	 � rng	 The cardinality of the resulting sample space is still jCj	


� De�randomizing algorithms

In this section we demonstrate how the technique of Section � can be used to de�randomize
algorithms	 We present three progressively improving ways in which the technique can be

applied	 For the sake of simplicity and for ease of comparison� we will base our analysis
on a single problem	 This is the problem of 
nding large independent sets in sparse
hypergraphs	 The problem description and the randomized algorithm for its solution are
taken from Alon� Babai� and Itai ���	 Noga Alon pointed out to us that a sequential

polynomial time algorithm for this problem was known	

A d�uniform hypergraph is a pair H � �V� E�� where V � fv�� 	 	 	 � vng is a set of
vertices and E � fE�� 	 	 	 � Emg is a collection of subsets of V � each of cardinality d� which
are called edges	 A subset U � V is said to be independent if it contains no edges	 In

this section we choose to restrict ourselves to d�uniform hypergraphs	 This is only for
the sake of simplicity� a similar process goes through for non�uniform hypergraphs	

Proposition 
�� �Alon� Babai� and Itai
 	 If H � �V� E� is a d�uniform hypergraph

with n vertices and m edges� then for k � �������nd�m����d���� there exists a randomized

algorithm that �nds an independent set of cardinality exceeding k with probability greater

than �
� � �

k
�

Proof� The algorithm follows	

Algorithm 
���

Construct a random subset R of V so that for each i � V � the probability that
i � R is p � �k�n	
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�i��ii� Construct from R an independent set U as follows	 For each edge Ej such that
Ej � R� remove from R one arbitrary vertex i � Ej from R	

Denote by Xi the random variable that equals � if i � R� and � otherwise	 The
cardinality of R is X � jRj � Pn

i��Xi� so E�X� � np � �k	 If the Xi�s are pairwise
independent� then the variance of X is

���X� �
nX

i��

���Xi� � np�� � p� � np � �k � ���

By Chebychev�s inequality�

Pr�X � �k� � ���X�

k�
�

�

k
�

For each edge Ej � E� denote by Yj the random variable that equals � if Ej � R and
� otherwise	 If the Xi�s are d�wise independent� then for every j �j � �� 	 	 	 �m��

E�Yj� � Pr

�
� �

i�Ej

fXi � �g
�
A � pd �

�
�k

n

�d

� ��c�d�n�m�d��d��� � ���

Let Y �
Pm

j�� Yj denote the number of edges contained in R	 It follows that

E�Y � � mpd � ��c�d�nd�m����d��� � �dc�d���k �

so� for c � ����� E�Y � � k��� and Pr�Y � k� � �
�	 Consequently�

Pr �fY � kg � fX � �kg� � �

�
� �

k
�

When the event in the latter equality occurs� the independent set constructed by the

algorithm has cardinality of at least k	

The de�randomization procedure of Alon� Babai� and Itai ��� is based on constructing
a joint distribution of d�wise independent variables which approximates the joint d�wise
independent distribution of variables Xi for which Pr�Xi� � �k�n �i � �� 	 	 	 � n�	 It is
then necessary to analyze this approximate distribution	 Our technique provides exactly

the required distribution� so that no further analysis is needed	 As we explained in the
Introduction� this can be done by considering the set C of the constraints�

I�fXi� � b�� 	 	 	 �Xid � bdg� �i�� 	 	 	 � id � N� b�� 	 	 	 � bd � f�� �g� �

The number of these constraints is jCj �
�
n
d

�
�d � O���n�d�	 For any 
xed d� this

number is polynomial in d� resulting in a sample space of polynomial size	 Therefore� the
algorithm runs in polynomial time� including both the phase of constructing the sample
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space and the phase running Step � of the algorithm to 
nd an independent set at each
point in the resulting space	

A closer examination of the proof reveals that not all the
�
n
d

�
subsets of cardinality

d have to be independent	 In order for equation ��� to hold� it su�ces that only the

random choices for vertices in the same edge be independent	 If Ej � fi�� 	 	 	 � idg� let Cj
denote the set of �d independence constraints

I�fXi� � b�� 	 	 	 �Xid � bdg� �b�� 	 	 	 � bd � f�� �g� �

On the other hand� in order for equation ��� to hold� the choices must still be pairwise

independent	 Denote by C� the set of �
�
n
�

�
constraints

I�fXi� � b��Xi� � b�g� �i�� i� � N� b�� b� � f�� �g �

Thus� the following set of constraints su�ces�

C� � C� � �
Ej�E

Cj �

More precisely� if the set C� is satis
ed� then the proof of Proposition �	� goes through�
and the resulting sample space must contain a point which is good for this hypergraph	
Since the number of constraints is

jC�j � X
Ej�E

jCjj� jC�j � m�d � �

�
n

�

�
�

this results in a polynomial time algorithm for d � O�log n�� which applies to a larger
class of graphs than the one presented in ���	 We note that more recent results of Berger
and Rompel ��� and of Motwani� Naor� and Naor ��� provide polynomial time algorithms

for d � O��log n�k� for any 
xed k	 These results use completely di�erent techniques�
and cannot be extended to handle larger values of d	

A yet closer examination of the proof of Proposition �	� reveals that equation � does
not require full independence of the random variables associated with the set of vertices

of the edge	 It su�ces that the probability of the event

Yj � fXi� � �� 	 	 	 �Xid � �g �

de
ned on these variables� be the same as if they were independent	 This is a simple event
which de
nes an independence constraint of the type our technique applies to	 Finally�
the following set of constraints su�ces and the analysis of Proposition �	� goes through�

C� � C� � �
Ej�E

I�Yj� �

��



The number of constraints

jC�j � m� �

�
n

�

�

is polynomial in the size of the problem �nm� regardless of d	 Therefore� this results
in a deterministic polynomial time algorithm for 
nding independent sets of cardinality
greater than k for arbitrary uniform hypergraphs	

��


