
Linear Programming with Two Variables per Inequality in

Poly�Log Time�

George S� Luekery Nimrod Megiddoz Vijaya Ramachandranx

Abstract� The parallel time complexity of the linear programming prob�
lem with at most two variables per inequality is discussed� Let n and m de�
note the number of variables and the number of inequalities� respectively� in a
linear programming problem� We assume all inequalities are weak� We describe
an O��logm� log� n� log� n��time parallel algorithm for deciding feasibility� under
the concurrent�read�exclusive�write PRAM model� It requires mnO�logn� proces�
sors in the worst case� though we do not know whether this bound is tight� When
the problem is feasible a solution can be computed within the same complexity�
Moreover� linear programming problems with at most two nonzero coe�cients in
the objective function can be solved in poly�log time on a similar number of pro�
cessors� Consequently� all these problems can be solved sequentially with only
O��logm� log� n�� log� n� space� �These bounds assume that numbers take O���
space� and arithmetic on them takes O��� time� the problem can still be solved
in poly�log space as a function of the input size even if we instead use a Turing
machine model with rational input�� It is also shown that if the underlying graph
has bounded tree�width and an underlying tree is given then the feasibility problem
is in the class NC�

�� Introduction

Dobkin� Lipton and Reiss ��� �rst showed that the general linear programming problem
was �log�space� hard for P� Combined with Khachiyan	s deep result �
�� that the problem

is in P� this establishes that the problem is P�complete �that is� log�space complete for

�An earlier version of this paper appeared in the Proceedings of the ��th Annual Symposium on

Theory of Computing� May ����� pp� ������	�
yDepartment of Information and Computer Science� University of California at Irvine� Irvine� CA

��
�
� Supported by National Science Foundation Grant DCR��	����
�
zIBM Research� Almaden Research Center� �	� Harry Road� San Jose� CA �	��� and School of

Mathematical Sciences� Tel Aviv University� Tel Aviv� Israel
xDepartment of Computer Science� University of Texas at Austin� Austin� TX 
�
��� Supported by

NSF under Grant ECS��������� by Joint Services Electronics Program under Grant N���������CO���
and by an IBM Faculty Development award�






P�� A popular specialization of the general linear programming problem is the problem
of solving linear inequalities with at most two variables per inequality �see �
�� and the
references thereof�� It is shown in �
�� that a system of m linear inequalities in n variables
�but at most two nonzero coe
cients per inequality� can be solved in O�mn� logm�

arithmetic operations and comparisons over any ordered �eld� It is not known whether
the general problem �even only over the rationals� can be solved in less than p�m�n�
operations� for any polynomial p�

Throughout the paper we assume that the space to store numbers and the time for

arithmetic operations is O�
�� Since each expression we compute can be written as an
expression tree of heightO�log n� in the input values� the length of numbers only increases
by a polynomial factor during the execution of the algorithm� so this assumption does
not alter the statements of our results by more than a polynomial factor for the number

of processors� or more than a poly�log factor for the time�

In this paper we are interested in the parallel computational complexity of the two
variables per inequality problem� We �rst mention some related results which� we hope�
shed some light on the parallel complexity of the problem�

Proposition ���� The problem of �nding the minimum value of a general linear function

subject to linear inequalities with at most two variables per inequality is P�complete�

Proof� The proof follows from the result that the problem of �nding the value of the
maximum �ow through a capacitated network is P�complete �

�� More speci�cally�
every maximum �ow problem can be reduced ��� to a transportation problem� that is�

a problem of the form
Minimize

X
ij

cijxij

subject to
X
j

xij � ai

X
i

xij � bj

xij � � �

The dual of the latter has only two variables per inequality�

In fact� there exist much simpler but yet P�complete linear programming problems

with a general objective function and only two variables per inequality� For example�
consider the following recursive formula

xk�� � max��kxk � �k � �kxk � �k�

where �k� �k� �k and �k �k � 
� � � � � n� are given numbers� Given any value of x�� we want
to determine the resulting value of xn� Let us call this the PROPAGATION problem�

�



The propagation problem can be solved as the following linear programming problem�

Minimize
X
i

M ixi

subject to xk�� � �kxk � �k

xk�� � �kxk � �k �

where M is su
ciently large�

Proposition ���� PROPAGATION is P�complete�

Proof� The proposition follows from the result by Helmbold and Mayr �
�� that the
��processor list scheduling problem is P�complete� The latter amounts to a special case

of PROPAGATION� xk � jxk�� � Tkj � maxfxk�� � Tk��xk�� � Tkg� �k � 
� � � � � n��
where T�� � � � � Tn are given integers and x� � ��

Interestingly� the subproblem of PROPAGATION where all the �k	s and �k	s are
nonnegative is in NC� this follows immediately from the parallel composition of monotonic
piecewise linear functions to be discussed in Section ��

We discuss three di�erent problems�

�i� Deciding feasibility� Here we only need to determine whether there exists a
solution to a given set of linear inequalities with at most two variables per inequality�

�ii� Solving inequalities� Here we require that if the system is feasible then some

point in the feasible space be determined�
�iii� Optimization� Here we seek to �nd a point in the feasible space which maximizes

a given linear combination of two of the variables� As in the previous case� one has

to distinguish here between the problem of computing the optimum value of the
function and the problem of computing optimum values of the variables�

Deciding feasibility is the core of our algorithm� This is accomplished by computing

the projections of the set of feasible solutions onto the individual coordinate axes� Using
a parallelization of the sequential algorithm of �
��� we will compute for each variable
x an interval �xlow� xhigh�� �� � xlow � xhigh � �� �possibly empty� so that for every

x� � �xlow� xhigh� there is a solution to the system of inequalities with x � x�� This
part of the algorithm su
ces of course for determining whether a given system of linear
inequalities �with at most two variables per inequality� has a solution� We shall later
discuss the problem of �nding a feasible solution given the �nonempty� projections onto

the axes� Finally� we show how to optimize a linear function with at most two nonzero
coe
cients subject to such systems of inequalities�

�



�� Preliminaries

Two characterizations of feasibility of linear inequalities with at most two variables per
inequality were given by Nelson �
�� and Shostak �
��� Our algorithm is a parallelization of

the algorithm in Nelson �
��� but our exposition will also make use of the characterization
of Shostak �
�� and further results by Aspvall and Shiloach ��� which we now describe��

A key idea in these papers is the observation that one can combine inequalities to deduce
new inequalities� For example� suppose we are given x � �y � � and �y � �z � ��

Eliminating y between these two inequalities� we obtain x� �z � 

�

It is convenient to discuss the problem using graph�theoretic terminology� We form
what is called the constraints graph� denoted G� by creating a vertex for each variable�
and an edge for each inequality whose endpoints are the two variables appearing in

the inequality� �Note that this is actually a multigraph� since a pair of variables can
be involved in many di�erent inequalities�� We henceforth identify variables with the
corresponding vertices� To take care of inequalities involving only a single variable� such
as x � �� �
�� also added a dummy vertex v� corresponding to a new variable which

can only occur with coe
cient �� an edge representing an inequality involving only one
variable� say x� runs between x and v�� Now let L denote a path in G from x to y� that is�
a set of inequalities �ixi � �i��xi�� � �i� �i � �� 
� � � � � k � 
�� where x � x� and y � xk�
�Note that since G is a multigraph� a path should be thought of as a sequence of edges

rather than as a sequence of vertices� to avoid ambiguity�� If �i�i � � for i � 
� � � � � k�
�
we say P is admissible� and then by successive elimination of x�� x�� � � � � xk�� one can
deduce a new inequality �x� �y � � that is implied by this path� We will call this the

resultant of the path� If on the other hand there exists an i �
 � i � k � 
� such that
�i�i � �� we say the path is inadmissible� and then one cannot deduce a resultant�

The case in which the endpoints of the path are the same variable deserves special
attention� in this case we call the path a loop� Then the resultant involves only a single
variable� that is� it is a bound of the form �x � �� It is possible that the resultant

could be an inherent contradiction�this occurs if � � � and � � �� For instance� the
path �x � �y � �� and �y � x�� � � has the resultant �x � ��� which is clearly a
contradiction� In this case we can deduce that there is no feasible solution� Unfortunately

the converse is not true� it is possible to produce an example of an infeasible set of
inequalities for which no loop yields a contradiction� One further idea is needed to
produce a characterization�

The closure G� of G is the multigraph we obtain by adding to G all of the bounds

which are resultants of simple cycles�

�The correctness of our feasibility test follows directly from the theorems of 
�
�� but the presentation
we have chosen enables us to depend only on results appearing in journals�

�



Theorem ��� �Shostak ����� � The original system G is infeasible if and only if some

simple loop in the closure G� has a resultant which is a contradiction�

	� Operations on polygons

For parallel computation we will want to be able to manipulate many bounds simul�
taneously� To discuss this approach it is convenient to represent a set of inequalities
involving x and y by a polygon Pxy consisting of all points in the plane which satisfy all
of the inequalities� �We call these objects polygons even though they may sometimes be

unbounded�� It is useful to have a term to indicate that membership in a polygon implies
some inequality� thus we will say that a polygon P incorporates an inequality if all points
in the polygon satisfy the inequality� The algorithm of Nelson �
�� made use of two oper�
ations on polygons� namely intersection and composition� In this section we de�ne these

polygons and operations� and indicate how we do them e
ciently in parallel� �We have
not carefully optimized these algorithms since this would not signi�cantly improve the
statement of the overall complexity of our feasibility testing algorithm�� Let R denote
the set of reals� and let Rxy� for any two variables x and y� denote the two�dimensional

space R �R given by the cross product of the x and y axes�

Suppose S consists of m inequalities in n variables� For 
 � k � n� let Qk
xy denote

the polygon corresponding to the set of all inequalities which involve no variables other
than x and y� and which are resultants of paths �not necessarily simple� of length at most

k� Note that Q�
xy is the polygon determined by the original inequalities involving only x

and�or y� In particular� the polygon Q�
xy incorporates all of the inequalities corresponding

to edges among v�� x� and y� thus we do not need the vertex v� in our graphs� Clearly the
polygon Qk

xx incorporates the resultants of all cycles of length at most k which involve

x�

The algorithm uses two basic operations on convex polygons� namely� intersection and
functional composition� The intersection of two polygons is the ordinary set intersection
of their point sets� i�e��

Pxy � P
�
xy � f�x� y� j �x� y� � Pxy and �x� y� � P �

xyg�

The composition Pzx of two polygons Pzy and Pyx is

Pzx � Pzy � Pyx � f�z� x� j �y � R such that �z� y� � Pzy and �y� x� � Pyxg�

In other words� as noted in �
��� Pzy � Pyx is the projection onto Rzx of the intersection
of the cylinders with bases Pzy and Pyx�

We now describe the implementation of these two operations� We represent convex
polygons by a domain D and two bounds L and H� D is a �possibly in�nite� interval�

�



and L�x� �respectivelyH�x�� is a convex �respectively concave� piecewise linear function�
The set of points in the represented polygon Pyx is

Pyx � f�y� x� j x � D and L�x� � y � H�x�g�

for the representation to be considered valid we require that

x � D �	 L�x� � H�x��

For simplicity we �rst discuss the basic operations as applied to piecewise linear
convex functions rather than polygons� Thus� we �rst consider functions of the form
y � f�x� � max��i�Nf�ix � �ig� which we represent by a list of pairs ��i� �i� ordered

such that �i � �j for i � j� we will require that there be no extraneous pairs� i�e�� that
no pair of values ��� �� appears more than once in the list� and that f coincides with
each linear function y � �ix� �i over some interval of positive length�

Consider �rst the intersection problem� Given two functions y � f��x� and y � f��x�
in the form described above� with N� and N� linear pieces� respectively� we have to
compute the representation of y � g�x� � maxff��x�� f��x�g� This problem can be

solved in O�logN� time with O�N� processors� where N � N� � N�� Here we brie�y
sketch the method� First note that we can convert between the representation discussed
above and a list of the breakpoints �i�e�� coordinates of points of discontinuity in the
slope� of each function in constant time� Next� we merge the sets of breakpoints for f�
and f� according to their x�coordinate� but keep track of whether each came from f�
or f�� call these respectively type 
 and type � breakpoints� The merging can be done
e
ciently by the algorithm of ���� Next� using standard pointer doubling techniques�

each type 
 �resp� type �� point can determine the previous and following type � �resp�
type 
� point� Once this information is available� each point can determine in O�
� time
whether it lies below or on g�x�� Finally� knowing the type of its neighbors� and whether
they lie below or lie on g�x�� each point can determine in O�
� time whether f� and f�
intersect between it and its neighbor� Thus we can generate a list of all breakpoints of
g�x�� This can then be converted back to the representation� as a list of linear functions�
described above�

The second operation we need for our algorithm is functional composition� We �rst
demonstrate this operation in a special case� Suppose y � f�x� and z � g�y� are strictly
monotone piecewise linear functions� each represented as described above� We would like

to compute the representation of the composition z � h�x� � g�f�x��� Suppose f and
g consist of k and l linear pieces� respectively� and let N � k � l� The problem can
be solved by O�N� processors in O�logN� time as follows� Let y�� � � � � yl�� denote the
breakpoints of g� These can be found in constant time from the representation of g� Let

ti � f���yi�� i � 
� � � � � l� 
� The ti	s can be computed in parallel in O�log k� time by a
binary search� Let x�� � � � � xk�� denote the breakpoints of f � Now� the xi	s and ti	s can

�



be merged and then the linear pieces of h can be constructed as compositions of linear
functions�

Obviously� if both f and g are increasing� or if both are decreasing� then h is increasing�
otherwise� h is decreasing� As for convexity or concavity properties� it is easy to verify

the following�

�i� If g is monotone increasing then h is convex if both f and g are convex� and h is
concave if both f and g are concave�

�ii� If g is monotone decreasing then h is convex if f is concave and g is convex� and h

is concave if f is convex and g is concave�

We now sketch the construction of Pzx with linearly many processors in the total
number of edges in Pyx and Pzy � Let yh denote the smallest value of y �with y � Dzy� at
whichHzy�y� attains a maximum� Note that Hzy�y� is increasing for y � yh �for y � Dzy�

and nonincreasing for y � yh �again� for y � Dzy�� The function Hzx�x� maps x to the
largest value of z such that there is y in �Lyx�x��Hyx�x�� for which y � Dzy and Lzy�y� �
z � Hzy�y�� Thus� if x � Dyx is such that Hyx�x� � yh �and Hyx�x� � Dzy� then a least
upper bound on z is obtained by setting y to Hyx�x�� that is� Hzx�x� � Hzy�Hyx�x��� On

the other hand� if x is such that Lyx�x� � yh� then a least upper bound on z is obtained
by setting y to Lyx�x�� Finally� if x is such that Lyx�x� � yh � Hyx�x�� then the least
upper bound on z is found by setting y to yh� Summarizing� we have

Hzx�x� �

���
��

Hzy�Lyx�x�� if yh � Lyx�x�
Hzy�yh� if Lyx�x� � yh � Hyx�x�

Hzy�Hyx�x�� if Hyx�x� � yh�

Similarly� let yl denote the smallest value of y at which Lzy�y� attains a minimum� Then
Lzy�y� is decreasing for y � yl �with y � Dzy� and nondecreasing for y � yl �with
y � Dzy�� This implies that if x � Dyx is such that Hyx�x� � yl� then a largest lower

bound on z is obtained by picking y to be Hyx�x�� and if x is such that Lyx�x� � yl�
then a largest lower bound on z is obtained by picking y to be Lyx�x�� Finally� if
Lyx�x� � yl � Hyx�x�� then we pick y � yl� Thus

Lzx�x� �

���
��

Lzy�Lyx�x�� if yl � Lyx�x�
Lzy�yl� if Lyx�x� � yl � Hyx�x�

Lzy�Hyx�x�� if Hyx�x� � yl�

Obviously� there exist xhl and xhh such that Hyx�x� � yh i� x � �xhl� xhh�� Anal�
ogously� there exist xll and xlh such that Lyx�x� � yl i� x � �xll� xlh�� Note that the
values of yl� yh� xhl� xhh� xll and xlh can be found in O�logN� time� It follows that the

representations of the functions Hzx�x� and Lzx�x� can be computed� each over at most
three disjoint intervals of x� as compositions of monotone functions� Let us consider the

�



procedure UpdatePaths�Q��
comment Q is an array of polygons indexed by x and y�
begin

for i
 
 to dlg ne do
for all variables z and x pardo

Qzx 
 Qzx �
��

y

Qzy �Qyx

�
�

POINTA� comment at this point the resultants of all paths
are incorporated into the polygons�

for all variables x pardo

Qxx 
 Qxx � Ixx�
end�

various types of breakpoints of the functions Hzx�x� and Lzx�x�� Obviously� any such
breakpoint is of one of the following types� �i� a breakpoint of one of the functions Hyx�x�

and Lyx�x�� �ii� an inverse image under one of these functions of a breakpoint of one of
the functions Hzy�y� and Lzy�y�� �iii� one of the points xhl� xhh� xll and xlh� Each of the
breakpoints of the functions Hzy �respectively Lzy� contributes at most two breakpoints
to Hzx �respectively Lzx�� Also� each of the breakpoints of the functions Hyx and Lyx

contributes at most one breakpoint to each of the functions Hzx and Lzx� Thus� the total
number of breakpoints of Hzx and Lzx is at most �N � �� where N is the total number
of breakpoints of Hyx� Lyx� Hzy and Lzy �

The new domain is given by

Dzx � fx j x � Dyx and �Lyx�x��Hyx�x�� �Dzy �� �g

We omit the details showing how this can be computed within the stated resource bounds�


� Deciding feasibility

Using the basic operations of intersection and decomposition� we can now sketch the
algorithm for deciding feasibility of a given system of linear inequalities with at most
two variables per inequality� The algorithm consists of two iterations of the procedure
UpdatePaths� shown here� We de�ne Ixx to be the identity polygon� i�e�� I � f�x� x� j
x � Rg� This algorithm for deciding feasibility begins by using an algorithm analogous
to the standard parallel transitive closure or shortest path algorithms �see �
�� for more
information about such algorithms�� It is interesting to note that the two operations

� and � do not form a closed semiring in the sense de�ned in �
�� In particular� the
distributivity condition Pzy � �Pyx � P �

yx� � �Pzy � Pyx� � �Pzy � P �
yx� fails to hold in

�



procedure CheckFeasibility�S�V ��
comment S is the set of inequalities� and V is the set of variables�
begin

for all variables x and y pardo

Qxy 
 the polygon determined by all inequalities
involving no variables outside fx� yg�

for all variables x pardo

Qxx 
 Qxx � Ixx�
for i
 
 to �dlg ne do
for all variables x and z pardo

Qzx 
 Qzx �
��

y

Qzy �Qyx

�
�

end�

general� �As an example� let Pzy be the entire zy plane� let Pyx be determined by the

one inequality y � �
� and let P �
yx be determined by the one inequality y � 
� Then the

left side is the empty set and the right side is the entire zx plane�� It is not hard to see
though that we do have

Pzy � �Pyx � P
�
yx� 
 �Pzy � Pyx� � �Pzy � P

�
yx��

From this one can easily show that� if for each x and y we initialize Qxy to be the

set of all inequalities involving x and y� then at POINTA we will have Qxy 
 Qn
xy�

where Qn
xy is de�ned as in Section �� �Note that while we do not claim equality� the

Qxy do contain the projection of the feasible space onto Rxy since each composition and
intersection corresponds to valid deductions that can be made about the feasible space��

In particular� at the end of UpdatePaths each Qxx will be a set of pairs �x� x� where
each x obeys the constraints added to G in Section � to form the closure G�� Thus by
Theorem ��
� a second application of UpdatePaths will cause at least one of the Qxy to

become empty if the original set of inequalities had no feasible solution� Further� if the
feasible space is nonempty� it follows from ��� Lemma �� that after this second application
of the procedure the projection of the feasible set onto any axis Rx is the same as the
projection of Qxx onto Rx�

A simpli�cation of this description is possible� by initially restricting each Qxx to be

contained within Ixx� we eliminate the need for the last loop in UpdatePaths� In fact� then
the entire feasibility checking procedure becomes the CheckFeasibility procedure shown
here� This is nearly the same as the algorithm of �
��� and another proof of correctness

can be found there�

Let the total number of edges in all polygons constructed during the algorithm be E�
As in the sequential algorithm of �
��� the polygons Qxy are computed in O�log n� stages�

�



and we have E � mnO�logn�� Intersection of n polygons can be computed by n parallel
teams of processors in O�log n� phases� where in each phase each team is computing the

intersection of two polygons� It is convenient to think here of a model of computation
where the machine does not have to allocate all the processors in advance� it rather
invokes processors as they are needed� just like a Turing machine using unlimited tape
space� This allows us to talk about the �worst�case processor complexity�� Assuming we

have O�E� processors� all pairwise intersections and compositions take O�logE� time�
It follows that the entire procedure takes O�logE log� n� time� Thus� the worst�case
running time is O��logm� log� n� log� n��

It is interesting to consider the space complexity implied by our result� We have just
established that we can determine feasibility in T � O��logm�log� n� log� n� parallel time

using P � mnO�logn� write parallel RAM� Using standard simulation relations between
parallel models of computation and between parallel time and sequential space ��� ��

�� ���� this implies that feasibility can be determined by a poly�log space�bounded
deterministic Turing machine� This suggests that the problem might not be P�complete�

�� Computing a feasible solution

We now consider the problem of computing a feasible solution� given the projections

of the �nonempty� feasible domain P onto the individual axes� Thus� let �xlow� xhigh�
��� � xlow � xhigh � �� denote the set of values of variable x that can be completed
into a solution of the entire system S� If all the projections are �nite intervals then a
feasible solution is readily available�

Proposition ���� If for every x both xlow and xhigh are �nite� then a feasible solution is

obtained by setting each variable x to the arithmetic mean �
��xlow � xhigh��

Proof� Suppose� to the contrary� that the vector of the arithmetic means �
�
�xlow�xhigh�

is not feasible� Then there is an inequality �x � �y � � which is violated� In other
words�

�
���xlow � xhigh� �

�
���ylow � yhigh� � � �

Consider the rectangle �xlow� xhigh�� �ylow� yhigh�� By de�nition� each edge of this rect�
angle contains at least one point of the projection Pxy � However� we claim that this

contradicts the inequality

�
�
��xlow � xhigh� �

�
�
��ylow � yhigh� � � �

since the center of the rectangle is in the convex hull of any set that intersects all four

edges of the rectangle� The proof of this claim is easy� Let L� R� T and B denote
points �not necessarily distinct� that lie on the left� right� top and bottom edges of the


�



rectangle� respectively� Consider the straight line determined by the points L and R�
If the center lies on this line then we are done� Otherwise� if the center lies above the
line then it is in the triangle determined by T together with L with R� and if it lies
below this line then it is in the triangle determined by B together with L and R�

Interestingly� Proposition ��
 does not hold if there are more than two variables per
inequality� To see this� consider the system x � �� y � �� z � �� and x � y � z � 
�
The projection of the feasible space onto the x�� y�� or z�axis is just ��� 
�� but the point

�
��� 
��� 
��� is not feasible�

The unbounded case is handled as follows� We introduce to the system an additional
variable 	 and the �n inequalities xj � 	� xj � �	 �j � 
� � � � � n�� We �nd the projection
of the augmented problem onto the 	�axis� In other words� we compute an interval

I � �	low� 	high� �� � 	low � 	high � ��� such that for every 	 � I there exist values for
x�� � � � � xn which solve the augmented problem� By setting 	 to any �nite number in I we
obtain a feasible system of linear inequalities �with at most two variables per inequality�

whose set of solutions is bounded� Any solution of the latter yields a solution to the
original problem simply by dropping 	� Thus we have the following�

Proposition ���� If a system of linear inequalities has a nonempty set of solutions� then

a solution can be found in poly�log time with mnO�logn� processors in the worst case�

�� Optimization problems

We have already shown that� with a general objective function� the optimization problem

with at most two variables per inequality is P�complete� In this section we discuss the
case where the objective function also has at most two variables with nonzero coe
cients�

Intuitively� the optimization problem can be solved by searching for the optimum
value� using the feasibility checking algorithm as an �oracle�� In the context of se�

quential computation this yields a polynomial�time �but not strongly polynomial�time�
algorithm� In the context of parallel computation this approach does not provide a poly�
log algorithm since the number of queries during the search is linear in the length of the

binary representation of the input�

We can use here a technique presented in �
�� to obtain a poly�log algorithm for
�nding optimum solutions over any ordered �eld� Here is a sketch of the method� see
�
�� for more detail� Suppose the problem is to minimize the function

f�x�� � � � � xn� � c�x� � c�x�

subject to a system S of linear inequalities in x�� � � � � xn with at most two variables per

inequality� Consider the system S� of inequalities� which is obtained by adding to S







an inequality c�x� � c�x� � 
� where 
 is a parameter� We need to �nd the smallest
value of 
 for which S� is feasible� Denote this optimum value by 
�� We can run our
parallel algorithm for deciding feasibility on S�� handling 
 as an indeterminate� Thus the
�program variables� will be functions of 
 rather than �eld elements� Throughout the

execution of the algorithm we maintain an interval of values of 
� guaranteed to contain

�� over which the current program variables are all linear functions of 
� Comparisons
between two functions of 
 have to be resolved according to the function values at 
��
which is itself not known� However� during each step of the algorithm� each processor

that is unable to perform a comparison for which it is responsible simply reports the value
of 
 which is critical for that comparison� that is� a value 
� such that the comparison
between the two functions can be resolved by comparing 
� and 
�� The comparison
between 
� and 
� can be carried out by setting 
 to 
� and checking feasibility of the

system� Let p denote a bound on the number of processors required to check feasibility�
For the parametric algorithm we can either use p� processors� in which case all the critical
values of 
 can be tested in parallel� or only p processors and run a binary search over

the set of critical values� In the latter case we obtain a poly�log algorithm with mnO�logn�

processors for computing 
� over any ordered �eld�

Once 
� is known� we can solve the system S� with 
 � 
��


� Bounded tree�width

Robertson and Seymour �
�� introduced the notion of the tree�width of a graph� This
notion lends itself via the constraints graph to systems of linear inequalities with at most
two variables per inequality�

De�nition 
��� A connected graph G is said to have tree�width less than or equal to k if
there is a familyV � fV�� � � � � Vtg of sets Vi of vertices of G with the following properties�

�i� Each Vi contains at most k � 
 vertices of G�

�ii� For every edge e of G� there exists an i such that e has both its endpoints lying in
Vi�

�iii� The intersection graph T � �V�E�� where �Vi� Vj� � E if and only if Vi � Vj �� �� is
a tree�

We assume the graph is given together with such a tree and develop an algorithm
that relies on the tree� Note that a tree with at most n nodes su
ces� It will follow that

if the tree�width is bounded then the number of edges remains polynomial in m and n

during the execution of the special algorithm�

For our purpose here we may assume� without loss of generality� that our graphs are
connected� Also� for simplicity of presentation� assume all the sets Vi are �k � 
��cliques


�



in G� this assumption is also made without loss of generality since redundant inequalities
can always be added to the system�

Proposition 
��� Suppose U � V � and W are nodes of T such that V lies on the path

connecting U and W � Let u � U and w � W be vertices of G� Then on any path in G

connecting u and w there is at least one vertex v � V �

Proof� Consider any such path u � v�� � � � � vr � w� Let V� � U and Vr � W � For

every i� i � �� � � � � r � 
� there is a set Vi � T such that both vi and vi�� are in Vi� By
de�nition each �Vi� Vi��� is an arc in T �if Vi �� Vi���� Thus� U � V�� V�� � � � � Vr��� Vr �
W yields a path in T� It follows that one of the Vi	s equals V � This implies that one

of the vi	s is in V �

Given the underlying tree T� we can decompose the graph G in an e
cient way� The
decomposition is based on the centroid which is often useful in the design of parallel

algorithms �as an early reference we might mention ����� The centroid of a tree T with
N nodes is a node c so that there exist two subtrees T�� T� rooted at c �and also c

is the only common node�� each with no more than �
�N � 
 nodes� whose union is T �

The centroid decomposition of a tree is the iterated partitioning of a tree in this way

into two subtrees rooted at the centroid� This decomposition is obtained in O�logN�
iterations� and moreover� it can be computed in poly�log time with a polynomial number
of processors�

In view of Proposition ��� the centroid decomposition of T induces a decomposition
of G as follows� At the �rst level of the decomposition we have a set C of k�
 vertices of

G and two induced subgraphs G�� G�� whose vertex sets intersect at C and cover all the
vertices of G� Moreover� every edge of G is contained in one of these two graphs� The
decomposition is iterated until all the subgraphs consist of not more than k� 
 vertices�
It follows that this decomposition has only O�log n� levels�

Given the decomposition of G� we produce polygons Qxy�G� as follows� The polygon

Qxy computed will incorporate all of the resultants of simple paths from x to y� �Recall
that a simple path can begin and end at the same point� so x and y may be equal�� Let
G�� G�� and C be as explained above� We state the algorithm recursively� Thus� assume
we have computed polygons Qxy�Gi� for all pairs of vertices x� y � Gi �i � 
� ��� In

particular� if x� y � C then we have for them two polygons Qxy�G�� and Qxy�G���

The recursive step is performed as follows� Let x and y be any two vertices of G for
which we compute Qxy�G�� For simplicity of notation assume without loss of generality
that x � G�� Any simple path from x to y can be represented as a union of paths
��z�� z��� ��z�� z��� � � � � ��zl��� zl� where z� � x� zl � y� zi � C for i � 
� � � � � l � 
� and

��z� z�� denotes some simple path from z to z�� Moreover� paths of the form ��z�i� z�i���
stay entirely within G� while paths of the form ��z�i��� z�i� stay entirely within G�� Thus�


�



to incorporate the resultants of all simple paths connecting x and y in G� it su
ces to
intersect all the polygons obtained by compositions of the form

Qxz��G�� �Qz�z��G�� �Qz�z��G�� � � � � �Qzl��y�Gi�

�where y � Gi�� so that the zj	s �
 � j � l � 
� are pairwise distinct points in C�
The number of di�erent choices of the zj	s implies that for each pair x� y� the number
of polygons intersected this way is bounded by a constant K depending only on k� For

each pair x and y� each composition is of at most k � � polygons� This may multiply
the number of breakpoints by at most O�k�� since composition of k polygons can be
computed in O�log k� compositions of two polygons �where the number of breakpoints is

at most approximately doubled�� Since the entire process runs in O�log n� stages� and
there are m inequalities at the beginning� it follows that the number of edges in each
of the generated polygons is m �kK�O�logn�� This is the same as mng�k� for some g�k�
depending only on k� hence it is polynomial in m and n for any �xed k� The running

time on a suitable number of processors is O�log� n logm� with a coe
cient that depends
on k� By Theorem ��
 this algorithm can determine feasibility�

�� Directions for further work

It is interesting to ask whether the algorithms we have described in Sections �� �� and
� can ever in fact require more than polynomially many processors� This is essentially
the same as the question asked in �
�� of whether the algorithm of �
�� can require more
than polynomial time�

More generally� resolving whether the linear programming problem with two variables

per inequality lies in NC seems like a very interesting question� To provide context�
note that Cook fairly recently observed ��� p� 
�� �I �nd it interesting that very few
natural problems in �poly�log space� have come to my attention which are not in NC�

One notable exception is the problem of determining whether two groups� presented by
their multiplication tables� are isomorphic� � � �� I know of no NC solution to this problem�
or even any polynomial time solution�� Thus the present status of linear programming
with two variables per inequality seems to be rather unusual� particularly since it is

known to be solvable in polynomial time �even if we allow that inputs are arbitrary reals
and the time bound must be independent of these values �
����

Acknowledgment� This work was done while the authors were at Mathematical
Sciences Research Institute� Berkeley� California�

References


�



�
� A� V� Aho� J� E� Hopcroft� and J� D� Ullman� The Design and Analysis of Computer

Algorithms� Addison�Wesley� Reading� Mass�� 
����
��� B� Aspvall and Y� Shiloach� �A polynomial time algorithm for solving systems of

linear inequalities with two variables per inequality�� SIAM J� Comput� � �
����

��������
��� A� Borodin� �On relating time and space to size and depth� SIAM J� Comput� �

�
���� ��������
��� A� Borodin and J� E� Hopcroft� �Routing� merging� and sorting on parallel models

of computation�� J� Comput� System Sci� 	� �
���� 
���
���
��� R� P� Brent� �The parallel evaluation of general arithmetic expressions�� J� Assoc�

Comput� Mach� �� �
���� ��
�����
��� S� A� Cook� �A taxonomy of problems with fast parallel algorithms�� Information

and Control �
 �
����� pp� �����
��� D� Dobkin� R� J� Lipton and S� Reiss� �Linear programming is log space hard for

P�� Information Processing Letters � �
���� ������

��� L� R� Ford� Jr�� and R� D� Fulkerson� Flows in Networks� Princeton University Press�
Princeton� NJ� 
����

��� S� Fortune and J� Wyllie� �Parallelism in random access machines�� Proc� ��th An�

nual ACM Symposium on Theory of Computing� 
���� pp� 

��

��

�
�� L� M� Goldschlager� �Synchronous parallel computation�� Technical Report No� 

��
Department of Computer Science� University of Toronto� December 
����

�

� L� M� Goldschlager� R� A� Shaw and J� Staples� �The maximum �ow problem is log
space complete for P�� Theoretical Computer Science �� �
���� 
���


�

�
�� D� Helmbold and E� Mayr� �Fast scheduling problems on parallel computers�� Report
No� STAN�CS����
���� Computer Science Department� Stanford University� 
����

�
�� R� M� Karp and V� Ramachandran� �Parallel algorithms for shared memory ma�
chines�� in� Handbook of Theoretical Computer Science� J� van Leeuwen� ed�� North�

Holland� 
���� to appear�
�
�� L� G� Khachiyan� �A polynomial algorithm in linear programming�� Soviet Math�

Dokl� �� �
���� 
�
�
���

�
�� N� Megiddo� �Towards a genuinely polynomial algorithm for linear programming��
SIAM Journal on Computing �� �
���� ��������

�
�� N� Megiddo� �Applying parallel computation algorithms in the design of serial algo�
rithms�� J� Assoc� Comput� Mach� 	� �
���� ��������

�
�� C� G� Nelson� An nO�logn� algorithm for the two two�variable�per�constraint linear
programming satis�ability problem�� Report No� STAN�CS�������� Department of
Computer Science� Stanford University� November 
����

�
�� N� Robertson and P� D� Seymour� �Graph width and well�quasi�ordering� a survey��

Progress in Graph Theory� Academic Press Canada� 
���� pp� ��������
�
�� R� Shostak� �Deciding linear inequalities by computing loop residues�� J� Assoc�

Comput� Mach� �� �
��
� ��������


�



���� L� Stockmeyer and U� Vishkin� �Simulation of parallel random access machines by
circuits�� SIAM J� Comput� �	 �
���� ��������


�


