Linear Programming with Two Variables per Inequality in
Poly-Log Time

George S. Lueker* Nimrod Megiddo! Vijaya Ramachandran*

Abstract. The parallel time complexity of the linear programming prob-
lem with at most two variables per inequality is discussed. Let n and m denote
the number of variables and the number of inequalities, respectively, in a linear
programming problem. We describe an O((logm + log? n) log® n) time parallel al-
gorithm under the concurrent-read-exclusive-write PRAM model for deciding fea-
sibility. It requires mn®1°8m) processors in the worst case, though we do not know
whether this bound is tight. When the problem is feasible a solution can be com-
puted within the same complexity. Moreover, linear programming problems with
two nonzero coefficients in the objective function can be solved in poly-log time
on a similar number of processors. Consequently, all these problems can be solved
sequentially with only O((log m + log®n)*log® n) space. It is also shown that if the
underlying graph has bounded tree-width and an underlying tree is given then the
problem is in the class NC.

1. Introduction

Dobkin, Lipton and Reiss [4] first showed that the general linear programming problem
was (log-space) hard for P. Combined with Khachiyan’s result [10] that the problem is
in P, this establishes that the problem is P-complete (that is, log-space complete for P).
A popular specialization of the general linear programming problem is the problem of
solving linear inequalities with at most two variables per inequality (see [11] and the
references thereof). It is shown in [11] that a system of m linear inequalities in n vari-
ables (but at most two nonzero coefficients per inequality) can be solved in O(mn?logn)
arithmetic operations and comparisons over any ordered field. It is not known whether
the general problem (even only over the rationals) can be solved in less than p(m,n)

*Department of Information and Computer Science, University of California at Irvine, Irvine, CA
92717. Supported by National Science Foundation Grant DCR-8509667.

TIBM Research, Almaden Research Center, 650 Harry Road, San Jose, CA 95120 and School of
Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

{Coordinated Science Laboratory, University of Illinois at Urbana-Champaign 1101 West Springfield,
Urbana, IL 61801. Supported by NSF under Grant ECS-8404866, by Joint Services Electronics Program
under Grant N00014-84-CO149 and by an IBM Faculty Development award.

operations, for any polynomial p. Throughout the paper we assume that the space to
store numbers and the time for arithmetic operations is O(1). Since each expression
we compute can be written as an expression tree of height O(logn) in the input values,
the length of numbers only increases by a polynomial factor during the execution of the
algorithm, so this assumption does not alter the statements of our results by more than
a polynomial factor for the number of processors, or more than a poly-log factor for the
time.

In this paper we are interested in the parallel computational complexity of the two
variables per inequality problem. We first mention some related results which, we hope,
shed some light on the parallel complexity of the problem.

Proposition 1.1. The problem of finding the minimum value of a general linear function
subject to linear inequalities with at most two variables per inequality is P-complete.

Proof: The proof follows from the result that the problem of finding the value of
the maximum flow through a capacitated network is P-complete [7]. More specifically,
every maximum flow problem can be reduced [5] to a transportation problem, that is,
a problem of the form

Minimize Zcijxij
]
subject to szj < qg;
J
Zl‘ij Z b]‘
The dual of the latter has only two variables per inequality. g

In fact, there exist much simpler but yet P-complete linear programming problems
with a general objective function and only two variables per inequality. For example,
consider the following recursive formula

Tpp1 = max(agry + Bk, YVexk + 0k)

where oy, Bk, vx and 65 (k = 1,...,n) are given numbers. Given any value of x1, we want
to determine the resulting value of z,. Let us call this the PROPAGATION problem.

The propagation problem can be solved as the following linear programming problem:
Minimize Z Mz,
subjectto xry1 > agprr + B
Thy1 2 VeTk + Ok

where M is sufficiently large.

Proposition 1.2. PROPAGATION is P-complete.

Proof: The proof follows from a result by Helmbold and Mayr [8] that the 2-processor

list scheduling problem is P-complete. The latter amounts to a special case of PROP-
AGATION: vy = |wp—y1 — T| (k = 1,---,n), where Ty,---,T, are given integers and
o = 0. 1

Interestingly, the subproblem of PROPAGATION where all the a;’s and ~;’s are

nonnegative is in NC. This follows from more general results we prove in this paper.

We discuss three different problems

(i) Deciding feasibility. Here we only need to recognize whether there exists a
solution to a given set of linear inequalities with at most two variables per inequality.

(ii) Solving inequalities. Here we require that if the system is feasible then some
solution will be computed.

(iii) Optimizing a linear function with at most two nonzero coefficients. Asin
the previous case, one has to distinguish here between the problem of computing
the optimal value of the function and the problem of computing optimal values of
the variables.

Deciding feasibility is the core of our algorithm. This is accomplished by computing
the projections of the set of feasible solutions on the individual coordinate axes. Thus, we
will compute for each variable @ an interval [zlow, xhigh], —co < zlow < zhigh < oo,
(possibly empty) so that for every z’ € [xlow, xhigh] there is a solution to the system
of inequalities with @ = a’. This part of the algorithm suffices of course for determining
whether a given system of linear inequalities (with at most two variables per inequality)
has a solution. We shall later discuss the problem of finding a feasible solution given the
(nonempty) projections on the axes. Finally, we show how to optimize a linear function
with at most two nonzero coefficients subject to such systems of inequalities.

2. Preliminaries

Two characterizations of feasibility of linear inequalities with at most two variables per
inequality were given by Nelson [13] and Shostak [15]. Our algorithm is essentially a
parallelization of the algorithm in Nelson [13], but our exposition will also make use of
the characterization of Shostak [15] and further results by Aspvall and Shiloach [1] which
we now describe. Given some bounds on a variable x and an inequality az + By < v
(where o and 3 are nonzero), some bound on y can obviously be derived, depending on
the signs of a and 3. If bounds on y were available before, we keep the tightest available.
Let us call the routine that updates such bounds FORWARD (see [11]). It is convenient

to discuss the problem using graph-theoretic terminology. Thus, we identify variables
with vertices, and inequalities with edges of a graph, which we call the constraints graph.
This graph may have multiple edges and loops. The routine FORWARD can be applied
along paths of the graph, using bounds on the vertex at one end of the path for updating
bounds on the vertex at the other end. Similarly, if we apply FORWARD around a cycle,
starting and ending at some vertex x (using @ as an indeterminate), then we may obtain
some bounds on x, possibly thereby proving infeasibility.

Suppose we apply FORWARD along all simple paths and around all simple cycles.
This procedure may discover that the system is infeasible, but in any case it computes
upper and lower bounds on different variables which are implied by the system. By
adding all these bounds to the system as explicit inequalities, we obtain the “closure” of
the system.

Shostak’s theorem states that the system is feasible if and only if by applying the
same procedure to the closure (that is, applying FORWARD along all simple paths and
cycles) no infeasibility is detected.

For parallel computation we need to consider, as in [13], the implied bounds on one
variable as functions of the values assigned to another variable. A more precise statement
is given in the following proposition:

Proposition 2.1. Let L denote a simple path from x to y, thatl is, a set of inequalities
@ + Bigrtizr < v, (1 =0,1,--- k — 1), with nonzero coefficients, where x = x¢ and
y = x1, and the variables are pairwise distinct. Let P(L) C R denote the set of
solutions to the system L of inequalities. Let P, (L) denote the projection of P(L) on
the subspace R™ of x and y. Under these conditions,

(i) if ;i <0 fori=1,--- k—1, then a single inequality ax + By < v is implied by
this path, that is, P.,(L) is a half-plane.

(il) of k > 2 and «;8; > 0 for at least one 1 (1 <@ < k—1), then Py, (L) equals the
entire plane R™Y.

Proof: The proof goes by induction on k. The case k = 1 is trivial. The inductive
step is essentially the same as the case & = 2 which is straightforward.

3. Operations on polygons

The algorithm of Nelson [13] made use of two operations on polygons, namely intersection
and composition. In this section we describe the role played by these polygons and
operations, and indicate how we do them efficiently in parallel.

Given a general system S of inequalities (with at most two variables per inequality),
we would like to compute the projection P,,(.S) of the set of solutions P(S) on a two-
dimensional subspace R™ corresponding to any two variables x,y. Obviously, P,,(5) is
a two-dimensional polyhedron, that is, an intersection of a finite number of half-planes.
We call these objects polygons even though they may sometimes be unbounded. These
polygons will be computed by considering subsystems of S corresponding to paths of
some bounded length.

Suppose S consists of m inequalities in n variables. For any k, 2 < k£ < n, and any
two variables x,y, let Qiy denote a polygon as follows. Suppose we set x to some value
and then repeatedly update bounds on variables along paths (not necessarily simple) of
length at most &, until bounds on y are derived. Thus for each x we obtain a certain
interval (possibly empty) of feasible values of y. This mapping of x to intervals of y
can naturally be represented by a convex polygonal region in the R*Y plane, which we
denote by Qiy . In particular, we allow y = z, in which case the polygon Q* represents
tightest bounds obtained on x, as a function of the value of x that is sent around a cycle
of length at most k. We compute only polygons of the form Qily (¢ =0,1,---,logn).

This is carried out in O(log n) parallel steps, where a single step amounts to computing

2k
zy?

all the polygons)27, given all the polygons Qiy .

The algorithm uses two basic operations on convex polygons, namely, intersection
and functional composition. We now describe these two operations. We represent convex
polygons by at most two relations L(x) <y < H(x), where L(x) and H(x) are, respec-
tively, convex and concave piecewise linear functions. For simplicity we first discuss the
basic operations as applied to piecewise linear convex functions rather than polygons.
Thus, we first consider functions of the form y = f(z) = max;<;<n{a;z + 5;}. Further-
more, let us assume that o; < «; for ¢+ < j, and f coincides with each linear function
y = «o;x + [3; over some interval of positive length.

Consider first the intersection problem. Given two functions y = fi(z) and y = fa(x)
in the form described above, with N; and N; linear pieces, respectively, we have to
compute the representation of y = g(x) = max{fi(x), fz(«)}. This problem can be
solved in O(log N) time with O(N) processors, where N = Ny + N,. Here we briefly
sketch the method. First note that we can convert between the representation discussed
above and a list of the breakpoints (i.e., coordinates of points of discontinuity in the
slope) of each function in constant time. Next, we merge the sets of breakpoints for f;
and f; according to their xz-coordinate, but keep track of whether each came from f; or
f2; call these respectively type 1 and type 2 breakpoints. Next, using standard pointer
doubling techniques, each type 1 (resp. type 2) point can determine the previous and
following type 2 (resp. type 1) point. Once this information is available, each point can
determine in O(1) time whether it lies below or on ¢(z). Finally, knowing the type of its
neighbors, and whether they lie below or lie on g(x), each point can determine in O(1)
time whether f; and f, intersect between it and its neighbor. Thus we can generate a

list of all breakpoints of ¢(z).

The second operation we need for our algorithm is functional composition. We first
demonstrate this operation in a special case. Suppose y = f(x) and z = ¢(y) are strictly
monotone piecewise linear functions, each represented by a sequence of linear functions
sorted by the slope. We would like to compute the representation of the composition z
= h(x) = ¢g(f(x)). Suppose f and ¢ consist of k& and [linear pieces, respectively, and let
N =k + 1. The problem can be solved by O(N) processors in O(log N) time as follows.
Let y1,---, 9,1 denote the breakpoints of ¢g. These can be found in constant time from
the representation of ¢g. Let ¢; = f~'(y;), ¢ = 1,---,1 — 1. The t;’s can be computed in
parallel in O(log k) time by a binary search. Let a1, -, 25_; denote the breakpoints of f.
Now, the z;’s and ¢;’s can be merged and then the linear pieces of h can be constructed
as compositions of linear functions.

Obviously, if both f and ¢ are increasing, or if both are decreasing, then h is increasing;
otherwise, h is decreasing. As for convexity or concavity properties, it is easy to verify
the following:

(i) If ¢ is monotone increasing then & is convex if both f and g are convex, and h is
concave if both f and ¢ are concave.

(ii) If g is monotone decreasing then h is convex if f is concave and ¢ is convex, and h
is concave if f is convex and ¢ is concave.

Suppose a polygon P, is represented by L. (z) < y < Hy.(x), where L, (x) and H,.(x)
are piecewise linear convex and concave functions, respectively. Without loss of gen-
erality, let us restrict the domains of the functions L,, and H,, to the set of a’s for
which Ly, (x) < Hy.(x). Obviously, such a representation gives us for every x the precise
range of values of y, [L,.(x), Hy:(2)], for which (x,y) solves the system of inequali-
ties corresponding to P,. Similarly, suppose P, is another polygon, represented by
L.,(y) <z < H.,(y) so for every y the range of values of z for which (y, z) solves the
system corresponding to P., is precisely [L.,(y), H.,(y)]. Consider both P, and P., as
systems of inequalities in all the three variables x,y, 2. The composition of P, with P,,
is a polygon P., = P., o P,;, represented in the form L..(x) < z < H.,(x) so that for
any @, [L..(x), H.z(2)] is precisely the range of values of z for which there is y so that
(x,y,2) solves both P,, and P,,. In other words, as noted in [13], P., is the projection
on R** of the intersection of the cylinders with bases P, and P,,.

We now sketch the construction of P,, with linearly many processors in the total
number of edges in P, and P,,. Let y; denote the smallest value of y (—oo <y < o0)
at which H,,(y) attains a maximum subject to L.,(y) < H.,(y). Note that H,,(y) is
increasing for y < y;, (in the restricted domain where L., (y) < H.,(y)) and nonincreasing

for y > yp, in that domain. The function H.,(x) maps x to the largest value of z such
that there is y in [Ly,(2), Hy(2)] for which L,.(y) < z < H.,(y). Thus, if « is such that

Hy.:(x) < yp then a least upper bound on z is obtained by setting y to H,.(x), that is,
H..(x) = H.,(H,:(2)). On the other hand, if = is such that L,.(x) > yp, then a least
upper bound on z is obtained by setting y to L,.(x), that is, H..(2) = H.,(Ly(2)).
Finally, if « is such that L,.(2) <y, < Hy(x), then H,.(¢) = H.,(yn). Analogously,
let y; denote the smallest value of y at which L.,(y) attains a minimum. Then L,,(y)
is decreasing for y < y; in the restricted domain and nondecreasing for y > y; in that
domain. This implies that if x is such that Hy.(z) < y;, then a largest lower bound on
z is obtained by setting y to H,.(x), that is, L.,(z) = L.,(Hy(x)), and if = is such that
Ly:(2) > y;, then a largest lower bound on z is obtained by setting y to L,,(x), that is,
L.o(2) = L,y(Ly:(2)). Finally, if Ly.(x) <y < Hy(2), then L..(2) = L., (1)

Obviously, there exist xj; and apy, such that Hy,(2) < yp for @ < xp; and @ > app, and
Hy:(x) > yp, for xp < @ < xpp. Analogously, there exist @y and @y, such that Ly.(x) > y
for @ < ay and @ > ay, and Ly (2) <y for 2y < < ay,. Note that the values of v, yp,
Thiy Tpp, €y and g, can be found in O(log V) time. It follows that the representations
of the functions H.,(x) and L.,(x) can be computed, each over at most three disjoint
intervals of x, as compositions of monotone functions. Let us consider the various types
of breakpoints of the functions H.,(x) and L..(x). Obviously, any such breakpoint is of
one of the following types: (i) a breakpoint of one of the functions Hy,(x) and L, (x),
(ii) an inverse image under one of these functions of a breakpoint of one of the functions
H.,(y) and L.,(y), (iii) one of the points @y, xpp, vy and . Each of the breakpoints
of the functions H,,, L., H., and L., contributes at most one breakpoint to each of the
functions H., and L.,. Thus, the total number of breakpoints of H,, and L., is at most

2N + 4.

4. Deciding feasibility

Using the basic operations of intersection and decomposition, we can now sketch the
algorithm for deciding feasibility of a given system of linear inequalities with at most
two variables per inequality. The algorithm runs in two phases which are essentially
two applications of the same procedure. During the first phase we construct for any
pair of variables (z,y) (including (x,)) a polygon Q.,(n). Assume for simplicity of
presentation that n is a power of 2. The polygon @),,(n) represents tightest bounds that
can be derived with respect to y in terms of a value of =, when such a value is sent along
any path of length at most n from x to y. The same polygon provides such bounds on x
in terms of y. We explain below how these polygons are computed. Polygons of the form
(Qzz(n) provide specific bounds xlow and xhigh on variables x. These can be derived by
minimizing and maximizing « subject to

Ly (2) <z < Hg(x),

where L, and H,, describe the lower and upper envelopes of the polygon, respectively.
To obtain xlow and xhigh, suppose X and x are different names of the same variable. The
bounds are derived by intersecting the polygon P.x with line X = z (see [11]). The values
of xlow and xhigh are then added to the system and the process is repeated. It follows
from results in [1] that after the second application of this procedure the projections of
the feasible set on all the axes R” are readily available.

Let the total number of edges in all polygons constructed during the algorithm be
E. Asin the sequential algorithm of [13], the polygons Q,,(n) are computed in O(log n)

stages, and we have £ = mn©Uosn)

. For each pair (z,y) the polygon Q.,(2°%!) is com-
puted by taking the intersection, over all possible z, of the compositions @,.(2%)0@).,(2°).
Intersection of n polygons can be computed by n parallel teams of processors in O(log n)
steps, where in each step each team is computing the intersection of two polygons. It is
convenient to think here of a model of computation where the machine does not have to
allocate all the processors in advance; it rather invokes processors as they are needed, just
like a Turing machine using unlimited tape space. This allows us to talk about the “worst-
case processor complexity” and discuss classes of problems, within which the worst case is
better than the overall worst case. Assuming we have O(F) processors, all pairwise inter-
sections and compositions take O(log F) time. It follows that the entire procedure takes

O(log E log® n) time. Thus, the worst-case running time is O((logm + log® n)log® n).

It is interesting to consider the space complexity implied by our result. We have just
established that we can determine feasibility in 7" = O((logm + log® n)log® n) parallel

time using P = m?2n©Uosn)

processors with a concurrent read exclusive write parallel
RAM. Using standard simulation relations between parallel models of computation and
between parallel time and sequential space [2; 9; 16], this implies that feasibility can be
determined by an O((logm + log®n)?log®n) space-bounded read deterministic Turing

machine.

5. Computing a feasible solution

We now consider the problem of computing a feasible solution, given the projections of
the (nonempty) feasible domain P on the individual axes. Thus, let [2,%] (00 < 2 <
T < 00) denote the set of values of variable @ that can be completed into a solution of
the entire system S. If all the projections are finite intervals then a feasible solution is
readily available:

Proposition 5.1. If for every x both x and T are finite, then a feasible solution is
obtained by setting each variable x to the arithmetic mean %(g—l—).

Proof: Suppose, to the contrary, that the vector of the arithmetic means %(1 + 7)
is not feasible. Then there is an inequality ax 4+ Sy < v which is violated. In other

words,
1 1 _
gale+a)+ 58y +y) > 7.

Consider the rectangle [z, z] x [y, y]. By definition, each edge of this rectangle contains
at least one point of the projection FP,, . However, we claim that this contradicts the
inequality

1 N :
gale+a)+ 58y +y) >,

since the center of the rectangle is in the convex hull of any set that intersects all four
edges of the rectangle. The proof of this claim is easy. Let L, R, T" and B denote
points (not necessarily distinct) that lie on the left, right, top and bottom edges of the
rectangle, respectively. Consider the straight line determined by the points L and R.
If the center lies on this line then we are done. Otherwise, if the center lies above the
line then it is in the triangle determined by B together with L with R, and if it lies
below this line then it is in the triangle determined by T' together with L and R. y

Interestingly, the Proposition 5.1 is true only if there are at most two variables per
inequality.

The unbounded case is handled as follows. We introduce to the system an additional
variable ¢ and the 2n inequalities z; < &, x; > —€ (j = 1,---,n). We find the projection
of the augmented problem on the space of £. In other words, we compute an interval
I = [Elow, Ehigh] (—oo < Elow < Ehigh < o), such that for every £ € [there exist
values for zq,---,x, which solve the augmented problem. By setting £ to any finite
number in [we obtain a system of linear inequalities (with at most two variables per
inequality) whose set of solutions is bounded. Any solution of the latter yields a solution
to the original problem simply by dropping £. Thus we have the following:

Proposition 5.2. Over any ordered field, if a system of linear inequalities has a nonempty

O(logn)

set of solutions, then a solution can be found in poly-log time with mn Processors

in the worst case.

6. Optimization problems

We have already shown that, with a general objective function, the problem with at most
two variables per inequality is P-complete. In this section we discuss the case where the
objective function also has at most two variables with nonzero coefficients.

Intuitively, the optimization problem can be solved by searching for the optimal value,
using the feasibility checking algorithm as an “oracle”. In the context of sequential com-
putation this yields a polynomial-time (but not strongly polynomial-time) algorithm.

In the context of parallel computation this approach does not provide a poly-log algo-
rithm since the number of queries during the search is linear in the length of the binary
representation of the input.

We can use here a technique presented in [12] to obtain a poly-log algorithm for
finding optimal solutions over any ordered field. The idea is roughly as follows (see [12]
for more detail). Suppose the problem is to minimize the function

fley, -, 2,) = ey + ey

subject to a system S of linear inequalities in x4, ---, 2z, with at most two variables per
inequality. Consider the system S’ of inequalities, which is obtained by adding to
an inequality cixy + coxg < A, where X is a parameter. We need to find the smallest
value of A for which S’ is feasible. Denote this optimal value by A*. We can run our
parallel algorithm for deciding feasibility on 57, handling A as an indeterminate. Thus the
“program variables” will be functions of A rather than field elements. Throughout the
execution of the algorithm we maintain an interval of values of A, guaranteed to contain
A*, over which the current program variables are all linear functions of A. Comparisons
between two functions of A have to be resolved according to the function values at *,
which is itself not known. However, during each step of the algorithm, each processor that
is unable to perform the comparison (for which it is responsible), simply reports the value
of A which is critical for that comparison. That is, a value X’ such that the comparison
between the two functions can be resolved by comparing A and A*. The comparison
between A and A* can be carried out by setting A to A and checking feasibility of the
system. Let p denote the number of processors used by the feasibility checking algorithm.
For the parametric algorithm we can either use p? processors, in which case all the critical
values of A can be tested in parallel, or only p processors and run a binary search over
the set of critical values. In either case we obtain a poly-log algorithm with mn©(osn)
processors for computing A* over any ordered field.

Once X* is known, we can solve the system S" with A = A*.

7. NC solutions to systems of bounded tree-width

Robertson and Seymour [14] introduced the notion of the tree-width of a graph. This
notion lends itself via the constraints graph to systems of linear inequalities with at most
two variables per inequality.

Definition 7.1. A connected graph G is said to have tree-width less than or equal to & if
there is a family V.= {V}, -+, V;} of sets V; of vertices of G with the following properties:

(i) Each V; contains at most k + 1 vertices of G.

10

(ii) Every edge of (G has both its endpoints lying in at least one of the V;’s.
(iii) The intersection graph T = (V,E), where (V;,V;) € E if and only if V; NV, #£ 0, is

a tree.

It is apparent from the work of Robertson and Seymour that the problem of deciding
whether a given graph has tree-width less than or equal to k (and, moreover, constructing
a suitable tree T) is difficult. We assume the graph is given together with such a tree
and develop an algorithm that relies on the tree. Note that a tree with at most n nodes
suffices. It will follow that if the tree-width is bounded then the number of edges remains
polynomial in m and n during the execution of the special algorithm.

For our purpose here we may assume, without loss of generality, that our graphs are
connected and have no multiple edges, that is, each pair of variables participates in at
most one inequality. Obviously, any system is reduced to this form if we replace each
inequality ax + Sy <~ by a pair of inequalities: ar — 2z < 0 and z+ Sy < v, where z is a
new variable. Also, for simplicity of presentation, assume all the sets V; are (k+1)-cliques
in (; this assumption is also made without loss of generality since redundant inequalities
can always be added to the system.

Proposition 7.2. Suppose U, V and W are nodes of T so that V lies on the path
connecting U and W. Let uw € U and w € W be vertices of G. Then on any path in G
connecting u and w there is at least one vertex v € V.

Proof: Consider any such path u = vy,---,v, = w. Forevery¢,: =1,---,r—1, there
is a set V; € T such that both v; and v;y are in V;. By definition (V;, V;41) is an arc
in T. Thus, V4,---,V,_1 is a path in T. It follows that one of the V;’s equals V. This

implies that one of the v;’s isin V.

Given the underlying tree T, we can decompose the graph (' in an efficient way. The
decomposition is based on the centroid which is usually useful in the design of parallel
algorithms (see [3]) The centroid of a tree 1" with N nodes is a node ¢ so that there
exist two subtrees T, T, rooted at ¢ (and also ¢ is the only common node), each with no
more than %N + 1 nodes, whose union is T'. The centroid decomposition of a tree is the
iterated partitioning of a tree into two subtrees rooted at the centroid. Obviously, the
tree decomposition is obtained in O(log N) iterations, and moreover, it can be computed
in poly-log time with a polynomial number of processors [3].

In view of Proposition 7.2 the centroid decomposition of T induces a decomposition
of GG as follows. At the first level of the decomposition we have a set C' of k41 vertices of
(G and two induced subgraphs (1, (G5, whose vertex sets intersect at (' and cover the all
the vertices of (. Moreover, every edge of G in contained in one of these two graphs. The
decomposition is iterated until all the subgraphs consist of not more than k + 1 vertices.
It follows that this decomposition has only O(logn) levels.

11

Given the decomposition of G, we produce polygons @, () as follows. The polygon
(s () represents the tightest bounds that can be obtained on y in terms of x, or vice
versa, by updating bounds along paths in some class including all the simple paths
connecting = to y (or cycles if @ and y are the same variable). The paths covered are not
necessarily all the paths of length n as in the original algorithm. Let Gy, Gy and C' be as
explained above. We state the algorithm recursively. Thus, assume we have computed
polygons (., (G;) for all pairs of vertices x,y € G; (v = 1,2). In particular, if 2,y € C
then we have for them two polygons Q.,(G1) and Q. (G2).

The recursive step is performed as follows. Let = and y be any two vertices of G for
which we compute Q,,(G). For simplicity of notation assume without loss of generality
that * € G4. Any simple path from = to y can be represented as a union of paths
7(z0,21), 7(21,22), -+, W(21-1, 21) Where zg = @, zy =y and z, € C for e = 1,---,[— 1.
Moreover, paths of the form 7 (zg;, z2,41) stay entirely within Gy while paths of the form
7(29i-1, 22:) stay entirely within GG3. Thus, to cover all simple paths connecting = and y
in (G, it suffices to intersect all the polygons obtained by compositions of the form

Ql’zd(Gl) o QZ1Z2(G2) o QZ2Z3(G1) 00 Qzl_ﬂ/(Gi)

(where y € (), so that the z;’s (1 < j <1 — 1) are pairwise distinct points in C'. The
number of different choices of the z;’s implies that for each pair z,y, the number of
polygons intersected this way is bounded by (k!)*. For each pair we compose at most
k + 2 pieces. This may multiply the number of breakpoints by at most O(k), since
composition of k polygons can be computed in O(log k) compositions of two polygons
(where the number of breakpoints is at most approximately doubled). Since the entire
process runs in O(logn) steps, and there are m inequalities in the beginning, it follows

. . i\ O log) .
that the number of edges in each of the generated polygons is m (k(k’)) . This is

the same as mn?® where g(k) = O(k?log k), and hence polynomial in m and n for any
fixed k. The running time on a suitable number of processors is O(log” nlogm) with a
coefficient that depends on k.

Acknowledgment. This work was done while the authors were at Mathematical
Sciences Research Institute, Berkeley, California.

References

[1] B. Aspvall and Y. Shiloach, “A polynomial time algorithm fro solving systems of linear
inequalities with two variables per inequality”, STAM J. Comput. 9 (1980) 827-845.

[2] A. Borodin, “On relating time and space to size and depth” SIAM J. Comput. 6
(1977) 733-744.

12

[3] R. P. Brent, “The parallel evaluation of expressions”, J. Assoc. Comput. Mach. 21
(1974) 210-208.

[4] D. Dobkin, R. J. Lipton and S. Reiss, “Linear programming is log space hard for P”,
Information Processing Letters 8 (1979) 96-97.

[5] L. R. Ford, Jr., and R. D. Fulkerson, Flows in networks, Princeton University Press,
Princeton, NJ, 1962.

[6] L. M. Goldschlager, “Synchronous parallel computation”, Technical Report No.114,
Department of Computer Science, University of Toronto, December 1977.

[7] L. M. Goldschlager, R. A. Shaw and J. Staples, “The maximum flow problem is log
space complete for P” Theoretical Computer Science 21 (1982) 105-111.

[8] D. Helmbold and E. Mayr, “Fast scheduling problems on parallel computers”, Report
No. STAN-CS5-84-1025, Computer Science Department, Stanford University, 1984.

9] R. M. Karp and V. Ramachandran, “Parallel algorithms for shared memory ma-
chines”, in: Handbook of Theoretical Computer Science, J. van Leeuwen, ed., North-
Holland, 1988, to appear.

[10] L. G. Khachiyan, “A polynomial algorithm in linear programming”, Soviet Math.
Dokl. 20 (1979) 191-194.

[11] N. Megiddo, “Towards a genuinely polynomial algorithm for linear programming”,
SIAM Journal on Computing 12 (1983) 347-353.

[12] N. Megiddo, “Applying parallel computation algorithms in the design of serial algo-
rithms”, J. Assoc. Comput. Mach. bf 30 (1983) 337-341.

[13] C. G. Nelson, An n°0°8") algorithm for the two two-variable-per-constraint linear
programming satisfiability problem”, Report No. STAN-CS-76-689, Department of
Computer Science, Stanford University, November 1978.

[14] N. Robertson and P. D. Seymour, “Graph width and well-quasi-ordering: a survey”.

[15] R. Shostak, “Deciding linear inequalities by computing loop residues”, J. Assoc.
Comput. Mach. 28 (1981) 769-779.

[16] L. Stockmeyer and U. Vishkin, “Simulation of parallel random access machines by

circuits”, SIAM J. Comput. 13 (1984) 409-422.

13

