
Linear Programming with Two Variables per Inequality in

Poly�Log Time

George S� Lueker� Nimrod Megiddoy Vijaya Ramachandranz

Abstract� The parallel time complexity of the linear programming prob�
lem with at most two variables per inequality is discussed� Let n and m denote
the number of variables and the number of inequalities� respectively� in a linear
programming problem� We describe an O��logm� log� n� log� n� time parallel al�
gorithm under the concurrent�read�exclusive�write PRAM model for deciding fea�
sibility� It requires mnO�logn� processors in the worst case� though we do not know
whether this bound is tight� When the problem is feasible a solution can be com�
puted within the same complexity� Moreover� linear programming problems with
two nonzero coe�cients in the objective function can be solved in poly�log time
on a similar number of processors� Consequently� all these problems can be solved
sequentially with only O��logm� log�n�� log� n� space� It is also shown that if the
underlying graph has bounded tree�width and an underlying tree is given then the
problem is in the class NC�

�� Introduction

Dobkin� Lipton and Reiss ��� �rst showed that the general linear programming problem
was �log�space� hard for P� Combined with Khachiyan	s result �
�� that the problem is
in P� this establishes that the problem is P�complete �that is� log�space complete for P��

A popular specialization of the general linear programming problem is the problem of
solving linear inequalities with at most two variables per inequality �see �

� and the
references thereof�� It is shown in �

� that a system of m linear inequalities in n vari�
ables �but at most two nonzero coe�cients per inequality� can be solved in O�mn� log n�

arithmetic operations and comparisons over any ordered �eld� It is not known whether
the general problem �even only over the rationals� can be solved in less than p�m�n�

�Department of Information and Computer Science� University of California at Irvine� Irvine� CA

������ Supported by National Science Foundation Grant DCR���	�

��
yIBM Research� Almaden Research Center� 
�	 Harry Road� San Jose� CA ����	 and School of

Mathematical Sciences� Tel Aviv University� Tel Aviv� Israel
zCoordinated Science Laboratory� University of Illinois at Urbana�Champaign ��	� West Spring�eld�

Urbana� IL 
��	�� Supported by NSF under Grant ECS���	��

� by Joint Services Electronics Program

under Grant N			������CO��� and by an IBM Faculty Development award�






operations� for any polynomial p� Throughout the paper we assume that the space to
store numbers and the time for arithmetic operations is O�
�� Since each expression
we compute can be written as an expression tree of height O�log n� in the input values�
the length of numbers only increases by a polynomial factor during the execution of the

algorithm� so this assumption does not alter the statements of our results by more than
a polynomial factor for the number of processors� or more than a poly�log factor for the
time�

In this paper we are interested in the parallel computational complexity of the two
variables per inequality problem� We �rst mention some related results which� we hope�
shed some light on the parallel complexity of the problem�

Proposition ���� The problem of �nding the minimum value of a general linear function
subject to linear inequalities with at most two variables per inequality is P�complete�

Proof� The proof follows from the result that the problem of �nding the value of
the maximum 
ow through a capacitated network is P�complete ���� More speci�cally�
every maximum 
ow problem can be reduced ��� to a transportation problem� that is�

a problem of the form
Minimize

X
ij

cijxij

subject to
X
j

xij � ai

X
i

xij � bj

xij � � �

The dual of the latter has only two variables per inequality�

In fact� there exist much simpler but yet P�complete linear programming problems
with a general objective function and only two variables per inequality� For example�
consider the following recursive formula

xk�� � max��kxk � �k � �kxk � �k�

where �k� �k� �k and �k �k � 
� ���� n� are given numbers� Given any value of x�� we want
to determine the resulting value of xn� Let us call this the PROPAGATION problem�
The propagation problem can be solved as the following linear programming problem�

Minimize
X
i

M ixi

subjectto xk�� � �kxk � �k

xk�� � �kxk � �k �

where M is su�ciently large�

�



Proposition ���� PROPAGATION is P�complete�

Proof� The proof follows from a result by Helmbold and Mayr ��� that the ��processor
list scheduling problem is P�complete� The latter amounts to a special case of PROP�

AGATION� xk � jxk�� � Tkj �k � 
� � � � � n�� where T�� � � � � Tn are given integers and
x� � ��

Interestingly� the subproblem of PROPAGATION where all the �k	s and �k	s are
nonnegative is in NC� This follows from more general results we prove in this paper�

We discuss three di�erent problems

�i� Deciding feasibility� Here we only need to recognize whether there exists a
solution to a given set of linear inequalities with at most two variables per inequality�

�ii� Solving inequalities� Here we require that if the system is feasible then some

solution will be computed�
�iii� Optimizing a linear function with at most two nonzero coe�cients� As in

the previous case� one has to distinguish here between the problem of computing
the optimal value of the function and the problem of computing optimal values of

the variables�

Deciding feasibility is the core of our algorithm� This is accomplished by computing

the projections of the set of feasible solutions on the individual coordinate axes� Thus� we
will compute for each variable x an interval �xlow� xhigh�� �� � xlow � xhigh � ��
�possibly empty� so that for every x� � �xlow� xhigh� there is a solution to the system
of inequalities with x � x�� This part of the algorithm su�ces of course for determining

whether a given system of linear inequalities �with at most two variables per inequality�
has a solution� We shall later discuss the problem of �nding a feasible solution given the
�nonempty� projections on the axes� Finally� we show how to optimize a linear function
with at most two nonzero coe�cients subject to such systems of inequalities�

�� Preliminaries

Two characterizations of feasibility of linear inequalities with at most two variables per
inequality were given by Nelson �
�� and Shostak �
��� Our algorithm is essentially a

parallelization of the algorithm in Nelson �
��� but our exposition will also make use of
the characterization of Shostak �
�� and further results by Aspvall and Shiloach �
� which
we now describe� Given some bounds on a variable x and an inequality �x � �y � �

�where � and � are nonzero�� some bound on y can obviously be derived� depending on

the signs of � and �� If bounds on y were available before� we keep the tightest available�
Let us call the routine that updates such bounds FORWARD �see �

��� It is convenient

�



to discuss the problem using graph�theoretic terminology� Thus� we identify variables
with vertices� and inequalities with edges of a graph� which we call the constraints graph�
This graph may have multiple edges and loops� The routine FORWARD can be applied
along paths of the graph� using bounds on the vertex at one end of the path for updating

bounds on the vertex at the other end� Similarly� if we apply FORWARD around a cycle�
starting and ending at some vertex x �using x as an indeterminate�� then we may obtain
some bounds on x� possibly thereby proving infeasibility�

Suppose we apply FORWARD along all simple paths and around all simple cycles�

This procedure may discover that the system is infeasible� but in any case it computes
upper and lower bounds on di�erent variables which are implied by the system� By
adding all these bounds to the system as explicit inequalities� we obtain the �closure� of
the system�

Shostak	s theorem states that the system is feasible if and only if by applying the
same procedure to the closure �that is� applying FORWARD along all simple paths and
cycles� no infeasibility is detected�

For parallel computation we need to consider� as in �
��� the implied bounds on one
variable as functions of the values assigned to another variable� A more precise statement

is given in the following proposition�

Proposition ���� Let L denote a simple path from x to y� that is� a set of inequalities

�ixi � �i��xi�� � �i� �i � �� 
� � � � � k � 
�� with nonzero coe�cients� where x � x� and
y � xk� and the variables are pairwise distinct� Let P �L� � Rk�� denote the set of
solutions to the system L of inequalities� Let Pxy�L� denote the projection of P �L� on

the subspace Rxy of x and y� Under these conditions�

�i� if �i�i � � for i � 
� � � � � k � 
� then a single inequality �x � �y � � is implied by
this path� that is� Pxy�L� is a half�plane�

�ii� if k � � and �i�i � � for at least one i �
 � i � k � 
�� then Pxy�L� equals the
entire plane Rxy�

Proof� The proof goes by induction on k� The case k � 
 is trivial� The inductive
step is essentially the same as the case k � � which is straightforward�

�� Operations on polygons

The algorithm of Nelson �
�� made use of two operations on polygons� namely intersection
and composition� In this section we describe the role played by these polygons and
operations� and indicate how we do them e�ciently in parallel�

�



Given a general system S of inequalities �with at most two variables per inequality��
we would like to compute the projection Pxy�S� of the set of solutions P �S� on a two�
dimensional subspace Rxy corresponding to any two variables x� y� Obviously� Pxy�S� is
a two�dimensional polyhedron� that is� an intersection of a �nite number of half�planes�

We call these objects polygons even though they may sometimes be unbounded� These
polygons will be computed by considering subsystems of S corresponding to paths of
some bounded length�

Suppose S consists of m inequalities in n variables� For any k� � � k � n� and any

two variables x� y� let Qk
xy denote a polygon as follows� Suppose we set x to some value

and then repeatedly update bounds on variables along paths �not necessarily simple� of
length at most k� until bounds on y are derived� Thus for each x we obtain a certain
interval �possibly empty� of feasible values of y� This mapping of x to intervals of y

can naturally be represented by a convex polygonal region in the Rxy plane� which we
denote by Qk

xy � In particular� we allow y � x� in which case the polygon Qk
xx represents

tightest bounds obtained on x� as a function of the value of x that is sent around a cycle
of length at most k� We compute only polygons of the form Q�i

xy �i � �� 
� � � � � log n��

This is carried out in O�log n� parallel steps� where a single step amounts to computing
all the polygons Q�k

xy� given all the polygons Qk
xy �

The algorithm uses two basic operations on convex polygons� namely� intersection
and functional composition� We now describe these two operations� We represent convex

polygons by at most two relations L�x� � y � H�x�� where L�x� and H�x� are� respec�
tively� convex and concave piecewise linear functions� For simplicity we �rst discuss the
basic operations as applied to piecewise linear convex functions rather than polygons�
Thus� we �rst consider functions of the form y � f�x� � max��i�Nf�ix� �ig� Further�

more� let us assume that �i � �j for i � j� and f coincides with each linear function
y � �ix� �i over some interval of positive length�

Consider �rst the intersection problem� Given two functions y � f��x� and y � f��x�
in the form described above� with N� and N� linear pieces� respectively� we have to

compute the representation of y � g�x� � maxff��x�� f��x�g� This problem can be
solved in O�logN� time with O�N� processors� where N � N� � N�� Here we brie
y
sketch the method� First note that we can convert between the representation discussed
above and a list of the breakpoints �i�e�� coordinates of points of discontinuity in the

slope� of each function in constant time� Next� we merge the sets of breakpoints for f�
and f� according to their x�coordinate� but keep track of whether each came from f� or
f�� call these respectively type 
 and type � breakpoints� Next� using standard pointer

doubling techniques� each type 
 �resp� type �� point can determine the previous and
following type � �resp� type 
� point� Once this information is available� each point can
determine in O�
� time whether it lies below or on g�x�� Finally� knowing the type of its
neighbors� and whether they lie below or lie on g�x�� each point can determine in O�
�

time whether f� and f� intersect between it and its neighbor� Thus we can generate a

�



list of all breakpoints of g�x��

The second operation we need for our algorithm is functional composition� We �rst

demonstrate this operation in a special case� Suppose y � f�x� and z � g�y� are strictly
monotone piecewise linear functions� each represented by a sequence of linear functions
sorted by the slope� We would like to compute the representation of the composition z

� h�x� � g�f�x��� Suppose f and g consist of k and l linear pieces� respectively� and let

N � k � l� The problem can be solved by O�N� processors in O�logN� time as follows�
Let y�� � � � � yl�� denote the breakpoints of g� These can be found in constant time from
the representation of g� Let ti � f���yi�� i � 
� � � � � l � 
� The ti	s can be computed in

parallel in O�log k� time by a binary search� Let x�� � � � � xk�� denote the breakpoints of f �
Now� the xi	s and tj	s can be merged and then the linear pieces of h can be constructed
as compositions of linear functions�

Obviously� if both f and g are increasing� or if both are decreasing� then h is increasing�
otherwise� h is decreasing� As for convexity or concavity properties� it is easy to verify

the following�

�i� If g is monotone increasing then h is convex if both f and g are convex� and h is
concave if both f and g are concave�

�ii� If g is monotone decreasing then h is convex if f is concave and g is convex� and h

is concave if f is convex and g is concave�

Suppose a polygon Pyx is represented by Lyx�x� � y � Hyx�x�� where Lyx�x� and Hyx�x�
are piecewise linear convex and concave functions� respectively� Without loss of gen�
erality� let us restrict the domains of the functions Lyx and Hyx to the set of x	s for
which Lyx�x� � Hyx�x�� Obviously� such a representation gives us for every x the precise

range of values of y� �Lyx�x��Hyx�x��� for which �x� y� solves the system of inequali�
ties corresponding to Pyx� Similarly� suppose Pzy is another polygon� represented by
Lzy�y� � z � Hzy�y� so for every y the range of values of z for which �y� z� solves the
system corresponding to Pzy is precisely �Lzy�y��Hzy�y��� Consider both Pyx and Pzy as

systems of inequalities in all the three variables x� y� z� The composition of Pyx with Pzy

is a polygon Pzx � Pzy � Pyx� represented in the form Lzx�x� � z � Hzx�x� so that for
any x� �Lzx�x��Hzx�x�� is precisely the range of values of z for which there is y so that
�x� y� z� solves both Pyx and Pzy � In other words� as noted in �
��� Pzx is the projection

on Rxz of the intersection of the cylinders with bases Pyx and Pzy �

We now sketch the construction of Pzx with linearly many processors in the total
number of edges in Pyx and Pzy � Let yh denote the smallest value of y ��� � y � ��
at which Hzy�y� attains a maximum subject to Lzy�y� � Hzy�y�� Note that Hzy�y� is
increasing for y � yh �in the restricted domain where Lzy�y� � Hzy�y�� and nonincreasing

for y � yh in that domain� The function Hzx�x� maps x to the largest value of z such
that there is y in �Lyx�x��Hyx�x�� for which Lyz�y� � z � Hzy�y�� Thus� if x is such that

�



Hyx�x� � yh then a least upper bound on z is obtained by setting y to Hyx�x�� that is�
Hzx�x� � Hzy�Hyx�x��� On the other hand� if x is such that Lyx�x� � yh� then a least
upper bound on z is obtained by setting y to Lyx�x�� that is� Hzx�x� � Hzy�Lyx�x���
Finally� if x is such that Lyx�x� � yh � Hyx�x�� then Hzx�x� � Hzy�yh�� Analogously�

let yl denote the smallest value of y at which Lzy�y� attains a minimum� Then Lzy�y�
is decreasing for y � yl in the restricted domain and nondecreasing for y � yl in that
domain� This implies that if x is such that Hyx�x� � yl� then a largest lower bound on
z is obtained by setting y to Hyx�x�� that is� Lzx�z� � Lzy�Hyx�x��� and if x is such that

Lyx�x� � yl� then a largest lower bound on z is obtained by setting y to Lyx�x�� that is�
Lzx�x� � Lzy�Lyx�x��� Finally� if Lyx�x� � yl � Hyx�x�� then Lzx�x� � Lzy�yl��

Obviously� there exist xhl and xhh such that Hyx�x� � yh for x � xhl and x � xhh� and
Hyx�x� � yh for xhl � x � xhh� Analogously� there exist xll and xlh such that Lyx�x� � yl
for x � xll and x � xlh and Lyx�x� � yl for xll � x � xlh� Note that the values of yl� yh�
xhl� xhh� xll and xlh can be found in O�logN� time� It follows that the representations
of the functions Hzx�x� and Lzx�x� can be computed� each over at most three disjoint
intervals of x� as compositions of monotone functions� Let us consider the various types

of breakpoints of the functions Hzx�x� and Lzx�x�� Obviously� any such breakpoint is of
one of the following types� �i� a breakpoint of one of the functions Hyx�x� and Lyx�x��
�ii� an inverse image under one of these functions of a breakpoint of one of the functions
Hzy�y� and Lzy�y�� �iii� one of the points xhl� xhh� xll and xlh� Each of the breakpoints

of the functions Hyx� Lyx� Hzy and Lzy contributes at most one breakpoint to each of the
functions Hzx and Lzx� Thus� the total number of breakpoints of Hzx and Lzx is at most
�N � ��

�� Deciding feasibility

Using the basic operations of intersection and decomposition� we can now sketch the
algorithm for deciding feasibility of a given system of linear inequalities with at most

two variables per inequality� The algorithm runs in two phases which are essentially
two applications of the same procedure� During the �rst phase we construct for any
pair of variables �x� y� �including �x� x�� a polygon Qxy�n�� Assume for simplicity of
presentation that n is a power of �� The polygon Qxy�n� represents tightest bounds that

can be derived with respect to y in terms of a value of x� when such a value is sent along
any path of length at most n from x to y� The same polygon provides such bounds on x

in terms of y� We explain below how these polygons are computed� Polygons of the form
Qxx�n� provide speci�c bounds xlow and xhigh on variables x� These can be derived by

minimizing and maximizing x subject to

Lxx�x� � x � Hxx�x� �

�



where Lxx and Hxx describe the lower and upper envelopes of the polygon� respectively�
To obtain xlow and xhigh� suppose X and x are di�erent names of the same variable� The
bounds are derived by intersecting the polygon PxX with lineX � x �see �

��� The values
of xlow and xhigh are then added to the system and the process is repeated� It follows

from results in �
� that after the second application of this procedure the projections of
the feasible set on all the axes Rx are readily available�

Let the total number of edges in all polygons constructed during the algorithm be
E� As in the sequential algorithm of �
��� the polygons Qxy�n� are computed in O�log n�
stages� and we have E � mnO�logn�� For each pair �x� y� the polygon Qxy��s��� is com�

puted by taking the intersection� over all possible z� of the compositions Qxz��s��Qzy��s��
Intersection of n polygons can be computed by n parallel teams of processors in O�log n�
steps� where in each step each team is computing the intersection of two polygons� It is
convenient to think here of a model of computation where the machine does not have to

allocate all the processors in advance� it rather invokes processors as they are needed� just
like a Turing machine using unlimited tape space� This allows us to talk about the �worst�
case processor complexity� and discuss classes of problems� within which the worst case is
better than the overall worst case� Assuming we have O�E� processors� all pairwise inter�

sections and compositions take O�logE� time� It follows that the entire procedure takes
O�logE log� n� time� Thus� the worst�case running time is O��logm� log� n� log� n��

It is interesting to consider the space complexity implied by our result� We have just
established that we can determine feasibility in T � O��logm � log� n� log� n� parallel
time using P � m�nO�logn� processors with a concurrent read exclusive write parallel

RAM� Using standard simulation relations between parallel models of computation and
between parallel time and sequential space ��� �� 
��� this implies that feasibility can be
determined by an O��logm � log� n�� log� n� space�bounded read deterministic Turing

machine�

�� Computing a feasible solution

We now consider the problem of computing a feasible solution� given the projections of
the �nonempty� feasible domain P on the individual axes� Thus� let �x� �x� ��� � x �
�x � �� denote the set of values of variable x that can be completed into a solution of

the entire system S� If all the projections are �nite intervals then a feasible solution is
readily available�

Proposition ���� If for every x both x and �x are �nite� then a feasible solution is
obtained by setting each variable x to the arithmetic mean �

��x� �x��

Proof� Suppose� to the contrary� that the vector of the arithmetic means �
��x � �x�

is not feasible� Then there is an inequality �x � �y � � which is violated� In other

�



words�



�
��x� �x� �




�
��y � �y� � � �

Consider the rectangle �x� �x�� �y� �y�� By de�nition� each edge of this rectangle contains
at least one point of the projection Pxy � However� we claim that this contradicts the
inequality




�
��x� �x� �




�
��y � �y� � � �

since the center of the rectangle is in the convex hull of any set that intersects all four
edges of the rectangle� The proof of this claim is easy� Let L� R� T and B denote
points �not necessarily distinct� that lie on the left� right� top and bottom edges of the

rectangle� respectively� Consider the straight line determined by the points L and R�
If the center lies on this line then we are done� Otherwise� if the center lies above the
line then it is in the triangle determined by B together with L with R� and if it lies
below this line then it is in the triangle determined by T together with L and R�

Interestingly� the Proposition ��
 is true only if there are at most two variables per
inequality�

The unbounded case is handled as follows� We introduce to the system an additional
variable � and the �n inequalities xj � �� xj � �� �j � 
� � � � � n�� We �nd the projection
of the augmented problem on the space of �� In other words� we compute an interval
I � ��low� �high� ��� � �low � �high � ��� such that for every � � I there exist

values for x�� � � � � xn which solve the augmented problem� By setting � to any �nite
number in I we obtain a system of linear inequalities �with at most two variables per
inequality� whose set of solutions is bounded� Any solution of the latter yields a solution
to the original problem simply by dropping �� Thus we have the following�

Proposition ���� Over any ordered �eld� if a system of linear inequalities has a nonempty
set of solutions� then a solution can be found in poly�log time with mnO�logn� processors

in the worst case�

�� Optimization problems

We have already shown that� with a general objective function� the problem with at most

two variables per inequality is P�complete� In this section we discuss the case where the
objective function also has at most two variables with nonzero coe�cients�

Intuitively� the optimization problem can be solved by searching for the optimal value�
using the feasibility checking algorithm as an �oracle�� In the context of sequential com�

putation this yields a polynomial�time �but not strongly polynomial�time� algorithm�

�



In the context of parallel computation this approach does not provide a poly�log algo�
rithm since the number of queries during the search is linear in the length of the binary
representation of the input�

We can use here a technique presented in �
�� to obtain a poly�log algorithm for
�nding optimal solutions over any ordered �eld� The idea is roughly as follows �see �
��

for more detail�� Suppose the problem is to minimize the function

f�x�� � � � � xn� � c�x� � c�x�

subject to a system S of linear inequalities in x�� � � � � xn with at most two variables per
inequality� Consider the system S� of inequalities� which is obtained by adding to S

an inequality c�x� � c�x� � 	� where 	 is a parameter� We need to �nd the smallest

value of 	 for which S� is feasible� Denote this optimal value by 	�� We can run our
parallel algorithm for deciding feasibility on S�� handling 	 as an indeterminate� Thus the
�program variables� will be functions of 	 rather than �eld elements� Throughout the
execution of the algorithm we maintain an interval of values of 	� guaranteed to contain

	�� over which the current program variables are all linear functions of 	� Comparisons
between two functions of 	 have to be resolved according to the function values at 	��
which is itself not known� However� during each step of the algorithm� each processor that
is unable to perform the comparison �for which it is responsible�� simply reports the value

of 	 which is critical for that comparison� That is� a value 	� such that the comparison
between the two functions can be resolved by comparing 	� and 	�� The comparison
between 	� and 	� can be carried out by setting 	 to 	� and checking feasibility of the
system� Let p denote the number of processors used by the feasibility checking algorithm�

For the parametric algorithm we can either use p� processors� in which case all the critical
values of 	 can be tested in parallel� or only p processors and run a binary search over
the set of critical values� In either case we obtain a poly�log algorithm with mnO�logn�

processors for computing 	� over any ordered �eld�

Once 	� is known� we can solve the system S� with 	 � 	��

�� NC solutions to systems of bounded tree	width

Robertson and Seymour �
�� introduced the notion of the tree�width of a graph� This
notion lends itself via the constraints graph to systems of linear inequalities with at most

two variables per inequality�

De
nition ���� A connected graph G is said to have tree�width less than or equal to k if
there is a familyV � fV�� � � � � Vtg of sets Vi of vertices of G with the following properties�

�i� Each Vi contains at most k � 
 vertices of G�


�



�ii� Every edge of G has both its endpoints lying in at least one of the Vi	s�

�iii� The intersection graph T � �V�E�� where �Vi� Vj� � E if and only if Vi 	 Vj 
� �� is
a tree�

It is apparent from the work of Robertson and Seymour that the problem of deciding
whether a given graph has tree�width less than or equal to k �and� moreover� constructing

a suitable tree T� is di�cult� We assume the graph is given together with such a tree
and develop an algorithm that relies on the tree� Note that a tree with at most n nodes
su�ces� It will follow that if the tree�width is bounded then the number of edges remains
polynomial in m and n during the execution of the special algorithm�

For our purpose here we may assume� without loss of generality� that our graphs are
connected and have no multiple edges� that is� each pair of variables participates in at

most one inequality� Obviously� any system is reduced to this form if we replace each
inequality �x��y � � by a pair of inequalities� �x� z � � and z��y � �� where z is a
new variable� Also� for simplicity of presentation� assume all the sets Vi are �k�
��cliques
in G� this assumption is also made without loss of generality since redundant inequalities

can always be added to the system�

Proposition ���� Suppose U � V and W are nodes of T so that V lies on the path
connecting U and W � Let u � U and w � W be vertices of G� Then on any path in G

connecting u and w there is at least one vertex v � V �

Proof� Consider any such path u � v�� � � � � vr � w� For every i� i � 
� � � � � r� 
� there

is a set Vi � T such that both vi and vi�� are in Vi� By de�nition �Vi� Vi��� is an arc
in T� Thus� V�� � � � � Vi�� is a path in T� It follows that one of the Vi	s equals V � This
implies that one of the vi	s is in V �

Given the underlying tree T� we can decompose the graph G in an e�cient way� The
decomposition is based on the centroid which is usually useful in the design of parallel

algorithms �see ����� The centroid of a tree T with N nodes is a node c so that there
exist two subtrees T�� T� rooted at c �and also c is the only common node�� each with no
more than �

�N � 
 nodes� whose union is T � The centroid decomposition of a tree is the
iterated partitioning of a tree into two subtrees rooted at the centroid� Obviously� the

tree decomposition is obtained in O�logN� iterations� and moreover� it can be computed
in poly�log time with a polynomial number of processors ����

In view of Proposition ��� the centroid decomposition of T induces a decomposition
of G as follows� At the �rst level of the decomposition we have a set C of k�
 vertices of
G and two induced subgraphs G�� G�� whose vertex sets intersect at C and cover the all
the vertices of G� Moreover� every edge of G in contained in one of these two graphs� The

decomposition is iterated until all the subgraphs consist of not more than k� 
 vertices�
It follows that this decomposition has only O�log n� levels�







Given the decomposition of G� we produce polygons Qxy�G� as follows� The polygon
Qxy�G� represents the tightest bounds that can be obtained on y in terms of x� or vice
versa� by updating bounds along paths in some class including all the simple paths
connecting x to y �or cycles if x and y are the same variable�� The paths covered are not

necessarily all the paths of length n as in the original algorithm� Let G�� G� and C be as
explained above� We state the algorithm recursively� Thus� assume we have computed
polygons Qxy�Gi� for all pairs of vertices x� y � Gi �i � 
� ��� In particular� if x� y � C

then we have for them two polygons Qxy�G�� and Qxy�G���

The recursive step is performed as follows� Let x and y be any two vertices of G for

which we compute Qxy�G�� For simplicity of notation assume without loss of generality
that x � G�� Any simple path from x to y can be represented as a union of paths

�z�� z��� 
�z�� z��� � � � � 
�zl��� zl� where z� � x� zl � y and zi � C for i � 
� � � � � l � 
�
Moreover� paths of the form 
�z�i� z�i��� stay entirely within G� while paths of the form


�z�i��� z�i� stay entirely within G�� Thus� to cover all simple paths connecting x and y

in G� it su�ces to intersect all the polygons obtained by compositions of the form

Qxz��G�� �Qz�z��G�� �Qz�z��G�� � � � � �Qzl��y�Gi�

�where y � Gi�� so that the zj	s �
 � j � l � 
� are pairwise distinct points in C� The

number of di�erent choices of the zj	s implies that for each pair x� y� the number of
polygons intersected this way is bounded by �k��k� For each pair we compose at most
k � � pieces� This may multiply the number of breakpoints by at most O�k�� since

composition of k polygons can be computed in O�log k� compositions of two polygons
�where the number of breakpoints is at most approximately doubled�� Since the entire
process runs in O�log n� steps� and there are m inequalities in the beginning� it follows

that the number of edges in each of the generated polygons is m
�
k�k��k

�O�logn�
� This is

the same as mng�k� where g�k� � O�k� log k�� and hence polynomial in m and n for any

�xed k� The running time on a suitable number of processors is O�log� n logm� with a
coe�cient that depends on k�

Acknowledgment� This work was done while the authors were at Mathematical
Sciences Research Institute� Berkeley� California�

References

�
� B� Aspvall and Y� Shiloach� �A polynomial time algorithm fro solving systems of linear
inequalities with two variables per inequality�� SIAM J� Comput� � �
���� ��������

��� A� Borodin� �On relating time and space to size and depth� SIAM J� Comput� �
�
���� ��������


�



��� R� P� Brent� �The parallel evaluation of expressions�� J� Assoc� Comput� Mach� ��
�
���� �
������

��� D� Dobkin� R� J� Lipton and S� Reiss� �Linear programming is log space hard for P��
Information Processing Letters � �
���� ������

��� L� R� Ford� Jr�� and R� D� Fulkerson� Flows in networks� Princeton University Press�
Princeton� NJ� 
����

��� L� M� Goldschlager� �Synchronous parallel computation�� Technical Report No�

��
Department of Computer Science� University of Toronto� December 
����

��� L� M� Goldschlager� R� A� Shaw and J� Staples� �The maximum 
ow problem is log
space complete for P� Theoretical Computer Science �� �
���� 
���


�

��� D� Helmbold and E� Mayr� �Fast scheduling problems on parallel computers�� Report
No� STAN�CS����
���� Computer Science Department� Stanford University� 
����

��� R� M� Karp and V� Ramachandran� �Parallel algorithms for shared memory ma�
chines�� in� Handbook of Theoretical Computer Science� J� van Leeuwen� ed�� North�
Holland� 
���� to appear�

�
�� L� G� Khachiyan� �A polynomial algorithm in linear programming�� Soviet Math�
Dokl� �
 �
���� 
�
�
���

�

� N� Megiddo� �Towards a genuinely polynomial algorithm for linear programming��
SIAM Journal on Computing �� �
���� ��������

�
�� N� Megiddo� �Applying parallel computation algorithms in the design of serial algo�
rithms�� J� Assoc� Comput� Mach� bf �� �
���� ������
�

�
�� C� G� Nelson� An nO�logn� algorithm for the two two�variable�per�constraint linear
programming satis�ability problem�� Report No� STAN�CS�������� Department of

Computer Science� Stanford University� November 
����
�
�� N� Robertson and P� D� Seymour� �Graph width and well�quasi�ordering� a survey��
�
�� R� Shostak� �Deciding linear inequalities by computing loop residues�� J� Assoc�

Comput� Mach� �� �
��
� ��������

�
�� L� Stockmeyer and U� Vishkin� �Simulation of parallel random access machines by
circuits�� SIAM J� Comput� �� �
���� ��������


�


