CS 361A - Advanced Data Structures and Algorithms

Autumn Quarter, 2005

Homework #1 (Due: 10/19/05)

1. This question deals with the notion of perfect or near-perfect hash functions. We are interested
in hash function families H = {h: M — N}, where |M| = m and |N| = n.

(a) The family H is said to be perfect if for each S C M with |S| = n, there exists a hash
function h € H which is one-to-one when restricted to 5. Prove the best lower bound
that you can on the size of a perfect hash function family. For what range of values of
m can you find a perfect family H of size at most m?

(b) In a like manner, we say that h is b-perfect for S if it maps at most b elements of S onto
any particular element of N. Show that for all m > n there exists a log m-perfect hash
family of size at most m.

2. Recall the definition of a near-2-universal hash function family H = {h : M — N}. It has
the property that for any z, y € M, and a random h € H, the probability that h(z) = h(y)
is at most 2/n, unless of course z = y. Assume that m is a prime number and define the
function hi(z) = (kz (mod m)) (mod n) for each k € Z,,.

(a) Show that the family H = {hy | k¥ € Z,,} is near-2-universal.

(b) Prove a lower bound on the collision probability for this family of hash functions.

3. Recall the elementary data types STACK and QUEUE. You are given a black-box imple-
mentation of STACK which performs the PUSH or POP operations in O(1) worst-case time.
Show how you can implement the QUEUE data structure with two such STACK data struc-
tures such that the amortized cost of each QUEUE operation is O(1). Also, determine the
worst-case cost of each operation under your implementation.

4. We have seen that searching a sorted array takes logarithmic time. It is also easy to see

that any update (insert or delete) will take linear time in the worst-case. In this problem we
will develop a scheme for improving the update time by partitioning the array into sorted
sub-arrays.
Suppose that we are implementing a dynamic dictionary whose current size is n. Let the
binary representation of n be by_1bx_3...bg, where k = [log(n + 1)]. The idea is to have k
sorted arrays Ag, ..., Ap_1, where the length of A; is 2'. The n elements of the dictionary
are (arbitrarily) partitioned among the various arrays in such a way that: if b; = 0 then A; is
completely empty, and if b; = 1 then A; is completely full. (Notice that Zf;ol b;2" = n.)

(a) Describe how to perform a search on this data structure and analyze its worst-case cost.

(b) Describe how to insert an element into this data structure and analyze both the worst-
case and amortized costs of your implementation.

(c) Discuss the issue of implementing the delete operation.

