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ABSTRACT
Given a metric space (X, dX), c ≥ 1, r > 0, and p, q ∈
[0, 1], a distribution over mappings H : X → N is called a
(r, cr, p, q)-sensitive hash family if any two points in X at
distance at most r are mapped by H to the same value
with probability at least p, and any two points at distance
greater than cr are mapped by H to the same value with
probability at most q. This notion was introduced by Indyk
and Motwani in 1998 as the basis for an efficient approxi-
mate nearest neighbor search algorithm, and has since been
used extensively for this purpose. The performance of these

algorithms is governed by the parameter ρ = log(1/p)
log(1/q)

, and

constructing hash families with small ρ automatically yields
improved nearest neighbor algorithms. Here we show that
for X = 
1 it is impossible to achieve ρ ≤ 1

2c
. This al-

most matches the construction of Indyk and Motwani which
achieves ρ ≤ 1

c
.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Probabilistic algorithms;
E.1 [Data Structures]: Miscellaneous

General Terms
Algorithms, Theory

Keywords
Nearest Neighbor Search, Locality Sensitive Hashing, Lower
Bounds

1. INTRODUCTION
In this note we study the complexity of finding the nearest

neighbor of a query point in certain high dimensional spaces
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using Locality Sensitive Hashing (LSH). The nearest neigh-
bor problem is formulated as follows: Given a database of n
points in a metric space, preprocess it so that given a new
query point it is possible to quickly find the point closest
to it in the data set. This fundamental problem arises in
numerous applications, including data mining, information
retrieval, and image search, where distinctive features of the
objects are represented as points in R

d. There is a vast
amount of literature on this topic, and we shall not attempt
to discuss it here. We refer the interested reader to the pa-
pers [6, 5, 4, 7], and especially to the references therein, for
background on the nearest neighbor problem.

While the exact nearest neighbor problem seems to suf-
fer from the “curse of dimensionality”, many efficient tech-
niques have been devised for finding an approximate solution
whose distance from the query point is at most c times its
distance from the nearest neighbor. One of the most versa-
tile and efficient methods for approximate nearest neighbor
search is based on Locality Sensitive Hashing, as introduced
by Indyk and Motwani in 1998 [6]. This method has been
refined and improved in several papers- the most recent al-
gorithm can be found in [4]. We also refer the reader to the
LSH website, where more information on this algorithm can
be found, including its implementation and code- all this can
be found at http://web.mit.edu/andoni/www/LSH/index.html.
The LSH approach to the approximate nearest neighbor
problem is based on the following concept.

Definition 1.1. Let (X, dX) be a metric space, r,R > 0
and p, q ∈ [0, 1]. A distribution over mappings H : X → N

is called a (r,R, p, q)-sensitive hash family if for any x, y ∈
X,

• dX(x, y) ≤ r =⇒ PrH [H (x) = H (y)] ≥ p .

• dX(x, y) > R =⇒ PrH [H (x) = H (y)] ≤ q .

Given c ≥ 1 and q ∈ (0, 1) we define ρX(c, q) to be the
smallest constant ρ > 0 such that for every r > 0 there
exists p ∈ (0, 1) and a (r, cr, p, q)- sensitive hash family H :

X → N with log(1/p)
log(1/q)

≤ ρ. In other words

ρX(c, q) = sup
r>0

inf

{
log(1/p)

log(1/q)
:

∃(r, cr, p, q) − sensitive hash family H : X → N} . (1)

Of particular interest is the case X = 
d
s , for some s > 0 and

d ∈ N. Here, and in what follows, 
d
s denotes the space R

d

equipped with the 
s norm

‖(x1, . . . , xd)‖s = (|x1|s + · · · + |xd|s)1/s



(this is only a quasi-norm when 0 < s < 1). In this case we
define

ρs(c) = sup
0<q<1

lim sup
d→∞

ρ�d
s
(c, q) .

The importance of these parameters stems from the fol-
lowing application to approximate nearest neighbor search.
It will be convenient to discuss it in the framework of the fol-
lowing decision version of the c-approximate nearest neigh-
bor problem: Given a query point, find any element of the
data set which is at distance at most cr from it, provided
that there is a data point at distance at most r from the
query point. This decision version is known as the (r, cr)-
near neighbor problem. It is well known that the reduction
to the decision version adds only a logarithmic factor in the
time and space complexity [6, 5]. The following theorem was
proved in [6]; the exact formulation presented here is taken
from [4].

Theorem 1.2. Let (X, dX) be a metric on a subset of
R

d. Suppose that (X, dX) admits a (r, cr, p, q)-sensitive hash

family H , and write ρ = log(1/p)
log(1/q)

. Then for any n ≥ 1
q

there

exists a randomized algorithm for (r, cr)- near neighbor on
n-point subsets of X which uses O

(
dn + n1+ρ

)
space, with

query time dominated by O (nρ) distance computations and

O
(
nρ log1/q n

)
evaluations of hash functions from H .

Thus, obtaining bounds on ρX(c) is of great algorithmic
interest. It is proved in [6] that ρ1(c) ≤ 1/c, and for small
values of c, namely c ∈ [1, 10], is was shown in [4] that this
inequality is strict. We refer to [4] for numerical data on the
best know estimates for ρ1(c) for small c. For s = 2 a recent
result of Andoni and Indyk [1] shows that ρ2(c) ≤ 1/c2,
and for general s ∈ (0, 2] the best known bounds [4] are
ρs(c) ≤ max{1/c, 1/cs}.

The main purpose of this note is to obtain lower bounds
on ρ1(c) and ρ2(c) which nearly match the bounds obtained
from the constructions in [6, 4, 1]. Our main result is:

Theorem 1.3. For every c, s ≥ 1,

ρs(c) ≥ e
1

cs − 1

e
1

cs + 1
≥ e− 1

e + 1
· 1

cs
≥ 0.462

cs
. (2)

The second to last inequality in (2) follows from concavity

of the function t �→ et−1
et+1

on [0,∞). Observe also that as c →
∞, e1/c−1

e1/c+1
∼ 1

2c
. It would be very interesting to determine

lim supc→∞ c · ρ1(c) exactly- due to Theorem 1.3 and the
results of [6] we currently know that this number is in the
interval [1/2, 1].

2. PROOF OF THEOREM 1.2
The basic idea in the proof of Theorem 1.3 is simple.

Choose a random point x ∈ {0, 1}d and consider the ran-
dom subset A of the cube {0, 1}d consisting of points u
for which H (u) = H (x). The second condition in Defi-
nition 1.1 forces A to be small in expectation. But, when
A is small we can bound from above the probability that
after r steps, the random walk starting at a random point
in A will end up in A. We obtain this upper bound using
a Fourier analytic argument, and in combination with the
first condition in Definition 1.1 we deduce the desired bound
on ρ1(c).

Theorem 1.3 follows from the following result:

Proposition 2.1. Let H be a (r,R, p, q)- sensitive hash
family on the Hamming cube ({0, 1}d, ‖ · ‖1). Assume that r
is an odd integer and that R < d

2
. Then

p ≤
(
q + e−

1
d ( d

2 −R)2) e2r/d−1
e2r/d+1 .

Choosing R ≈ d
2
−√

d log d and r ≈ R/c in Proposition 2.1,
and letting d → ∞, yields Theorem 1.3 in the case s = 1.
The case of general s ≥ 1 follows from the fact that for

x, y ∈ {0, 1}d, ‖x− y‖s = ‖x− y‖1/s
1 .

Remark 2.1. Proposition 2.1 implies a non-trivial lower

bound on log(1/p)
log(1/q)

for any (r, cr, p, q)- sensitive hash family on

({0, 1}d, ‖ · ‖1) even if q is allowed to depend on d. Observe
that with the definition given in (1), Theorem 1.3 implies
such a lower bound only for constant q. But, Proposition 2.1
is much stronger, and implies a bound which asymptotically
coincides with the lower bound in 1.3 for every q ≥ 2−o(d).

The proof of Proposition 2.1 will be broken into a few
lemmas.

Lemma 2.2. Let H be a (r,R, p, q)-sensitive hash family
on the Hamming cube ({0, 1}d, ‖ · ‖1), and fix x ∈ {0, 1}d.
Then

E
∣∣H −1 (H (x))

∣∣ ≤ �R�∑
k=0

(
d

k

)
+ q ·

d∑
k=�R�+1

(
d

k

)
.

Proof. We simply write

E
∣∣H −1 (H (x))

∣∣ =
∑

u∈{0,1}d

Pr[H (u) = H (x)]

≤
∣∣∣{u ∈ {0, 1}d : ‖u− x‖1 ≤ R}

∣∣∣
+q ·

∣∣∣{u ∈ {0, 1}d : ‖u− x‖1 > R}
∣∣∣

=

�R�∑
k=0

(
d

k

)
+ q ·

d∑
k=�R�+1

(
d

k

)
,

which is the required inequality.

Corollary 2.3. Assume that R < d
2
. Then, using the

notation of Lemma 2.2, we have that

E
∣∣H −1 (H (x))

∣∣ ≤ 2d
(
q + e−

1
d ( d

2 −R)2)
.

Proof. This follows from Lemma 2.2 and the standard

estimate
∑

k≤ d
2−a

(
d
k

) ≤ 2d · e−a2
d .

Lemma 2.4 (Random walk lemma). Let r be an odd
integer. Given ∅ �= B ⊆ {0, 1}d, consider the random vari-
able QB ∈ {0, 1}d defined as follows: Choose a point z ∈ B
uniformly at random, and perform r-steps of the standard
random walk on the Hamming cube starting from z. The
point thus obtained will be denoted QB. Then

Pr[QB ∈ B] ≤
( |B|

2d

) e2r/d−1
e2r/d+1

.

Proof. We begin by recalling some background and no-
tation on Fourier analysis on the Hamming cube. Given



S ⊆ {1, . . . d}, the Walsh function WS : {0, 1}d → {−1, 1} is
defined by

WS(u) = (−1)
∑

j∈S uj .

For f : {0, 1}d → R we set

f̂(S) =
1

2d

∑
u∈{0,1}d

f(u)WS(u) ,

so that f can be decomposed as follows:

f =
∑

S⊆{1,...,d}
f̂(S)WS .

For every f, g : {0, 1}d → R we write

〈f, g〉 =
1

2d

∑
u∈{0,1}d

f(u)g(u) .

By Parseval’s identity,

〈f, g〉 =
∑

S⊆{1,...,d}
f̂(S)ĝ(S) .

For ε ∈ [0, 1] the Bonami-Beckner operator Tε is defined
as

Tεf =
∑

S⊆{1,...,d}
ε|S|f̂(S)WS .

The Bonami-Beckner inequality [3, 2] states that for every
f : {0, 1}d → R,∑

S⊆{1,...,d}
ε2|S|f̂(S)2 = ‖Tεf‖2

2

=
1

2d

∑
u∈{0,1}d

(Tεf(u))2

≤ ‖f‖2
1+ε2

=

 1

2d

∑
u∈{0,1}d

f(u)1+ε2

 2
1+ε2

.

Specializing to the indicator of B ⊆ {0, 1}d we get that

∑
S⊆{1,...,d}

ε2|S|1̂B(S)2 ≤
( |B|

2d

) 2
1+ε2

. (3)

Now, let P be the transition matrix of the standard ran-
dom walk on {0, 1}d, i.e. Puv = 1/d if u and v differ in
exactly one coordinate, Puv = 0 otherwise. By a direct
computation we have that for every S ⊆ {1, . . . , d},

PWS =

(
1 − 2|S|

d

)
WS ,

i.e. WS is an eigenvector of P with eigenvalue 1− 2|S|
d

. The
probability that the random walk starting form a random

point in B ends up in B after r steps equals

Pr[QB ∈ B] =
1

|B|
∑

a,b∈B

(P r)ab

=
2d

|B| 〈P
r1B ,1B〉

=
2d

|B|
∑

S⊆{1,...,d}
1̂B(S)2

(
1 − 2|S|

d

)r

≤ 2d

|B|
∑

S⊆{1,...,d}
|S|≤d/2

1̂B(S)2
(

1 − 2|S|
d

)r

,

where we used the fact that r is odd (i.e. we dropped nega-
tive terms).

Thus, using (3) we see that

Pr[QB ∈ B] ≤ 2d

|B|
∑

S⊆{1,...,d}
1̂B(S)2 · e−2r|S|/d

≤ 2d

|B| ·
( |B|

2d

) 2
1+e−2r/d

=

( |B|
2d

) 1−e−2r/d

1+e−2r/d

,

completing the proof Lemma 2.4.

Proof of Proposition 2.1. Assume that r is an odd
integer and R < d

2
. For x ∈ {0, 1}d let Wr(x) ∈ {0, 1}d be

the random point obtained by preforming a random walk
for r steps starting at x. Since ‖x − Wr(x)‖1 ≤ r we know
that Pr [H (Wr(x)) = H (x)] ≥ p. Taking expectation with
respect to the uniform probability measure on {0, 1}d we
deduce that

p ≤ Ex∈{0,1}n Pr [H (Wr(x)) = H (x)]

= EH Pr
[
x ∈ {0, 1}n : Wr(x) ∈ H −1 (H (x))

]
= EH

∑
k∈N

Pr [x ∈ {0, 1}n :

Wr(x) ∈ H −1 (H (x)) ∧ H (x) = k
]

= EH

∑
k∈N

∣∣H −1(k)
∣∣

2d
Pr
[
QH −1(k) ∈ H −1(k)

]

≤ EH

∑
k∈N

∣∣H −1(k)
∣∣

2d
·
(∣∣H −1(k)

∣∣
2d

) e2r/d−1
e2r/d+1

(4)

= EH Ex∈{0,1}d

(∣∣H −1(H (x))
∣∣

2d

) e2r/d−1
e2r/d+1

≤ Ex∈{0,1}d

(
EH

∣∣H −1(H (x))
∣∣

2d

) e2r/d−1
e2r/d+1

(5)

≤
(
q + e−

1
d ( d

2 −R)2) e2r/d−1
e2r/d+1 , (6)

where in (4) we used Lemma 2.4, in (5) we used Jensen’s
inequality, and in (6) we used Corollary 2.3.
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