
Distinct Values Estimators for Power Law Distributions

Rajeev Motwani∗ Sergei Vassilvitskii†

Abstract

The number of distinct values in a relation is an important

statistic for database query optimization. As databases

have grown in size, scalability of distinct values estimators

has become extremely important, since a näıve linear scan

through the data is no longer feasible. An approach that

scales very well involves taking a sample of the data, and

performing the estimate on the sample. Unfortunately, it

has been shown that obtaining estimators with guaranteed

small error bounds requires an extremely large sample size

in the worst case. On the other hand, it is typically the

case that the data is not worst-case, but follows some form

of a Power Law or Zipfian distribution. We exploit data

distribution assumptions to devise distinct-values estimators

with analytic error guarantees for Zipfian distributions.

Our estimators are the first to have the required number

of samples depend only on the number of distinct values

present, D, and not the database size, n. This allows

the estimators to scale well with the size of the database,

particularly if the growth is due to multiple copies of the

data. In addition to theoretical analysis, we also provide

experimental evidence of the effectiveness of our estimators

by benchmarking their performance against previously best

known heuristic and analytic estimators on both synthetic

and real-world datasets.

1 Introduction

The number of distinct values of an attribute in a
relation is one of the critical statistics necessary for
effective query optimization. It is well-established [9]
that a bad estimate to the number of distinct values
can slow down the query execution time by several
orders of magnitude. Unfortunately, as the amount of
data stored in a database increases, this vital statistic
becomes increasingly difficult to estimate quickly with
reasonable accuracy. While the exact number of distinct
values in a column can be determined by a full scan of
the table, query optimizers would like to obtain a (low-
error) estimate with significantly lower effort. Even
if one is willing to perform a full scan, determining

∗Stanford University. Supported in part by NSF Grants EIA-

0137761 and ITR-0331640, and grants from Media-X and SNRC.
†Stanford University. Supported in part by NSF Grants EIA-

0137761 and ITR-0331640, and grants from Media-X and SNRC.

the exact number of distinct values requires significant
memory overhead.

Several approaches have been considered in the
literature to deal with this issue. Recently, much of the
work has focused on streaming models, or algorithms
which are allowed to take only a single pass over the
data [1, 5, 6]. The challenge for these algorithms lies in
minimizing the space used, since the näıve schemes run
out of memory long before a single scan is complete.
Another natural approach is to take a small random
sample from the large dataset (often on the order of
1-10%) and then to estimate the number of distinct
values from the sample. This problem has a rich history
in statistics [2, 8, 19], but the statistical methods are
essentially heuristic and in any case do not perform
well in the context of databases [12, 13]. There has
been some recent work in database literature [3, 7, 9, 10]
on trying to devise good distinct-values estimators for
random samples; but again, these are mostly based
on heuristics and are not supported by analytic error
guarantees.

An explanation for the apparent difficulty of
distinct-values estimation was provided in the power-
ful negative result of Charikar, Chaudhuri, Motwani,
and Narasayya [3]. They demonstrate two data distri-
bution scenarios where the numbers of distinct values
differ dramatically, yet a large number of random sam-
ples is required to distinguish between the two scenar-
ios. For example, to guarantee that an estimate has less
than 10% error with high probability, requires sampling
almost the entire table. While this negative result ex-
plains the difficulty of obtaining estimators with good
analytic error guarantees, the worst case scenarios rarely
occur in practice. This leaves open the possibility of ex-
ploiting our knowledge of real-world data distributions
to obtain estimators that are efficient and scalable, have
analytic error guarantees, and perform well in practice.
Indeed, in this paper we show that such positive re-
sults are possible once we make some assumptions about
the underlying data distribution, thereby allowing us to
circumvent the seemingly crippling negative result of
Charikar et al. [3].

It has been observed for over a half-century that
many large datasets follow a Power Law (also known
as Zipfian) distribution; for example, the distribution

of words in a natural language [20] or the distribution
of the (out-)degrees in the web graph [14]. We refer
the reader to the book by Knuth [15] and the survey
article by Mitzenmacher [17] for further examples and
an in-depth discussion. The underlying reasons for the
ubiquity of this class of data distributions have been
a subject of debate ever since the original paper by
Zipf [20], but as Mitzenmacher points out one thing is
clear: “Power law distributions are now pervasive in
computer science.”

1.1 Our Results In this work, we assume that the n
data items in the column of interest follow a Zipfian
distribution (with some skew parameter θ) on some
number of distinct elements D. Our estimators work
on a random sample of the data from the column. We
assume that the value of θ is known ahead of time.
In our experimental tests we show that the value of θ
can be easily estimated on real world datasets using
linear regression techniques. Of course, the value of D
is assumed to be unknown, since that is precisely the
quantity that we seek to estimate.

A key feature of the algorithms that we propose
is the independence of their running time from the
database size. These are the first algorithms where the
number of samples and the running time are a function
of solely the number of distinct elements present and
not of the database size itself. This property allows our
estimators to scale extremely well. In particular, the
running time of the estimators remains the same if the
database contains multiple copies of the same data.

We propose two algorithms for computing the num-
ber of distinct values. The first algorithm samples adap-
tively until a stopping condition is met. We prove that
for a large family of distributions the algorithm returns
D, the exact number of distinct values with high proba-
bility; and requires no more than O(log D/pD) samples,
where pD is the probability of selecting the least likely
element. Observe that if the underlying distribution is
uniform, coupon-collector arguments provide a match-
ing lower bound for the required number of samples.

The setting for the second algorithm is slightly
different. In some applications we are not able to
adaptively sample, but rather are presented with a
small fraction of the database and are asked to provide
the best possible estimate. In this setting the second
algorithm returns D̂ a (1 + ε) approximation to D with
high probability after examining only this small number
of random samples. In particular we analyze our
algorithm for Zipfian distributions where the estimator
is correct with probability 1 − exp(−Ω(D)/ε2) after
examining roughly 1/pD samples.

We demonstrate via experiments that our estima-

tors not only have theoretical error guarantees, but also
outperform previously-known estimators on synthetic
and real world inputs.

The rest of this paper is organized as follows. We
begin in Sections 2 and 3 by formally defining the prob-
lem and presenting the goals that an estimator should
strive to achieve. In Section 4 we present an algorithm
for computing the exact number of distinct values in a
database with high probability. Section 5 introduces an
estimator that returns an ε-error approximation to the
true number of distinct values. Finally, in Section 6 we
present experimental results comparing the performance
of our estimator best known heuristic and guaranteed
error estimators, on both synthetic and real world data.

2 Preliminaries

We assume the following set-up throughout the paper.
Let F = {P1,P2, . . .} be a family of probability distri-
butions, where Pj is a distribution on j elements. Let R
be a relation on n rows, and assume that the elements
in R are distributed along some Pj∗ ∈ F . Our goal is to
determine j∗, the number of distinct elements present
in R.

To simplify notation, given a distribution P over a
set X and an element x ∈ X, denote by Pri(P) the
probability of element i ∈ X in the distribution P.

As a special case we consider the family of Zipfian
or Power Law distributions parametrized by their skew,
θ. Zθ = {Z1,θ, Z2,θ, . . . }. where ZD,θ is the Zipfian
distribution of parameter θ on D elements defined as
follows. Rank the elements 1 through D in decreasing
order of probability mass. Then the probability of
selecting the ith element is

Pri(ZD,θ) =
1

iθND,θ
,

where ND,θ =
D∑

i=1

1
iθ

is a normalizing constant

Observe that when θ = 0, the Zipfian distribution
is simply the uniform distribution and ND,0 = D. The
skew in the distribution increases with θ. In real-life
applications θ is typically less than 2.

We assume that the value of θ is known to our
algorithm; in practice a good estimate for the value of
θ can be obtained as a part of the sampling process as
discussed in Section 6.1.

Our estimation algorithm will deliver an estimate
D̂ of the number of distinct values in the column. To
evaluate the performance of the estimators, we will use
ratio error, which is the multiplicative error of D̂ with

respect to D. Formally, we define ratio error as

max

(
D̂

D
,
D

D̂

)
Under this definition, the error is always at least 1,
and no distinction is made between underestimates and
overestimates of the number of distinct values.

The following notation will be useful: After some
r samples, let fin(r) be the number of distinct values
that appeared in the sample and fout(r, D) = D − fin,
the number of distinct values that were not part of the
sample.

3 Estimators

Our goal is to obtain distinct-values estimators with the
following desired properties:

Few Samples: The number of samples required for
good performance by the estimator should be small.

Error Guarantees: The estimator should be backed
by analytical error guarantees.

Scalability: The estimator should scale well as the
database size n increases. This implies that the
number of samples should grow sublinearly with
(or ideally be independent of) the database size.

As mentioned earlier, the vast majority of estima-
tors that operate on a random sample of the data (as
opposed to those which perform a full scan of the data)
do not provide any analytical guarantees for their per-
formance. The exception is the GEE (Guaranteed-Error
Estimator) estimator developed by Charikar et al. [3].

Theorem 3.1. ([3]) Using a random sample of size r
from a table of size n, the expected ratio error for GEE
is O(

√
n/r).

We note that the result above is the best possible due
to a matching lower bound described by the authors.
Observe that the bound is quite weak — even if we allow
a sample of 10%, the expected ratio error bound can be
as high as

√
10 ≈ 3.2. Further, the GEE estimator

does not scale well — to maintain the same error, the
sample size needs to increase linearly with the size of
the database.

Once we assume that the input distribution follows
a Zipfian distribution with unknown parameter D, we
can develop estimators which greatly improve upon
the GEE estimator presented above. We focus first
on determining exactly the number of distinct values
in the database, and then we relax this requirement
to devise estimators which may return a (1 + ε)-error
approximation to the number of distinct values.

4 Exact Algorithm

We first seek to devise an algorithm which will return
D̂ = D, but is allowed to fail with some small proba-
bility δ. Note that without the knowledge of the data
distribution, the situation is grim — in the worst case
we would need to sample a large fraction of the database
to obtain the value of D with bounded error probability.

We begin by defining a notion of c-regular families
of distributions.

Definition 4.1. A distribution family F =
{P1, P2, . . .} is called c-regular if the following two
conditions hold:

• Monotonicity: For any i, 1 ≤ j ≤ i: Pri(Pj) ≥
Pri(Pj+1).

• c-Regularity: For any i: Pri(Pi) ≤ c ·
Pri+1(Pi+1).

The monotonicty condition ensures that the proba-
bility of an individual item i in the support, decreases
as the overall support of the distribution increases. The
c-regularity condition bounds the decrease in mass of
the least weighted element.

Many common distribution families are c-regular
for small values of c. For example, the family of
uniform distributions is 2-regular. The family of Zipfian
distributions of parameter θ is 5-regular for θ ≤ 2

To simplify notation, for a multiset S, let
Distinct(S) be the number of distinct values appear-
ing in S.

The Exact Count algorithm presented below will
continue to sample until a particular stopping condition
is met, at which point the sample contains all of the
distinct values with high probability.

Algorithm 1 Exact Count Algorithm

Let Stop(t) = 6 ln(t+1)
Prt+1Pt+1

Let S ⊆ R denote the current sample
Draw a sample of size Stop(3)
while Stop(Distinct(S)) > |S| do

Increase S until |S| grows by a factor of c log3 4
end while
Output D̂ = Distinct(S)

4.1 Analysis We will show that the above algorithm
returns D̂ = D with probability at least 1/2.

Lemma 4.1. Let S be a sample of size at lest Stop(3)
drawn uniformly at random from R. Let t be such
that Stop(t + 1) ≥ |S| > Stop(t). If t < D then
Pr[Distinct(S) < t + 1] ≤ (t + 1)−2.

Before proving the lemma, let us interpret its
meaning. Observe that the algorithm halts when
Distinct(S) ≤ t. This lemma bounds the probability
of early halting (halting when Distinct(S) 6= D).

Proof. Consider the elements 1, 2, ..., D. For the sake of
the proof suppose we can split them up into t+2 groups
with the following properties:

1. each element appears in exactly one group.

2. For groups j ∈ {1, ..., t + 1}:

Prj(Pt+1) ≥
∑

i∈group j

Pri(PD) ≥ Prj(Pt+1)
2

.

Let E be the event that Distinct(S) < t + 1. For E
to occur, all of the elements from at least one of the first
t + 1 groups can not present in S. Let Ej be the event
that no element from group j appears in the sample.

Pr[Ej] ≤ (1− Prj(Pt+1)/2)|S|

≤ exp(− Prj(Pt+1)
2Prt+1(Pt+1)

· (6 ln(t + 1)))

≤ 1
(t + 1)3

Where the last inequality follows since Prj(Pt+1) ≥
Prt+1(Pt+1). For event E to occur one of the events
E1, . . . , Et+1 must occur. We can use the union bound
to limit Pr[E]. In particular Pr[E] ≤

∑t+1
i=1(t + 1)−3 =

(t + 1)−2.
It remains to show how the elements are broken up

into the aforementioned groups.
We can achieve this division using the following sim-

ple algorithm. Consider the elements in order of de-
creasing probability: Pr1(PD), P r2(PD), . . . , P rD(PD).
Put the first element into the first group. The mono-
tonicity property ensures that it will fit. Continue with
elements of weight Pr2(PD), P r3(PD), etc. Once an el-
ement no longer fits into the first group, begin filling
the next group. Again, by the monotonicity property,
the first element will fit in the group. After filling the
first t+1 groups, put the remaining elements into group
t + 2.

It is clear that each element will be present in
exactly one group. Further, each group ∈ {1, . . . , t + 1}
is at least half full, since it contains at least one element,
and the elements are considered in order of decreasing
weight.

To conclude the analysis we need to bound the total
number of times that the event E can occur. We do this
by showing that the value of t increases every time we
evaluate the stopping condition.

Lemma 4.2. For |S| ≥ Stop(2), Stop−1(c log3 4 · |S|)−
Stop−1(|S|) ≥ 1, where Stop−1(U) = minu{u :
Stop(u) > U}.

Proof. We will prove this by bounding the ratio
Stop(t+1)

Stop(t) for t ≥ 2.

Stop(t + 1)
Stop(t)

=
ln(t + 2)
ln(t + 1)

· Pt+1(t + 1)
Pt+2(t + 2)

≤ log3 4 · c

Where the second inequality follows from the c-
regularity condition.

Theorem 4.1. The Exact-Count algorithm terminates
successfully with probability at least 1/2. Moreover, the
number of samples necessary is O(log D/PrD(PD).

Proof. The algorithm can potentially fail only when the
stopping condition is evaluated. Let Ei be the event
that the algorithm halts on the ith evaluation, but the
sample does not yet contain all of the distinct values.
Lemma 4.1 implies that at the point of ith evaluation,
|S| ≥ Stop(i + 1), and so Pr[Ei] ≤ (i + 1)−2. By the
union bound, the event that algorithm fails is bounded
by
∑∞

i=1
1

(i+1)2 < 1/2.

Corollary 4.1. For Zipfian distributions with param-
eter θ the estimator above requires O(DθND,θ log D)
samples.

The bound we present above is tight up to very
small factors. Consider two distributions: P which is
a uniform distribution on m values and Q, a uniform
distribution on m+1 values. Let S be a sample from one
of the distributions, such that |S| = o(m log m

log log m) then
by standard coupon collector arguments S contains less
than m distinct values with high probability. It is easy
to see that the relative frequency of the elements in S is
the same whether the elements were drawn from P or
from Q, and so P and Q are indistinguishable.

Theorem 4.2. There exist c-regular families of distri-
butions F on which any algorithm requires Ω(D log D

log log D)
samples.

5 Approximate Algorithm

Although the above algorithm provides us with analyt-
ical guarantees about the number of samples in the dis-
tribution, the required number of samples can be high.
In some applications there exists a hard limit on the run-
ning time of the estimator, thus we look for a procedure

which returns the best possible estimate on the number
of distinct values given a sample from the database.

In this section we present an estimator which re-
turns D̂ such that with probability at least (1 − δ) the
ratio error is bounded by (1+ε). We provide the analysis
below for the case of Zipfian distributions parametrized
by their skew, θ.

5.1 Zipfian Distributions The algorithm we con-
sider is similar to the maximum likelihood estimator.
Recall that fin(r) is the number of distinct elements in
a random sample of size r. Let f∗in(r, D, θ) be the ex-
pected number of distinct elements in a random sample
of size r coming from a Zipfian distribution of parameter
θ on D distinct values.

Observe that f∗in(r, D, θ) can be computed when D
is known. Our estimator returns

D̂ such that f∗in(r, D̂, θ) = fin

In other words, our guess for the number of distinct
elements would (in expectation) have us see as many
distinct values as we did.

5.2 Analysis The analysis of the simple algorithm
above proceeds in two parts. First, we show that with
high probability the observed value of fin does not
deviate by more than a (1 + ε) factor from its expected
value, f∗in(r, D, θ). We then show that if this is the
case, then D̂ does not deviate from D by a factor of
more than (1 + ε) with constant probability, provided
that our sample size is large enough.

Lemma 5.1. In a sample of size r,

Pr[|fin − f∗in(r, D, θ)| ≥ εf∗in(r, D, θ)] ≤

2 exp(−ε2f∗in(r, D, θ)2

2r
)

Proof. Let Xi be the number of distinct elements that
appear in the sample after i samples. Let Yi =
E[Xr|X1, . . . , Xi] be the expected number of distinct
elements in the sample after r samples given the results
of the first i samples. Note that Yr = fin, the num-
ber of distinct values observed, and Y0 = f∗in(D, θ), the
expected number of unique values observed. By defi-
nition the Yis form a Doob martingale. Now consider
their successive difference, |Yi − Yi−1|. Since the only
information revealed is the location of the ith sample,
|Yi − Yi−1| ≤ 1.

We can now invoke Azuma’s inequality (see Section
4.4 of Motwani and Raghavan [16]) to bound the
difference |Yr − Y0|:

Pr[|Yr − Y0| ≥ λ] ≤ 2 exp(−λ2/2r)

Plugging in the appropriate values for Yr, Y0 and λ =
εY0 gives us the desired result.

We can prove an identical lemma for the values of
fout and f∗out(r, D, θ) defined analogously.

Corollary 5.1. After r samples,

Pr[|fout − f∗out(r, D, θ)| ≥ εf∗out(r, D, θ)] ≤

2 exp(−ε2f∗out(r, D, θ)
2r

)

We have shown that the number of distinct elements
seen after r samples is very close to its expectation. We
now show that this implies that the maximum likelihood
estimator will produce a low ratio error.

Lemma 5.2. Suppose that |fout − f∗out(r, D, θ)| ≤
εf∗out(r, D, θ) and r ≥ 1

PrcD(PcD) . Then the ratio error,

max(D̂/D, D/D̂) ≤ 1 + 2ε.

Proof. For simplicity of notation let pi = Pri(ZD,θ) and
p̂i = Pri(ZD̂,θ), and N and N̂ be the normalizing values
for the two distributions. Let us consider the value of
f∗out(r, D, θ).

f∗out(D, θ) =
D∑

i=1

(1− pi)r

The estimate D̂ returned by the algorithm is such
that f∗out(r, D̂, θ) = fout ≤ f∗out(r, D, θ)(1 + ε). Assume
that fout ≥ f∗out (The proof is identical in the opposite
case). Then D̂ ≥ D and we seek to bound the ratio D̂/D
from above. By corollary 5.1, fout ≤ (1 + ε)f∗out(r, D, θ)
w.h.p.

Therefore, 1 + ε ≥

f∗out(r, D̂, θ)
f∗out(r, D, θ)

=
∑ bD

i=1(1− p̂i)r∑D
i=1(1− pi)r

≥
∑ bD

i= bD−D+1(1− p̂i)r∑D
i=1(1− pi)r

The second inequality follows since all of the terms in
the numerator are positive. Now consider the ratio of
the ith terms of each sum. Since the ratio of the sum
is bounded, there must exist at least one value i where
the ratio of the individual terms is bounded by (1 + ε).
A simple analysis shows that the ratio decreases as i
increases, and thus the lowest ratio is achieved by the
last term.

1 + ε ≥
(1− p̂D̂)r

(1− pD)r
=
(

1− p̂D̂

1− pD

)r

≥
(

1 +
pD − p̂D̂

1− pD

)r

≥ exp
(

r
pD − p̂D̂

1− pD

)
2ε ≥ r ·

pD − p̂D̂

1− pD
≥ r(pD − p̂D̂)

≥ 1
p̂D̂

(pD − p̂D̂)

1 + 2ε ≥ pD

p̂D̂

=

(
D̂

D

)θ

·

(
N̂

N

)

For θ ≥ 1 the result follows since N̂ ≥ N . For θ < 1

it can be shown that N̂
N ≥

(
D̂
D

)1−θ

. Combining the two

inequalities we get D̂
D ≤ 1 + 2ε.

The probability of success of this procedure is
2 exp(− ε2f∗out(r,D,θ)

2r). To establish the result with con-
stant probability, we have to show that even after r as
above samples, f∗out(D, θ) is sufficiently large.

Lemma 5.3. After r = (Pr bD(P bD))−1 = N̂D̂θ samples,
f∗out(r, D, θ) = Ω(D).

Proof. Consider the elements of rank D/2 through D,
and let i be one of these elements. Pri(PD) = 1

iθN
≤

1
(D/2)θN

. Therefore the probability that i is not present
in the sample of size r is at most (1 − 1

(D/2)θN
)r ≤

exp(− N̂D̂θ

(D/2)θN
) ≤ exp(−2θ(1 + 2ε)2θ) = Θ(1). The

expected number of items not present is therefore Ω(D).

From the above two lemmas, the main theorem for
Zipfian distributions follows:

Theorem 5.1. Given r = ND,θ(1 + 2ε)((1 + 2ε)D)θ

samples the algorithm will produce an estimate D̂, such
that max(D̂/D, D/D̂) < 1 + ε with probability of error
less than 2 exp(−Ω(D)ε2).

We have chosen here to analyze in detail the case of
Zipfian distributions. Observe that the main algorithm
works even for non-Zipfian distributions. As long as the
value of f∗out(r,P) can be estimated the algorithm pre-
sented above is well defined. However, the exact value
for r and the estimation error need to be recomputed
for each family of distributions.

6 Experimental Results

In this section we validate our estimator by comparing it
against GEE (the only other sampling based estimator

with analytical guarantees), as well as AE (Adaptive
Estimator), which was shown to outperform all of
the other heuristic estimators in the experiments of
Charikar et al [3]. We will refer to our estimator as
ZE (for Zipfian Estimator). We first test the three
estimators on synthetic data. We generate datasets
according to a Zipfian distribution with skew parameter
θ ∈ {0, 0.5, 1}. We vary the number of distinct
elements from 10k to 100k, and vary the size of the
overall database from 100k to 1000k. We present
here the results of all three estimators on a dataset
of 500, 000 elements drawn under the corresponding
Zipfian distribution on 50000 elements. The results for
the other synthetic scenarios were almost identical to
the ones shown.

Further, we tested the estimators on several real-
world datasets that we assumed followed a Zipfian
distribution. We present the results on the Router
dataset was obtained from [18]. It is a packet trace from
the Internet Traffic Archive. We are trying to predict
the number of distinct IP addresses served by the router.
Although this distribution is not a pure Zipfian, as the
probabilities of the most frequent values and the least
frequent values are a little bit skewed, the bulk of the
data follows a Zipfian distribution with θ ≈ 1.6.

6.1 Estimating Zipfian Skew Parameter All of
the analytical results above assumed that the parameter
θ was known to us ahead of time. In practice, we
can estimate the parameter from the data sampled
for distinct value counts. Let fi be the frequency of
the ith most common element. Then in expectation,
fi = rpi = r

Z i−θ, and log fi = log r
Z − θ log i. Since r

Z
is independent of i, we can estimate θ by doing linear
regression on the log-log scale of the fi vs i data. Many
of the real world datasets (including Router) follow a
Zipfian distribution for the bulk of the data, but not for
the first or the last few elements, which can change the
θ parameter of the sample. To counteract this problem
we ignored the top 100 frequencies, as well as all of
the elements which did not appear at least 10 times in
the sample while estimating the value of the θ. Note
that the value of the parameter was estimated for the
synthetic datasets as well, even when we knew the exact
value that generated the dataset.

6.2 Discussion In the synthetically generated
datasets the ZE estimator was competitive with AE
and often outperformed it. This is not surprising since
ZE was designed particularly for Zipfian datasets. The
GEE estimator performed poorly on most of the data,
often having the results err by more than a factor of 5
even after a large sample.

0 20 40 60 80 100
0

2

4

6

8

10

Number of Samples x 1000

R
at

io
 E

rr
or

Theta = 0, D = 50000

ZE
AE
GEE

0 20 40 60 80 100
0

2

4

6

8

10

Number of Samples x 1000

R
at

io
 E

rr
or

Theta = 0.5, D = 50000

ZE
AE
GEE

0 20 40 60 80 100
0

2

4

6

8

10

Number of Samples x 1000

R
at

io
 E

rr
or

Theta = 1.0, D = 50000

ZE
AE
GEE

0 2 4 6 8 10
0

2

4

6

8

10

% DB Sampled

R
at

io
 E

rr
or

Router Dataset

ZE
AE
GEE

Figure 1: Empirical results on synthetic and real world data

On the real-world dataset AE performed very well,
and ZE was competitive after about 2.5% of the
database was sampled. One must keep in mind that
the router dataset had very high skew (θ ≈ 1.6), and ZE
was given fewer estimates than would be required by the
theoretical guarantees, but performed well nonetheless.
On real world data, the Zipfian Estimator, ZE grossly
outperformed the other estimator with guaranteed er-
ror bounds. The results were comparable only after a
10% fraction of the database was sampled. It is impor-
tant to note that because of the random access nature
of the estimation algorithms, a 10% sample requires al-
most as much time to compute as a full linear scan of
the database.

Although ZE and AE performed equally well, one
must remember that the Zipfian Estimator presented
here is guaranteed to perform well with high probability
on all Zipfian inputs, while the AE estimator is only
a heuristic and may perform poorly on some of the

inputs. In particular, the error of AE often rises as more
samples are taken from the database. When compared
to the only other estimator which has guarantees on
its results, GEE, the Zipfian estimator performed much
better, often giving results more than 10 times more
accurate on the same dataset.

References

[1] Alon, N., Matias, Y., and Szegedy, M. The space
complexity of approximating the frequency moments.
In Proceedings of the 28th ACM Symposium on the
Theory of Computing, 1996, pp. 20–29.

[2] Bunge, J., and Fitzpatrick, M. Estimating the Number
of Species: A review. Journal of the American Statis-
tical Association 88(1993): 364–373.

[3] Charikar, M., Chaudhuri S., Motwani, R., and
Narasayya, V. Towards Estimation Error Guarantees
for Distinct Values. In Proceedings of the Nineteenth

ACM Symposium on Principles of Database System,
2000, pp. 268–279.

[4] Chaudhuri, S., Das, G., and Srivastava, U. Effective
Use of Block-Level Sampling in Statistics Estimation.
In Proceedings of ACM-SIGMOD, 2004.

[5] Durand, M., and Flajolet, P. Loglog Counting of Large
Cardinalities. In Proceedings of 11th Annual European
Symposium on Algorithms (ESA), 2003, pp. 605–617.

[6] Flajolet P., and Martin, G.N. Probabilistic counting.
In Proceedings of the IEEE Symposium on the Founda-
tions of Computer Science, 1983, pp 76–82.

[7] Gibbons, P.B. Distinct Sampling for Highly-Accurate
Answers to Distinct Values Queries and Event Reports.
In Proceedings of the 27th International Conference on
Very Large Databases, 2001.

[8] Goodman, L. On the estimation of the number of
classes in a population. Annals of Math. Stat. 1949,
pp. 72-579.

[9] Haas, P.J., Naughton, J., F., Seshadri, S., and Stokes,
L. Sampling-based Estimation of the Number of Dis-
tinct Values of an Attribute. In Proceedings of the 21st
International Conference on Very Large Databases,
1995.

[10] Haas, P.J., and Stokes, L. Estimating the number
of classes in a finite population. In Journal of the
American Statistical Association 1998, pp. 1475–1487.

[11] Heising, W.P. IBM Systems J. 2 (1963).
[12] Hou, W., Ozsoyoglu, G., and Taneja, B. Statistical

estimators for relational algebra expressions. In Pro-
ceedings of the 7th ACM Symposium on Principles of
Database Systems, 1988.

[13] Hou, W., Ozsoyoglu, G., and Taneja, B. Processing
aggregate relational queries with hard time constraints.
In Proceedings of the ACM-SIGMOD International
Conference on Management of Data, 1989.

[14] Kleinberg, J., Kumar, R., Raghavan, P., Rajagopalan,
S., and Tomkins, A. The Web as a graph: measure-
ments, models and methods. In Proceedings of the In-
ternational Conference on Combinatorics and Comput-
ing, 1999.

[15] Knuth, D.E. Sorting and Searching. Volume 3 of
The Art of Computer Programming. Addison-Wesley,
Reading, MA, 1971.

[16] Motwani, R., and Raghavan, P. Randomized Algo-
rithms.Cambridge University Press, 1995.

[17] Mitzenmacher, M. A Brief History of Generative Mod-
els for Power Law and Lognormal Distributions. In
Proceedings of the 39th Annual Allerton Conference on
Communication, Control, and Computing, 2001, pp.
182-191.

[18] A packet trace from the internet traffic archive.
http://ita.ee.lbl.gov/html/contrib/DEC-PKT.html.

[19] Shlosser, A. On estimation of the size of the dictionary
of a long text on the basis of a sample. Engrg Cyber-
netics, 1981, pp. 97–102.

[20] Zipf, G. The Psycho-Biology of Language.
Houghton Mifflin, Boston, MA, 1935.

