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Abstract. Trade-off (aka Pareto) curves are typically used to represent
the trade-off among different objectives in multiobjective optimization
problems. Although trade-off curves are exponentially large for typical
combinatorial optimization problems (and infinite for continuous prob-
lems), it was observed in [PY1] that there exist polynomial size ε approx-
imations for any ε > 0, and that under certain general conditions, such
approximate ε-Pareto curves can be constructed in polynomial time. In
this paper we seek general-purpose algorithms for the efficient approx-

imation of trade-off curves using as few points as possible. In the case
of two objectives, we present a general algorithm that efficiently com-
putes an ε-Pareto curve that uses at most 3 times the number of points
of the smallest such curve; we show that no algorithm can be better
than 3-competitive in this setting. If we relax ε to any ε

′
> ε, then we

can efficeintly construct an ε
′-curve that uses no more points than the

smallest ε-curve. With three objectives we show that no algorithm can be
c-competitive for any constant c unless it is allowed to use a larger ε value.
We present an algorithm that is 4-competitive for any ε

′
> (1 + ε)2 − 1.

We explore the problem in high dimensions and give hardness proofs
showing that (unless P=NP) no constant approximation factor can be
achieved efficiently even if we relax ε by an arbitrary constant.

1 Introduction

When evaluating different solutions from a design space, it is often the case that
more than one criterion come into play. For example, when choosing a route
to drive from one point to another, we may care about the time it takes, the
distance travelled, the complexity of the route (e.g. number of turns), etc. When
designing a (wired or wireless) network, we may consider its cost, its capacity
(the load it can carry), its coverage, etc. When solving computational problems
we care about their use of resources such as time, memory, and processors.

Such problems are known as multicriteria or multiobjective problems. The
area of multiobjective optimization has been extensively investigated for many
years with a number of conferences and books (e.g. [Cli,Ehr]). In such prob-
lems we are interested in the trade-off between the different objectives. This
is captured by the trade-off or Pareto curve, the set of all feasible solutions
whose vector of the various objectives is not dominated by any other solution.



The trade-off curve represents the range of reasonable possibilities in the design
space. Typically we have a small number of objectives (2, 3, . . .) and we wish to
plot the trade-off curve to get a sense of the design space. Unfortunately, often
the trade-off curve has exponential size for discrete optimization problems even
for two objectives (and it is typically infinite for continuous problems).

Recently we started a systematic study of multiobjective optimization based
on an approximation that circumvents the aforementioned exponential size prob-
lem [PY1,PY2]. The approach is based on the notion of an ε-Pareto curve (for
ε > 0), which is a set of solutions that approximately dominate every other
solution. More specifically, for every solution s, the ε-Pareto curve contains a
solution s′ that is within a factor (1 + ε) of s, in all of the objectives. Such an
approximation was studied before for certain specific problems, most notably for
multicriteria shortest paths, where Hansen [Han] and Warburton [Wa] showed
how to construct an ε-Pareto curve in polynomial time.

It was shown in [PY1] that every multiobjective optimization problem with
a fixed number of polynomially computable objective functions (as is commonly
the case) posesses an ε-Pareto curve of size polynomial in the size of the instance
and 1/ε, for every ε > 0. Generally, however such an approximate curve may
not be constructible in polynomial time. A necessary and sufficient condition
for its efficient computability is the existence of an efficient algorithm for the
following multiobjective version of the Gap problem: Given a vector of values
b, either compute a solution that dominates b, or determine that there is no
solution that is better than b by at least a factor of 1 + ε in all objectives.
Several classes of problems (including specifically shortest paths, spanning trees,
matching, and others) are shown in [PY1,PY2] to satisfy this property and hence
have polynomially constructible ε-Pareto sets.

Although the theorem and construction of [PY1] yield a polynomial size ε-
Pareto set, the set is not exactly “small”: for d objectives, it has size roughly
(m/ε)d−1, and the construction requires (m/ε)d calls to the Gap routine. Here
m is the number of bits used to represent the values in the objective functions.
(We give the precise definitions of the framework and the parameters in the next
section.)

Note that an ε-Pareto set is not unique: many different subsets may qualify
and it is quite possible that some are very small while others are very large
(without containing any redundant points). Having a small approximate Pareto
set gives a succinct outline of the trade-offs involved and is important for many
reasons. For example, often the representative set of solutions is investigated
further by humans to assess the different choices and pick a suitable one, based
on factors that are perhaps not quantifiable.

Suppose that our problem instance has a small ε-Pareto set. Can we find
one? Furthermore, can we find one, while spending time that is proportional to
the size of the small computed set, rather than the worst case set? These are the
questions we investigate in this paper. We seek general algorithms that apply in
all polynomial cases, i.e. whenever a Gap routine as above is available.



In the next section, we define the framework. In Section 3 we study the case
of two objectives. We present a general algorithm that for any ε > 0 computes
an ε-Pareto set that has size at most 3 times k, the size of the smallest ε-Pareto
set. This algorithm uses only O(k log(m/ε)) calls to a Gap routine (this is the
dominant factor in the running time). We show a matching lower bound on the
approximation ratio, i.e. there is no general algorithm that can do better than 3.
However, if we relax ε to any ε′ > ε, then we can efficiently construct an ε′-curve
that uses no more points than k points.

We also discuss the dual problem: Given a bound, k, on the number of points
we are willing to have, how good of an approximation (how small of an ε) can
we get? For example, if k = 1, this is the so-called knee problem: if we pick
one point to minimize the ratio for all objectives, what should that compromise
point be, and what is the ratio? We show that the ratio can be approximated
arbitrarily closely.

In Section 4 we study the case of three objectives. We show that no general
algorithm can be within any constant factor c of the smallest ε-Pareto set unless
it is allowed to use a larger ε-value. We present an algorithm that achieves a factor
of 4 for any ε′ > (1+ε)2−1 (≈ 2ε for small ε). Furthermore, our algorithm again
uses only O(k log(m/ε) Gap calls.

Finally in Section 5 we discuss the case of an arbitrary number of objectives.
We show that even if the solution points are given to us explicitly in the input,
we cannot efficiently approximate the size of the smallest ε-Pareto curve: the
problem is equivalent to the Set Cover problem. Furthermore, no constant factor
approximation can be efficiently achieved, even if we relax ε by an arbitrary
constant.

2 Preliminaries

A multiobjective optimization problem has a set of instances, every instance x
has a set of solutions S(x). There are d objective functions, f1, . . . , fd, each of
which maps every instance x and solution s ∈ S(x) to a positive rational number
fj(x, s). The problem specifies for each objective whether it is to be maximized
or minimized. We say that a d-vector u dominates another d-vector v if it is at
least as good in all the objectives, i.e. uj ≥ vj if fj is to be maximized (uj ≤ vj if
fj is to be minimized); the domination is strict if at least one of the inequalities
is strict. Similarly, we define domination between any solutions according to the
d-vectors of their objective values. Given an instance x, the Pareto set P (x)
is the set of undominated d-vectors of values of the solutions. As usual we are
also interested in solutions that realize these values, but we will often blur the
distinction and refer to the Pareto set also as a set of solutions that achieve these
values.

We say that a d-vector u c-covers another d-vector v if u is at least as good as
v up to a factor of c in all the objectives, i.e. uj ≥ vj/c if fj is to be maximized
(uj ≤ cvj if fj is to be minimized). Given an instance x and ε > 0, an ε-Pareto

set Pε(x) is a set of d-vectors of values of solutions that (1+ε)-cover all vectors in



P (x); i.e., for every u ∈ P (x), there exists a u′ ∈ Pε(x) such that u′ (1+ε)-covers
u. For a given instance, there may exist many ε-Pareto sets, and they may have
very different sizes.

To study the complexity of the relevant computational problems, we assume
as usual that instances and solutions are represented as strings, that solutions are
polynomially bounded and polynomially recognizable in the size of the instance,
and that the objective functions are polynomially computable. In particular
this means that each value fj(x, s) is a positive rational whose numerator and
denominator have at most m bits, where m ≤ p(|x|), for some polynomial p.
It is shown in [PY1] that for every multiobjective problem in this framework,
for every instance x and ε > 0 there exists an ε-Pareto set Pε(x) of size at
most O((4m/ε)d−1). Furthermore, for every fixed d, there is an algorithm for
constructing a Pε(x) in time polynomial in |x| and 1/ε (i.e., a fully polynomial
time approximation scheme - FPTAS) if and only if there is a subroutine GAP
that solves the following problem in time polynomial in |x| and 1/ε: given x and
d-vector b, either return a solution whose vector dominates b or report that there
does not exist any solution whose vector is better than b by more than a (1 + ε)
factor in all of the coordinates. For simplicity, we will usually drop the instance
x from the notation and use GAPε(b) to denote the solution returned by the
subroutine. To make the presentation easier, we will also say that GAP returns
YES if it returns a solution, and returns NO otherwise.

We will assume from now on that the routine GAP exists, and will present our
algorithms using this subroutine as a black box. We say that such an algorithm
is generic, as it is not geared to a particular problem, but applies to all of the
problems for which we can construct an ε-Pareto set in polynomial time.

3 Two Objectives

3.1 Lower Bound

Theorem 1. There is no generic algorithm that approximates the size of the

smallest ε-Pareto set to a factor better than 3 in the biobjective case. In partic-

ular, there is a biobjective problem with a polynomial time GAP procedure that

cannot be approximated within a factor better than 3 unless P=NP.

Proof. Suppose we have minimization objectives (the same holds for maximiza-
tion or mixed objectives). Here we exploit the fact that there are points b on
which GAPδ(b) is not uniquely defined. Consider the following set of points

p = (px, py), q =
(

px(1 + ε) + 1,
py

1+ε

)

and r =
(

px(1 + ε) + 1,
py−1
(1+ε)

)

. Let

P = {p, q} and Q = {p, q, r}. The smallest ε-Pareto set for P consists of only
one point, while the smallest ε-Pareto set for Q must include at least two points.

Consider the points b where GAPδ(b) can return r; these are the points which
r dominates in both objectives. Now if we throw out the points where GAPδ

can also return q, we notice that for the points remaining GAPδ(b) can return
NO. But then, using the GAPδ function as a black box, we cannot say whether



or not r is part of the solution, and thus are forced to take at least two points,
even when we are presented with the set P .

We can make a symmetric observation if instead of q and r we have q′ =
(

px

1+ε , py(1 + ε) + 1
)

and r′ =
(

px−1
(1+ε) , py(1 + ε) + 1

)

. Here again using the GAPδ

routine we cannot decide if the point r′ is in the solution space or not. Combining
the two bad cases, we see that we cannot tell if the size of the optimal solution
is one point, as it is if P = {p, q, q′} or if it is three points, as it is when
P = {p, q, r, q′, r′}.

We can turn this into an NP-hardness proof by defining a suitable biobjective
problem so that the points r, r′ are present iff a given instance of the Partition
problem has a solution. Then it is NP-hard to determine whether the smallest
ε-Pareto set has 1 point or needs 3 points. Finally, if we wish, we can expand
the solution set replicating this configuration a number of times k on the plane
far apart from each other, and show that, for any k, it is NP-hard to deter-
mine whether the smallest ε-Pareto set has k points or needs 3k points. (Details
omitted.)

Note however, that the lower bound above is brittle, for if the algorithm is
allowed to return an ε′-Pareto set for any ε′ > ε, the proof no longer holds. In
fact we will show below, that for any ε′ > ε there is an algorithm that finds an
ε′-Pareto set Pε′ , of size no bigger than the optimal ε-Pareto set.

3.2 2-Objective Algorithms

We assume for concreteness that both objectives are to be minimized; the al-
gorithm is similar in the other cases. We recall here the original algorithm of
[PY1,PY2]. To compute an ε-Pareto set, and in fact prove a polynomial bound
on its size, consider the following scheme. Divide the space of objective values
geometrically into rectangles, such that the ratios of the large to the small co-
ordinates is (1 + ε′)=

√
1 + ε in all dimensions; equivalently if we switch to a

log-log scale of the objective vaues, the plane is partitioned arithmetically into
squares of size log(1+ ε′) (≈ ε/2 for small ε). Proceed to call GAPε′ on all of the
rectangle corner points, and keep an undominated subset of all points returned.
It is easy to see that this forms an ε-Pareto set. (To prove that this set cannot be
too large, note that we can discard points until there is at most one remaining
in each of the rectangles.) If m is the maximum number of bits in the numerator
and denominator of the objective functions, then the ratio of the largest to the
smallest possible objective value is 22m, hence the number of subdivisions in
each dimension is 2m/ log(1 + ε′) ≈ 4m/ε for small ε.

This algorithm gives no guarantees on the size of the ε-Pareto set it returns
with respect to P ∗

ε , the smallest ε-Pareto set. To compute a 3-approximation to
P ∗

ε we will proceed in two phases. We will first compute an ε′-Pareto set for a
particular ε′ < ε and then delete points from this set until we are left with a
small ε-Pareto set.

We begin again by partitioning the space into rectangles, this time with a
coordinate ratio of (1+ ε′) = 4

√
1 + ε. Look at the set of corner points, as a set of



points on the x-y plane. The algorithm consists of two repeating steps. ZAG(b)
returns a corner point p with minimum y value, such that GAPε′(p) = YES and
x(p) ≤ x(b), where x(p) is simply the x-coordinate of p. The second step, ZIG(b)
returns a corner point p with minimum x value, such that GAPε′(p) = YES and
y(p)/(1 + ε′) ≤ y(b).

In the first phase, the algorithm will discover the Pareto set by scanning the
range of possible values in order of decreasing x (increasing y) coordinate. Let
p be the point that has the maximum possible value in both objectives. Clearly
GAPε′(p) = YES. We then find the point q1 = ZIG(ZAG(p)). The point qi is
found as ZIG(ZAG(qi−1/(1 + ε′))). The first phase terminates when the ZAG
step returns NO. We then return the set Q = {q1, q2, . . . , qm}.

Lemma 1. The ZIGZAG algorithm above returns a set Q that (1 + ε′)2-covers
the set P of all solution points.

Proof. The algorithm maintains several invariants. First, the x coordinates of
points q1, . . . , qm form a strictly decreasing sequence, while the y coordinates
form a strictly increasing sequence. With that in mind, the claim below implies
by induction that Q is a (1 + ε′)2-cover.

Claim. The point qi (1+ε′)2-covers all of the points in P with their x-coordinate
between x(qi−1)/(1 + ε′) and x(qi)/(1 + ε′).

Proof. Suppose there exists some point p in the solution space, and qi−1, qi ∈ Q
such that x(qi)/(1+ ε′) ≤ x(p) ≤ x(qi−1)/(1+ ε′), and qi does not (1+ ε′)2-cover
p. In that case y(p) < y(qi)/(1+ε′)2. But then the y value of ZAG(qi−1)(1 + ε′)2

must be less than y(p) by definition of GAPε′ , and further, y(ZIG(ZAG(qi−1))) ≤
y(ZIG(qi−1)). Therefore y(qi)/(1 + ε′)2 ≤ y(p), a contradiction.

Thus Q forms an (1 + ε′)2-cover of P .

Lemma 2. The size of Q returned by ZIGZAG above, is no more than 11 times

the size of the smallest ε-Pareto set, P ∗
ε .

Proof. Let P ∗
ε be the smallest ε-Pareto set, and let p∗ be a point in P ∗

ε . We
charge those points in Q that are (1+ ε)-covered by p∗ to the point p∗. We prove
that every point p∗ is charged with at most 11 points of Q. We omit the details
of the proof.

In the second phase we reduce the set Q to make it a small ε-Pareto set.
Note that if R is any (1+ ε′)2-cover of the points in Q, then for any point in the
original solution space, there is some point in R that (1+ ε′)2(1 + ε′)2 = (1 + ε)-
covers it, in other words R is an ε-Pareto set. Further, since there is a total order
on points in Q, we can compute the smallest (1 + ε′)2-cover by a simple greedy
algorithm. At the end of phase 1 the points in Q are already sorted by their x
value. Given q1 we now find a point qi with the smallest x coordinate such that
qi/(1 + ε′)2 ≤ q1 in all dimensions. Add qi to R, remove points q1, . . . , qi−1 and
repeat until all of the points are covered.



Lemma 3. The size of the smallest (1+ ε′)2-cover of Q is no more than 3 · |P ∗
ε |.

Proof. Consider any point p∗ in P ∗
ε again, and let q be a point of Q that (1+ε′)2

covers p∗. If we add q to our cover, the points in Q that are (1+ ε) covered by p∗

but are not (1 + ε) covered by q are split into two disjoint groups: those above
q and those below q, each of which can always be (1 + ε′)2-covered by a single
point.

We now proceed to analyze the running time of the algorithm. Let k be the
total number of points in the optimal ε-Pareto set, k = |P ∗

ε |. Recall that m
denotes the number of bits in the objective functions. To avoid clutter in the ex-
pressions below, we will use ε in place of log(1+ε), which is a valid approximation
for small ε (for large ε simply drop this factor). In the end of the first phase we
produce O(k) points. To find each point, we called one execution of ZIG and one
of ZAG. Both of these can be implemented as binary searches on O(m/ε) points.
Therefore, the runtime of the first part is bounded by O(k log(m/ε)) GAPε′ calls.
The greedy algorithm as described is linear, and its time is subsumed by that of
the first phase. Therefore the overall runtime is O(k log(m/ε)) GAPε′ calls.

Theorem 2. The ZIGZAG algorithm with the cleanup step as described above

computes a 3-approximation to the smallest ε-Pareto set in time O(k log(m/ε))
GAPε′ calls.

Suppose that we are allowed to return an ε′-Pareto set for a value ε′ > ε and
let δ be such that (1 + ε′) = (1 + ε)(1 + δ)4. We can proceed in a way similar to
above: first divide the grid with the coordinate ratio of (1+δ), and use ZIGZAG
with GAPδ. In the cleanup phase, we look for the smallest (1 + δ)2(1 + ε) cover
of the points from the first phase.

Theorem 3. For (1 + ε′) = (1 + ε)(1 + δ)4 we can find an ε′-Pareto set R such

that |R| < |P ∗
ε | in time O(k log(m/δ)) GAPδ calls.

Proof. Since a (1+ ε)(1+δ)2 cover of a (1+δ)2-Pareto set will form a (1+ ε)(1+
δ)4 = (1 + ε′)-Pareto set, the only step we need to prove is that the size of the
smallest such cover is no bigger than the size of the smallest ε-Pareto set. We
proceed the same as above, by picking a point p∗ ∈ P ∗

ε . Then there’s a point
q ∈ Q such that q(1 + δ)2 covers p∗. That implies, that all of the points that
are (1 + ε)-covered by p∗ are (1 + δ)2(1 + ε)-covered by q. Therefore the smallest
(1 + δ)2(1 + ε) cover of all of the points in Q is of size no bigger than |P ∗

ε |

3.3 Computing the best k solutions

Now let’s consider the dual problem: We want to compute a set of k solutions
that collectively approximate as well as possible the Pareto curve. That is, we
wish to find a set S of k solutions that minimizes the value of the ratio r such
that S r-covers the whole set P of solutions. For k = 1, this solution is the
“knee” of the Pareto set.



As shown at the beginnining of the section, finding the knee (and more
generally the best k points) is NP-hard even in simple cases. However, we can
approximate the optimal ratio r, within any degree of accuracy 1 + δ. For the
knee case it is easy to do this using O(log2(m/δ)) GAPδ calls by a simple binary
search(we omit the details). For general k, we use our above algorithm for the
ε′ > ε case to show the following (proof omitted).

Theorem 4. We can approximate the smallest ratio 1+ε for which the ε-Pareto

set has at most k points to a factor of 1+ δ in time O(k log2(m/δ)) GAPδ calls.

3.4 Applications

The results here can be applied to all of the problems which have the required
Gap routine, e.g. the classes of problems shown in [PY1,PY2], including multiob-
jective flows and other convex problems, shortest path, spanning tree, matching
and cost-time trade-offs in query evaluation.

In some cases, better bounds can be proved, by using a sharper routine than
Gap. We discuss briefly the case of shortest paths, with two objectives, cost and
length. A stronger variant of the Gap problem in this case is the well-studied
Restricted Shortest Path (RSP) problem: given a bound b on the cost of the
path, minimize the length of the path subject to the bound on the cost. There
exists an FPTAS for RSP with running time O(en/ε), where n is the number of
nodes and e the number of edges [ESZ].

The RSP routine can be used directly to implement both the ZIG and the
ZAG steps in the algorithm. Hence we can compute the smallest ε-Pareto set
for bicriteria shortest paths in time O( enk

ε ) where k is the size of the smallest
ε-Pareto set.

4 Three Objectives

4.1 Lower Bound

Theorem 5. Any generic algorithm computing the smallest ε-Pareto set for a

problem with more than two objective functions cannot be c-competitive for any

constant c.

Proof. Just like in the case of 2 objectives we will exploit the fact that GAPδ(b)
is not uniquely defined for some points b. Again construct two sets, P and Q
such that GAPδ cannot distinguish between them, and the size of the optimal
ε-Pareto set for P has one point, and for Q has arbitrarily many points. Con-

sider a point p = (px, py, pz), and let qi =
(

px(1 + ε)i, py(1 + ε)k−i, pz

1+ε

)

for

i = 0 . . . k. Let P = {p, q0, . . . , qk}. Clearly, {p} is an ε-Pareto set for P . Let

ri =
(

px(1 + ε)i, py(1 + ε)k−i, pz−1
(1+ε)

)

. Notice that p does not (1 + ε)-cover any

of the ris and none of the qis cover p. So if we let Q = {p, q0, . . . qk, r0, . . . , rk},
the smallest ε-Pareto set for Q will have Θ(k) points. But again GAPδ cannot



distinguish between the two cases, since for all b where GAPδ(b) can return ri

it can either return qi or return NO. Therefore, we cannot conclude if the size of
the optimal solutoin is one point, or Θ(k) points for arbitrary k. Again, we can
turn this into an NP-hardness proof by specifying a suitable 3-objective problem.

In order to beat the lower bound above, we are forced to search for algorithms
which will return ε′-Pareto sets, for ε′ > ε when the original problem has 3 or
more objectives.

4.2 Three Objectives Algorithm

We will present an algorithm that is 4-competitive and returns an ε′-Pareto set
for (1 + ε′) > (1 + ε)2. Choose a suitable small δ > 0 such that (1 + ε′) >
(1+ ε)2(1+ δ)4; it is convenient to pick a δ such that (1+ ε) is a power of (1+ δ).
As before, we will be working with a geometric grid of the space of objective
values (equivalently, an arithmetic grid in the log-log scale). We let the ratio of
the grid in the x dimension be (1+δ) and in the y, z dimensions be (1+ε)(1+δ).
Let C be the set of all corner points of the grid where GAPδ returns a solution
(We will not be computing these points explicitly).

Assume for concreteness again that all objectives are to be minimized; the
algorithm is similar in the other cases. We will outline first the algorithm, then
prove its correctness, and finally sketch an efficient implementation.

The algorithm computes a set of corner points Q such that GAPδ(Q) =
{GAPδ(q) | q ∈ Q} is an ε′-Pareto set of size at most 4 times the size of the
optimal ε-Pareto set P ∗

ε . We say that a corner point r ∈ C is ineligible at
some time during the algorithm if there is a point q ∈ Q such that x(r) ≤
x(q)(1 + ε)2(1 + δ)2, y(r) ≤ y(q)(1 + ε)(1 + δ) and z(r) ≤ z(q)(1 + ε)(1 + δ);
the conditions are asymmetric because of the asymmetry in the grid ratios. The
corner point r is called eligible otherwise, and we let C/Q denote the set of
eligible corner points. For a set S of points, we use minx S to denote the subset
of points of S that have minimum x coordinate, similarly define miny S and
minz S.

Q = ∅
While C/Q 6= ∅ do the following:
Find the point p← miny minx minz C/Q.
S(p) = {s ∈ C : x(s) ≤ x(p)(1+ ε)(1+ δ), y(s) ≤ y(p), z(s) ≤ z(p)(1+ ε)(1+ δ)}.
T (p) = {t ∈ C : x(t) ≤ x(p), y(t) ≤ y(p)(1 + ε)(1 + δ), z(t) ≤ z(p)(1 + ε)(1 + δ)}.
Let s(p) ∈ miny S(p) and t(p) ∈ minx T (p) be minimal (undominated) points in
the corresponding sets.
Update Q← Q ∪ {s(p), t(p)}.

To simplify notation, we blur below the distinction between the selected set
Q of corner points and the corresponding set GAPδ(Q) = {GAPδ(q) | q ∈ Q} of
feasible solution points derived from it; note that every point q ∈ Q is dominated
by GAPδ(q).



Theorem 6. The set Q computed by the above algorithm forms a ε′-Pareto set,

and |Q| ≤ 4|P ∗
ε |.

Proof. Let P ∗
ε be the optimal ε-Pareto set. We will charge each point of Q to a

point of P ∗
ε so that every point p∗ ∈ P ∗

ε is charged with at most 4 points of Q.
The details of the proof are quite involved and are omitted from this extended
abstract.

Observe that given p, it is easy to find s(p) and t(p) in O(log(m/δ)) GAPδ

calls using the binary search technique, as in the 2-objective case. The question
remains of how to efficiently find p← minx minz C/Q.

An obvious solution is to scan through the z values from smallest to largest,
and at each z value use the 2 objective algorithm to find p. Ignore the point if
it is already covered by another point in Q and continue. However, this involves
both a linear scan through all z values (of cost at least O(m/δ)) and potentially
many points p which are covered by others in Q.

Lemma 4. We can compute p← miny minx minz C/Q using O(log(m/δ)) GAPδ

calls.

Proof. Since we consider points in increasing z value, we only need to consider
the x-y projection of the points in Q and maintain the frontier of points un-
dominated in x and y. These points are sorted in increasing order by their x
coordinate, as q1, . . . , ql. The x-y projection of the corner points that are eligi-
ble (i.e. not covered by Q) is the region below a rectilinear curve that passes
through a translation of the points qj . The convex corners of the region are

cj =
(

x(qj+1)
(1+ε)2(1+δ)3 ,

y(qj)
(1+ε)2(1+δ)2

)

, j = 0, . . . , l. (We let y(c0), x(cl) be the maxi-

mum posible values of the objectives, and omit the points whose values are below
the minimum.) Observe that every eligible point dominates one of the cj ’s. For

each j let hj = minimum z such that GAPδ

(

x(qj+1)
(1+ε)2(1+δ)3 ,

y(qj)
(1+ε)2(1+δ)2 , z

)

re-

turns YES. We can compute hj via a binary search in O(log(m/δ)) GAPδ calls
for each j. We maintain the hj ’s in a priority queue H . When we add a new point
to Q, we may eliminate some of the elements of Q (if they become dominated),
and we will create at most two more intervals. The computation of two more hj

values can be done in the time allotted.

Now, instead of doing a linear scan through the z values, we can immediately
jump to the next z value where we will be guaranteed to find a point in C/Q.
Once we find the z value, we limit our search to an appropriate interval to seek
the next point from C/Q. We can find the point using an algorithm similar to
the ZIGZAG algorithm presented for the 2-d case.

Theorem 7. The algorithm to compute the ε′-Pareto set Q can be implemented

to run in time O(|Q| log(m/δ)) GAPδ calls.



5 d Objectives

We have shown that for d ≥ 3 objectives we are forced to compute an ε′ > ε-
Pareto set, if we are to have a guarantee on its size. In fact, we can easily find
a log n-competitive algorithm for the problem. Let (1 + ε′) = (1 + ε)(1 + δ)2.

Theorem 8. For any ε′ > ε we can compute an ε′-Pareto set Q such that

|Q| ≤ |(log(d log(m/δ))|P ∗
ε | using O((m/δ)d) GAP calls.

Proof. The algorithm will proceed in two stages. In the first stage, we will com-
pute a δ-Pareto set, by using the original algorithm. Break up the solution space
using a geometric grid of size

√
1 + δ and call GAP√

1+δ on all of the corner

points, while keeping an undominated subset R. Note that |R| ≤ O(m/δ)d−1.
Now we can phrase the problem as a set cover problem. Let the universe be all
of the points in R, and for each r ∈ R associate a set Sr = { the points that
(1 + ε)(1 + δ)-cover r}. The smallest set cover, will comprise an (1 + ε)(1 + δ)2-
Pareto set, Q. Since we can compute a log n approximate for the Set Cover
problem on a universe of size n, the result follows.

Unfortunately, the algorithm above is the best that we know of for d > 3. There
are two aspects in which this algorithm is inferior to the ones we presented earlier
(even for fixed d): The approximation ratio is not constant, and the running time
grows with m rather than log m.

We show that (unless P=NP) the above algorithm is the best possible in very
high dimensions, even if the points are given explicitly as input.

Theorem 9. The task of computing the smallest ε-Pareto set on d objectives is

NP-hard to approximate to within log d even if all the solution points are given

explicitly.

Proof. We will prove this via a gap-preserving reduction from SetCover. In a set
cover instance we are given a universe of elements U and subsets S1, . . . , Sl ⊆ U .
We are then asked to select a minimum number of subsets Si such that their
union is U . Our reduction is as follows: for each element ui ∈ U add a point pi

in the solution space, whose ith coordinate is 1/(1+ ε) and all other coordinates
are at ∞. For each set Sj we add a point qj such that the ith coordinate of qj is
1 if ui ∈ Sj and (1 + ε)3 otherwise. Finally, we add a point r with value (1 + ε)
in all dimensions.

Let Pε be the smallest ε-Pareto set. Since r cannot be (1 + ε)-covered by
any other points, r must be part of the final solution. Since every point pi is
(1 + ε)-covered in Pε, the sets corresponding to the qis must form a valid set
cover. Finally it is easy to see that this approximation is gap preserving and the
theorem follows.

Observe that the reduction above breaks down if we are allowed to relax the
ε value, since for (1 + ε′) = (1 + ε)2 the ε′-Pareto set will always contain just
the single point r. We show below that in high dimensions we cannot achieve
a constant factor approximation to the ε-Pareto set, even if we are allowed to
relax ε by an arbitrary constant.



Theorem 10. Let (1 + ε′) < (1 + ε)log
∗ d/3. Even if all the solution points are

given explicitly in the input, it is NP-hard to compute an ε′-Pareto set whose

size is within a log∗d factor of the smallest ε-Pareto set.

Proof. We will use a reduction from assymetric k-center along with a recent
result by Chuzhoy et al. [CG+] to finish the proof. In the assymetric k-center
problem we are given a set of points V with distances, dist(u, v) that must satisfy
the triangle inequality, but may be assymetric: i.e. dist(u, v) 6= dist(v, u). We are
asked to find a subset U ⊆ V , |U | = k, that minimizes dist∗ = max

v∈V
min
u∈U

dist(u, v).

Let us chose a value dist′ which will specify later, and encode the asymmetric
k-center problem as follows. For each vi ∈ V create a point pi such that, the
ith coordinate of pi is 1, and the jth coordinate is (1 + ε)−ddistij/dist′e. Notice
that if dist′ = dist∗ then the smallest ε-Pareto set will contain precisely k points
and correspond to the optimal solution. In a similar way if we can compute a
(1+ ε)a Pareto set of size less than ck then we can approximate dist∗ to a factor
of a while using less than ck centers. Thus, if we do a binary search on dist′ to
find lowest distance that still uses fewer than ck centers, we can obtain an (a, c)
approximation to the asymmetric k-center problem. However, this problem is
hard to approximate to a factor of log∗ n even when using (1

3 log∗ n)k centers.
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