
Optimal Envy-Free Pricing with Metric Substitutability

Ning Chen
∗

University of Washington
Seattle, WA

ning@cs.washington.edu

Arpita Ghosh
Yahoo! Research
Santa Clara, CA

arpita@yahoo-inc.com

Sergei Vassilvitskii
Yahoo! Research

New York, NY
sergei@yahoo-inc.com

ABSTRACT
We study the envy-free pricing problem faced by a profit
maximizing seller when there is metric substitutability among
the items — consumer i’s value for item j is vi − ci,j , and
the substitution costs, {ci,j}, form a metric. Our model is
motivated from the observation that sellers often sell the
same product at different prices in different locations, and
rational consumers optimize the tradeoff between prices and
substitution costs. While the general envy-free pricing prob-
lem is hard to approximate, the addition of metric substi-
tutability constraints allows us to solve the problem exactly
in polynomial time by reducing it to an instance of weighted
independent set on a perfect graph.

When the substitution costs do not form a metric, even in
cases when a (1 + ε)-approximate triangle inequality holds,
the problem becomes NP -hard. Our results show that tri-
angle inequality is the exact sharp threshold for the problem
of going from “tractable” to “hard”.

We then turn our attention to the multi-unit demand case,
where consumers request multiple copies of the item. This
problem has an interesting paradoxical non-monotonicity:
The optimal revenue the seller can extract can actually de-
crease when consumers’ demands increase. We show that in
this case the revenue maximization problem becomes APX-
hard and give an O(logD) approximation algorithm, where
D is the ratio of the largest to smallest demand. We ex-
tend these techniques to the more general case of arbitrary
non-decreasing value functions, and give an O(log3D) ap-
proximation algorithm.

Categories and Subject Descriptors
F.2 [Analysis of algorithms and problem complexity]

General Terms
Theory, Algorithms

∗Part of the work was done while visiting Yahoo! Research.

1. INTRODUCTION
It is common to see a seller pricing the same product differ-
ently at different locations. The latest iPod costs $299 in the
US, but is £199(≈ $392) in the U.K. Similarly, the online
retailer Amazon prices some book titles very differently on
amazon.com and amazon.co.uk, even though international
shipping is possible. Even within the same geographic area,
one can often find the same item sold for different prices at
different locations. For example, a vendor will frequently set
the price of gas differently at different gas stations. In the
near future, a consumer interested in buying, say gas, will
be able to use her cell phone to instantaneously find out the
prices at the different locations and the distance from her
current location to the different points of sale. As a result,
rational consumers will be able to optimize the following
tradeoff — buy the item they need at a nearby location or
pay a transportation cost to buy the item at a more distant
location. Assuming that consumers are rational in this way,
how should a seller price items at different locations to max-
imize the total revenue? This question is the focus of this
paper.

In our model each consumer lies on some node of an edge-
weighted graph G = (V,E), and has a value vi, which is
the maximum price she is willing to pay for the product.
The weight of an edge (i, j) in the graph is the commute
cost from i to j. Then, given the prices at all locations, each
consumer will choose the location that maximizes her utility,
i.e., the difference between her value for the product and the
total expense (price plus commute cost). We are interested
in the problem facing a profit-maximizing seller — choose a
price for each location to maximize the total revenue, i.e.,
the sum of prices paid by consumers for the items (note that
the commute costs spent by consumers are not collected by
the seller).

This problem falls into the setting of the unit-demand envy-
free pricing problem, introduced by Guruswami et al. [13].
There is a single seller with m items and there are n con-
sumers with values for each of these items. Given a vector
of prices for the items, each consumer buys an item which
maximizes her utility. The goal of the seller is to set prices
for the items to maximize the total revenue. Guruswami
et al. [13] showed that the problem in general is APX-
hard, and provided an O(logn)-approximation algorithm.
Briest [3] recently showed that given appropriate complexity
assumptions, the problem can not be approximated within
O(logε n) for some ε > 0.

Our problem is a special case of the envy-free pricing prob-
lem, where there is metric substitutability among the items:
A consumer’s values for different items are related in terms
of the metric space defined by the shortest path distance in
G. That is, consumer i’s value for the item at location j
is vi − ci,j , where ci,j is the shortest path distance between
her location and location j in G. In this formulation the
distances (i.e., substitutability) between items, {ci,j}, form
a metric space. As we will see below, this simple change
drastically changes the complexity of the problem — while
the envy-free pricing problem is NP -hard, the problem with
metric substitutability can be solved exactly in polynomial
time.

1.1 Results and Algorithmic Ideas
Our main result is the following:

Theorem 1.1. The profit-maximizing envy-free pricing
problem with unit demand and metric substitutability can be
solved exactly in polynomial time.

The tradeoff in revenue maximization arises since consumers
are not constrained to buy at their own locations: The
seller must decide whether it is more profitable to charge
a higher price at a particular location, thereby extracting
more revenue from nearby high-valued nodes who do not
have a cheaper option, or charge a lower price and make
up the difference in volume (since more consumers would
now be able to afford the item). What makes the problem
complicated in the general setting is that the relationship
between prices on different items can be quite complex, and
potentially depends on the (arbitrary) preferences of the in-
dividual consumers. In our setting, however, the fact that all
of the consumers’ values are related through a metric space
implies a transitivity condition — if consumer i prefers (to
buy the item at) location j and consumer j prefers location
k, then i prefers k as well. This transitivity allows us to con-
struct a directed acyclic graph (DAG) on the set of nodes
with the following property: If a node is being charged its
full value, full revenue can not be extracted from any of its
descendants in this DAG. The DAG structure and transi-
tivity capture the special structure of our problem and are
both crucial in deriving the algorithm.

We call a node which pays its full value in a pricing solution
a price-setter. The DAG defined above says which subsets
of nodes can simultaneously be price-setters. The revenue
maximization problem then reduces to finding the optimal
subset of price-setters. To that end, we transform the DAG
into a node-weighted graph H with the property that the op-
timal revenue is exactly the weight of the maximum weighted
independent set in H.

While the independent set problem is usually hard, it can be
solved in polynomial time in perfect graphs by the seminal
result of Grötschel et al. [12]. We prove, using the structure
of the DAG, that H is a perfect graph by showing that H
is a Berge graph and applying the Strong Perfect Graph
Theorem [8], which states that a graph is perfect if and only
if it is a Berge graph. Putting these together yields the
desired result.

The fact that the underlying substitution costs, c, satisfy
triangle inequality is crucial in obtaining the result above.
In fact, in cases when the items do not lie in a metric space,
or even when the space satisfies a (1 + ε)-approximate tri-
angle inequality (i.e., ci,k ≤ (1 + ε)(ci,j + cj,k)), for any
given ε > 0, the problem becomes NP -hard (Theorem 6.1).
Given appropriate complexity assumptions, the problem is
even hard to approximate to a ratio better than O(logε n) for
some ε > 0 (Theorem 6.2). Our result shows that tractabil-
ity of the envy-free pricing problem depends crucially on the
existence of the underlying metric space. This gives an in-
teresting natural instance for which triangle inequality is the
exact sharp threshold of going from “tractable” to “hard”.

Multi-Unit Demand Setting. We then turn our attention
to the multi-unit demand case, where in addition to a value
vi, consumer i also has a demand di, i.e., she needs di copies
of the item (such as multiple gallons of gas). In this setting,
when a consumer buys from a different location, she pays the
commute cost only once, regardless of her demand. That is,
consumer i’s value for buying di copies of the item at location
j is divi − ci,j .

The multi-unit demand problem has a surprising non-mo-
notonicity, which we call the Demand Paradox: While one
would expect the optimal revenue to increase monotonically
with increasing demand, this is not true (Example 7.1).
That is, an increase in demand can actually decrease the
optimal revenue extractable. This is reminiscent of a sim-
ilar “Braess-style” paradox observed in selfish routing [14]
and in “hiring-a-team” markets [7].

The Demand Paradox is one of the reasons why the multi-
unit demand setting is technically quite different from the
unit demand setting, and the algorithm established above
does not produce an optimum solution. To understand why,
note that the solution we are looking for is a per-unit price
vector, but the effective per-unit costs for consumers are no
longer related through a metric space — each consumer’s
effective per-unit cost is scaled by her individual demand,
which differs across consumers. Indeed, we show that the
revenue maximization problem is APX-hard in the multi-
unit demand setting, even when all demands are no more
than 5 (Theorem 7.1).

We present an O(logD)-approximation algorithm to maxi-
mize revenue for this problem, where D is the ratio of the
largest to smallest demand (Theorem 7.2). We first show
that when all of the demands are identical, the problem
has a polynomial time solution. We then bound the loss in
the paradox described above — although increasing demand
may decrease total revenue, it will decrease it by at most a
factor of D. These two facts together yield the desired re-
sult.

Finally, we study the more general setting where consumers
can have different marginal values for each copy of the item
they obtain. Specifically, each consumer now has a non-
decreasing value function fi(xi), which gives her value as a
function of the number of copies xi of the item she owns. For
this more general setting, we give anO(log3D)-approximation
algorithm to maximize revenue (Theorem 7.3). Our algo-

rithm uses the above O(logD)-approximation algorithm as
a subroutine; the proof proceeds by analyzing the effect of
the change of values and demands on the total revenue.

1.2 Related Work
Envy-free pricing captures the notion of fairness of equilib-
rium pricing in economics (for related work, see, e.g., [10, 11]
and the references within), and has recently received much
attention in computer science [1, 13, 4, 9, 2, 3, 5, 6].

The problem of revenue maximization with envy-free pricing
was initiated by Guruswami et al. [13]. In [13], it was shown
that the problem of computing the optimal vector of prices,
assuming unit demand and no structure on the valuations, is
APX-hard. An O(logn)-approximation algorithm was also
provided [13]. Briest [3] recently showed that given appro-
priate complexity assumptions (the hardness of the balanced
bipartite independent set problem in constant degree graphs
or refuting random 3CNF formulas), the envy-free pricing
problem can not be approximated within O(logε n) for some
ε > 0. For the multi-unit demand setting, Briest [3] showed
that the problem is hard to approximate within a ratio of
O(nε) for some ε, unless NP ⊆

T
ε>0BPTIME(2n

ε

).

When consumers desire a fixed subset of items (i.e., con-
sumers are single-minded), a logarithmic approximation al-
gorithm was derived in [13] and an almost tight lower bound
was provided by Demaine et al. [9]. A few special cases of
single-minded demand, such as the tollbooth problem where
consumers desire paths in a graph, were studied in [13, 4].
Balcan and Blum [2] studied the graph vertex pricing prob-
lem where each consumer requests the two endpoints of an
edge in a given graph and the goal is to set prices on ver-
tices to maximize the total revenue. The graph vertex pric-
ing problem has a similar flavor to our model, for which a
4-approximation algorithm was given in [2].

Other pricing schemes (min-buying, max-buying, or rank-
buying, where consumers buy an item with the smallest
price, highest price, or highest ranking according to their
preference) were studied in [15, 1, 5], where different algo-
rithmic and lower bounds results were given.

2. PRELIMINARIES
Our model is the following. A single seller with unlim-
ited supply sells an item on an underlying undirected, edge-
weighted, graph G = (V,E). We assume the weights of
edges are positive. For any pair i, j ∈ V , the commute cost
ci,j between i and j is the weight of the shortest path from
i to j in G. Note that the costs satisfy ci,i = 0 for any i ∈ V
and the triangle inequality, i.e., ci,j ≤ cj,k + ck,i for any
i, j, k ∈ V .

At every node i ∈ V , there is a user1 with value vi — this
is the maximum value that the user at node i, which we
abbreviate as user i, is willing to pay for the item. We
suppose that each user is only interested in one copy of the
item, i.e., has unit demand. User i can either buy an item
at i, or at some other location j in the graph, in which case
she incurs an additional cost of ci,j .

1We generalize our results to multiple users at each node in
Section 5.

The seller determines a price pj for each location j ∈ V (note
that pj is the price at location j, and not (necessarily) the
price paid by user j). If user i buys an item from location
j, we say i is a winner and her utility is vi − (pj + ci,j). In
this case, ri = pj is the revenue that the seller obtains from
user i (note that the commute cost ci,j spent by user i is not
collected by the seller). If i does not buy from any location,
her utility is 0 and correspondingly ri = 0. Given the price
vector on all nodes, each user i decides which location to
buy the item rationally, i.e., to maximize her utility.

The total revenue to the seller is defined by
P
i∈V ri. The

question we study is the following: Given the underlying
graph G and value vi for each user, set a price pj for each
node j ∈ V , such that the total revenue is maximized, given
that users’ choices of locations are rational.

3. CHARACTERIZATIONS OF THE OPTI-
MAL PRICING SOLUTION

We now make some fundamental observations about the
structure of the problem. Given a price vector p, we say
user i ∈ V prefers location j if pj + ci,j ≤ pk + ci,k for any
k ∈ V .

Proposition 3.1 (Transitivity). Given any price vec-
tor p, if user i prefers location j and user j prefers location
k, then i also prefers location k.

Proof. Since j prefers location k, pj ≥ pk + cj,k. By
triangle inequality, we have

pk + ci,k ≤ pk + ci,j + cj,k ≤ pj + ci,j ≤ pi,

since i prefers location j; so i also prefers location k.

Before we consider the optimization problem, we should first
fix a rule for breaking ties. Assume user i prefers both lo-
cation j and k, i.e. pj + ci,j = pk + ci,k ≤ p` + ci,` for any
` ∈ V . In this case, which node should i pick to buy the
item, j or k? In this work, we assume i chooses a location
with the smallest commute cost (if ci,j = ci,k, i chooses one
arbitrarily). This tie-breaking rule is consistent with our
common knowledge that given the same utility, users do not
waste more time on commuting.

Proposition 3.2. Let p be an optimal price vector. Then
every winner buys an item from her own location. Therefore,
for any winner i, pi ≤ vi.

Proof. Assume to the contrary that user i buys an item
from location j. By the tie-breaking rule we discussed above,
we know pj + ci,j < pi. We define another price vector p′ as
follows: let p′i = pj + ci,j and p′k = pk for any k 6= i. Given
price vector p′, for any k 6= i, assume user k prefers location
` under price vector p. Note that

pj + ck,j ≤ pj + ck,i + ci,j < pi + ck,i

which implies ` 6= i. Hence, we have

p′` + ck,` = p` + ck,` ≤ pj + ck,j ≤ pj + ck,i + ci,j = p′i + ck,i.

Thus, k still prefers ` under price vector p′, which implies
the revenue obtained from k does not decrease with price
vector p′. For user i, observe that p′i ≤ p′k + ci,k for any
k ∈ V . Therefore, user i buys an item from its own location
and contributes a revenue of p′i, which is larger than its
contribution of pj under price vector p, a contradiction.

Definition 3.1. Given an optimal price vector p, we say
a node i is a price-setter if pi = vi.

The notion of price-setters will be central to many of the
arguments. We begin by showing that all prices are deter-
mined by price-setters.

Proposition 3.3. Let p be an optimal price vector. If
user i is a winner and pi < vi, there is a price-setter j
such that pi = pj + ci,j. In this case, we say the price pi is
determined by pj.

Proof. Assume to the contrary that there is a winner
i such that pi < vi and no such price-setter exists. We
recursively define a subset S ⊆ V as follows: Initially S =
{i}. For any j ∈ S, if there is k ∈ V \ S such that pj =
pk + cj,k, then let S ← S ∪ {k}.

We argue that for any winner j ∈ S, pj < vj . By Propo-
sition 3.2, we know pj ≤ vj . Thus, it suffices to show the
inequality is strict. Assume otherwise, there is such a j ∈ S
and pj = vj , i.e. j is a price-setter. Consider the sequence
i = i1, i2, . . . , im = j of adding node j into S. By the con-
struction of S, we have

pi = pi1 = pi2 + ci1,i2

= pi3 + ci2,i3 + ci1,i2
...

= pim +

m−1X
j=1

cij ,ij+1

≥ pj + ci,j

On the other hand, since i is a winner, by Proposition 3.2, we
know pi ≤ pj + ci,j . Thus, pi = pj + ci,j , which contradicts
our assumption.

For any winner j ∈ S, we claim that j does not prefer any
location in V \ S. Suppose instead that j prefers k ∈ V \
S, which implies pj ≥ pk + cj,k. But since j is a winner,
we know pj ≤ pk + cj,k, which implies that equality holds.
By construction of S, k should be put into S as well, a
contradiction.

Let ε > 0 be sufficiently small so that pj + ε < vj for any
winner j ∈ S. We define a new price vector p′ by p′j = pj + ε
for any j ∈ S and p′j = pj otherwise. For any winner k ∈
V \S under price vector p, since we only increase prices from
p to p′, k still prefers its own location and pays the same
amount under price vector p′. For any winner j ∈ S, by
making ε sufficiently small, j still does not prefer any nodes
not in S. Since the price of all nodes in S is increased by ε,
we know j still prefers its own location under price vector p′.

But now the contribution of j to the revenue is ε more than
its contribution under price vector p, which contradicts the
optimality of p.

Hence, any optimal solution can be characterized in terms
of the set of price-setters in that solution.

4. THE MAIN ALGORITHM
In this section, we describe our algorithm for implicitly com-
puting prices to maximize the seller’s revenue, leading to
the proof of Theorem 1.1. To begin with, we use the idea
of price-setters to construct a directed acyclic graph on the
nodes of G with the property that if a node is chosen as a
price-setter, all of its descendants are not price-setters. We
then construct a new graph H (Section 4.2) from this graph
to help choose the optimal subset of price-setters. In Sec-
tion 4.3, we show that computing the optimal price vector
of G is equivalent to computing the maximum weighted in-
dependent set of H. Finally we will show that the latter can
be solved in polynomial time by proving that H is a perfect
graph (Section 4.4).

4.1 Ancestors and Descendants
For each i ∈ V , define

D(i) = {j ∈ V | vi + cj,i < vj}

to be the set of “descendants” of i, i.e. the set of users which
would prefer to buy the item from location i (at a price pi =
vi) rather than at their own location (at a price pj = vj).
We also define

A(i) = {j ∈ V | vj + ci,j < vi} = {j ∈ V | i ∈ D(j)}

to be the set of “ancestors” of i. That is, A(i) is the set of
locations that user i prefers to buy (at the price equal to the
value of those users) rather than at her own location (at a
price pi = vi). Let ni = |A(i)|.

The intuition behind these definitions is characterized by the
following simple lemmas.

Lemma 4.1. Let p be an optimal price vector. If i ∈ V
is a winner and price-setter, i.e. pi = vi, then any user
j ∈ A(i) does not win and every user j ∈ D(i) wins.

Proof. For any j ∈ A(i), we have vj + ci,j < vi. If j
wins, by Proposition 3.2, we know pj ≤ vj . Thus, pj+ci,j ≤
vj + ci,j < vi = pi, and user i would prefer location j rather
than its own location, a contradiction.

For any j ∈ D(i), we have pi + cj,i = vi + cj,i < vj . Thus,
node j always wants to buy the item (at least from location
i with a positive utility of vj − (pi + cj,i)).

Lemma 4.2. For any i, j, k ∈ V , if j ∈ A(i) and k ∈ A(j),
then k ∈ A(i).

Proof. By the conditions, we have vj + ci,j < vi and
vk+cj,k < vj . Thus, vk+ci,k ≤ vk+ci,j+cj,k < vj+ci,j < vi,
which implies that k ∈ A(i).

i1 i2 i3 i4 ini ini+1 T (i)

T (πi(1)) T (πi(2)) T (πi(3)) T (πi(ni − 1)) T (πi(ni))

Figure 1: Construction of graph H.

The definitions of A(i) and D(i) allow us to rewrite G as
a directed graph G′ = (V,E′), where the direction is from
“ancestors” to “descendants”. That is (j, i) ∈ E′ if j ∈ A(i).
Note that the above lemma implies that G′ is acyclic. This
acyclic structure is helpful to understand the construction
and proofs below.

4.2 Construction of Graph H
For each node i ∈ V , define an ordering πi on all nodes in
A(i) according to the non-decreasing order of vj +ci,j . That
is, for any 1 ≤ j < k ≤ ni, vπi(j) + ci,πi(j) ≤ vπi(k) + ci,πi(k)
(ties are broken arbitrarily), where ni = |A(i)|.

We construct an undirected node-weighted graph H from G
as follows. For each node i ∈ V , we create ni + 1 isolated
vertices T (i) = {i1, i2, . . . , ini+1} in H. Let T =

S
i∈V T (i)

be the set of vertices of H. The weight of each vertex in
T (i) is defined by

w(i1) = vπi(1) + ci,πi(1)

w(i2) =
`
vπi(2) + ci,πi(2)

´
−
`
vπi(1) + ci,πi(1)

´
...

w(ini) =
`
vπi(ni) + ci,πi(ni)

´
−
`
vπi(ni−1) + ci,πi(ni−1)

´
w(ini+1) = vi −

`
vπi(ni) + ci,πi(ni)

´
Note that by the definition of A(i) and πi, all weights de-
fined above are non-negative. Further, it is easy to see thatP
k∈Ti w(k) = vi.

For each iα ∈ T (i), α = 1, . . . , ni, we connect iα to all
vertices in T (k) for any k ∈ A(i) preceding πi(α) in the
ordering πi. For the last vertex ini+1, we connect it to all
vertices in T (k) for all k ∈ A(i), as shown in Figure 1. That
is, i2 is connected to all vertices in T (πi(1)), i3 is connected
to all vertices in T (πi(1)) and T (πi(2)), etc. It can be seen
that for any α < β, the set of neighbors of iα is a subset of
the neighbors of iβ .

Graph H has the following transitive property.

Lemma 4.3. For any node i, j, k ∈ V , where j ∈ A(i) and
k ∈ A(j), if jβ is connected to iα, then kγ is connected to iα
as well, for any kγ ∈ T (k).

Proof. Since j ∈ A(i) and k ∈ A(j), we know k ∈ A(i)
by Lemma 4.2 and π−1

i (k) < π−1
i (j). Since jβ is connected

to iα, we know iα connects to all vertices preceding j in the

ordering of πi, which includes node k. Hence, kγ is connected
to iα.

4.3 Connection between H and the Optimal
Pricing Solution

In this subsection, we establish the connection between the
maximum independent set of H and the optimal pricing so-
lution of G, which plays the key role of proving Theorem 1.1.

Lemma 4.4. The value of the maximum weighted inde-
pendent set on H is equal to the revenue obtained from the
optimal price vector on G.

The intuition behind the lemma is the following: Depend-
ing on which ancestors of node i are included as winners in
addition to i, the amount of revenue that can be extracted
from i changes. The construction of H, however, ensures
that the contribution of i to the total revenue is equal to the
contribution of T (i) to the independent set solution. We
prove this formally below.

Proof. (Prices ⇒ IS) First we show how to construct
an independent set solution of H from an optimal pricing
solution of G. Let p1, . . . , pn be an optimal price vector of
G and r1, . . . , rn be the payment of each user.

Consider any winner i, by Proposition 3.2, we know ri = pi.
If ri = vi, i.e., i is a price-setter, let T ′(i) = T (i). Otherwise,
assume pi is determined according to pj , i.e., j is a price-
setter and pi = vj + ci,j = pj + ci,j (by Proposition 3.3, we
know such a j exists). Note that vj + ci,j = pi < vi, thus
j ∈ A(i). If there are multiple such price-setters, let j be the
one with the smallest index in the ordering πi. Let ` ∈ A(i)

be the smallest index such that
P`
α=1 w(iα) = vj + ci,j = pi

(by the construction of H, it can be seen that such an index
always exists). In this case, let T ′(i) = {i1, . . . , i`} ⊆ T (i).

For any user i that does not win, define T ′(i) = ∅. We
claim that T ′ =

S
i∈V T

′(i) defines an independent set on
H. Otherwise, there exist i, k ∈ V and iα ∈ T ′(i), kγ ∈ T ′(k)
such that iα and kγ are connected. Assume without loss of
generality that k ∈ A(i). If i is a price-setter, i.e., pi = vi,
then T ′(i) = T (i). By Lemma 4.1, we know no users in A(i)
are winners, which implies that T ′(k) = ∅, a contradiction.
If i is not a price-setter, let j ∈ V be the price-setter that
is used to determine price pi and T ′(i). Similarly, we know
j ∈ A(i) and T ′(j) = T (j). There are two possible cases.

Case 1. π−1
i (k) > π−1

i (j). In this case, by the construction
of H, there is no edge between T ′(i) and T ′(j). Each ver-
tex in T ′(i) only connects to those vertices in T ′(`) where
π−1
i (`) < π−1

i (j) by construction. In other words, no vertex
in T ′(i) is connected to T ′(k), i.e., iα and kγ can not be
connected.

Case 2. π−1
i (k) < π−1

i (j). Note that T ′(k) 6= ∅, thus user
k is a winner. If k itself is a price-setter, i.e., pk = vk, then

pk + ci,k = vk + ci,k ≤ vj + ci,j = pj + ci,j = pi

where the inequality follows from π−1
i (k) < π−1

i (j). If it
is a strict inequality, then user i prefers location k rather

than her own location, which contradicts Proposition 3.2.
If it is an equality, then both j and k are price-setters of
pi, but it contradicts the smallest index of choosing j when
defining T ′(i). If k is not a price-setter, we can get a similar
contradiction by considering the node that determines pk
and comparing it with node j.

Therefore, T ′ is an independent set of H andX
k∈T ′

w(k) =
X
i∈V

X
j∈T ′(i)

w(j) =
X
i∈V

ri.

Hence, we have shown that for any optimal price vector of
G, the revenue is equal to the weight of an independent set
of H.

Proof. (IS ⇒ Prices) In the other direction, let T ′ be
a maximum weighted independent set solution on H. Con-
sider any node i ∈ V ; let T ′(i) = T ′ ∩ T (i). The basic
observation is that if iα ∈ T ′(i), then iβ ∈ T ′(i) for any
β ≤ α by the construction of H, since T ′ is a maximum
weighted independent set on H. Define pi =

P
j∈T ′(i) w(j).

Note that pi ≤ vi, since
P
k∈T (i) w(k) = vi, and pi = vi only

when T ′(i) = T (i). If T ′(i) = ∅, define pi =∞.

We first consider any node i ∈ V where pi < vi. Assume
T ′(i) = {i1, . . . , iα} ⊂ T (i). Observe that iα+1 /∈ T ′(i) be-
cause there is a vertex jβ such that jβ ∈ T ′ which connects
to iα+1. However, jβ is not connected to any vertices in
T ′(i). The only possible such node j is from the “ancestor”
set of i, i.e., j ∈ A(i). We claim that pj = vj . Otherwise,
by the same argument, there is a vertex kγ ∈ T ′ such that
k ∈ A(j) (and thus, k ∈ A(i)). By the construction of H,
however, it can be seen that iα connects to kγ , a contradic-
tion to the independent set solution. Hence, pj = vj , and
by construction of H, pi = pj + ci,j .

We claim that we can obtain a revenue of pi from each user
i with T ′(i) 6= ∅. Consider any such a node i, and let k =
arg min pj + ci,j (if there are multiple choices, let k be the
one such that no node in A(k) is a winner). If pi ≤ pk+ci,k,
i prefers its own location at price pi. Otherwise, if pi >
pk + ci,k, we consider two cases.

Case 1. pi = vi. By the definition of pi, we know T ′(i) =
T (i), i.e., all vertices in T (i) are in the independent set so-
lution T ′. If pk = vk, then T ′(k) = T (k) and vi > vk + ci,k,
which implies k ∈ A(i). However, by the construction of H,
T (i) and T (k) can not be both in T ′, a contradiction. If
pk < vk, by the above argument, we know there is ` ∈ A(k)
such that p` = v` and pk = p` + ck,`. Hence,

pi > pk + ci,k = p` + ck,` + ci,k ≥ p` + ci,`

which contradicts the selection of k.

Case 2. pi < vi. By the above argument, we know there is
j ∈ A(i) such that pj = vj and pi = pj+ci,j . If pk = vk, then
k ∈ A(i), since vk + ci,k = pk + ci,k < pi ≤ vi. Furthermore,
we know π−1

i (k) < π−1
i (j), since vk + ci,k < pi = pj + ci,j =

vj + ci,j , which implies there is vertex in T ′(i) that connects
all vertices in T ′(k), a contradiction. If pk < vk, similarly,
there is ` ∈ A(k) such that p` = v` and pk = p`+ck,`. Again,
` ∈ A(i) since v`+ci,` ≤ p`+ci,k+ck,` = pk+ci,k < pi ≤ vi,

i1α1

i2α2

i3α3

i4α4
i5α5

ikαk

?
i1α1

i2α2

i3α3

i4α4
i5α5

ikαk

?

Figure 2: Proof of Cn free and co-Cn free.

and π−1
i (`) < π−1

i (j), since v` + ci,` < pi = pj + ci,j =
vj + ci,j . Hence, we can get the same contradiction.

Therefore, the value of the maximum weight independent set
of H is equal to the revenue obtained from a pricing solution
of G.

4.4 H is a Perfect Graph
Let Cn be a cycle composed of n nodes, and co-Cn be the
complement of Cn. A subgraph G′ of a graph G is said to
be induced if, for any pair of vertices i and j of G′, (i, j) is
an edge of G′ if and only if (i, j) is an edge of G. A graph
is called a Berge graph if it does not contain Cn and co-Cn
as an induced subgraph, for n = 5, 7, 9,

Lemma 4.5. H is a Berge graph.

Proof. For the purpose of this proof, we define a direc-
tion on edges in H as follows: For any edge (jβ , iα) in H,
where jβ ∈ T (j) and iα ∈ T (i), assume j ∈ A(i). Let the
direction be jβ → iα. That is, the direction is similar to
G′ defined in Section 4.1, i.e., from “ancestors” to “descen-
dants”.

(Cycles). First we show that no induced subgraph of H is a
cycle Cn for n = 5, 7, 9, · · · . Suppose there is such a cycle on
a subset of vertices

˘
i1α1 , i

2
α2 , . . . , i

k
αk

¯
, where k ≥ 5 is odd.

Assume without loss of generality that we have a direction
i1α1 → i2α2 . Now consider the link between i2α2 and i3α3 . We
claim the direction must be i3α3 → i2α2 . Otherwise, since
i1 ∈ A(i2) and i2 ∈ A(i3), then there must also be an edge
between i1α1 and i3α3 by Lemma 4.3. Proceeding this way, as
Figure 2 shows, there is a contradiction for the direction of
the link between ikαk and i1α1 , since k is odd and at least 5.

(Co-cycles). Next we show that no induced subgraph of H is
co-Cn, for n = 5, 7, 9, · · · . Note that C5 = co-C5, thus it suf-
fices to consider the case where n ≥ 7. Suppose there is such
a subgraph on a subset of vertices

˘
i1α1 , i

2
α2 , . . . , i

k
αk

¯
, where

the vertices are numbered so that the missing edges are
(i1α1 , i

2
α2), . . . , (ik−1

αk−1 , i
k
αk), (ikαk , i

1
α1). Without loss of gener-

ality, assume that we have a direction i3α3 → i1α1 . The direc-
tion between i4α4 and i1α1 must also be i4α4 → i1α1 , since oth-
erwise by Lemma 4.3 there must be an edge from i3α3 to i4α4 .

The same argument applies to all vertices in i4α4 , . . . , i
k−1
αk−1 ,

as Figure 2 shows. That is, if vertex i1α1 has one incoming
edge, all edges incident to i1α1 must be incoming as well. The
same argument applies to all other vertices, i.e., all edges in-
cident to a vertex point to the same direction. This gives us

a contradiction: consider for example i3α3 and i5α5 . Since we
have direction i3α3 → i1α1 and i5α5 → i1α1 , all edges incident
to both i3α3 and i5α5 must be directed outward. This leads to
a contradiction for the edge between i3α3 and i5α5 . Thus H
cannot contain co-Cn as an induced subgraph for n ≥ 7.

Therefore we have shown that H can not contain Cn or co-
Cn as an induced subgraph for any n = 5, 7, 9, · · · , so that
H is a Berge graph.

A graph is said to be perfect if the chromatic number (i.e.,
the least number of colors needed to color the graph) of ev-
ery induced subgraph equals the clique number of that sub-
graph. By the seminal Strong Perfect Graph Theorem [8],
which states that a graph is a perfect graph if and only if it
is a Berge graph, we have the following corollary:

Corollary 4.1. H is a perfect graph.

We know the maximum weighted independent set problem
can be solved in polynomial time on perfect graphs [12].
Combining all of these, we know the optimal price vector
on G can be computed in polynomial time, which completes
the proof of Theorem 1.1.

5. ALGORITHMIC EXTENSIONS
Our algorithm continues to work for a few more general set-
tings. One generalization is that the seller incurs a fixed
cost ∆ to produce each copy of the item. This extension
can be solved in polynomial time — remove all users with
value less than ∆ and define the value of remaining users to
be vi−∆. The optimal revenue obtained from the resulting
instance is equal to that from the original input.

Another important generalization is when there are multiple
users with (possibly) different values at each node: Given a
graph G = (V,E), for each node i ∈ V , there is a set Ai
of users, with values vi1, . . . , viai , where ai = |Ai|. The
commute costs depend only on the locations, and not on the
users. (We defer the proof to the full version of the paper.)

Theorem 5.1. Given a graph G = (V,E) and a set of
users Ai at each node i ∈ V , the revenue maximization prob-
lem can be solved in polynomial time as well.

6. BEYOND THE TRIANGLE INEQUALITY
Triangle inequality in the distance space c is crucial in ob-
taining our polynomial time algorithm above. As we will
see below, even a minor relaxation of this condition makes
the problem NP -hard. Before presenting our hardness re-
sults, we comment that an O(logn)-approximation algo-
rithm is well known for the general unit demand envy-free
pricing [13]. In our setting, a simple optimal fixed-price al-
gorithm gives an O(logn)-approximation as well.

Theorem 6.1. The revenue maximization problem is NP -
hard when the substitution costs ci,j do not satisfy triangle
inequality, even if they satisfy a (1+ ε)-approximate triangle
inequality for any given ε > 0.

i j i jk

k1 kα

5 + ε 5 + ε4

5 + ε 5 + ε

1 1

1 12 · (1 + ε)

Figure 3: Construction of graph G′.

Proof. The reduction is similar to that established in [13].
We reduce from vertex cover: Given a graph G = (V,E), we
are asked if there is a subset S ⊆ V of size k such that S
covers all edges in E. Let n = |V | and m = |E|. Let N be
the input size of G and α = 4N/ε.

For any ε > 0, we construct a graph G′ = (V ′, E′) from G
by adding an extra node on each edge in E. That is, for
any (i, j) ∈ E, we add a node k and replace edge (i, j) by
two edges (i, k) and (k, j). For each i ∈ V (corresponding
to a node in G), let its value vi = 5 + ε. For each k ∈
E (corresponding to an edge in G), let its value vk = 4.
Further, we add a set of extra nodes Tk = {k1, . . . , kα} with
value vk` = 5 + ε each, and connect them to k. Denote
the resulting graph by G′. For any edge (i, j) ∈ E′, define
ci,j = 1. For any (i, j) /∈ E′, let its commute cost ci,j be
(1 + ε) times the shortest path distance between i and j in
G′. (For instance, ci,k1 = 2 · (1 + ε) as Figure 3 shows.) It
can be seen the distance space, {ci,j}, defined above satisfies
(1 + ε)-approximate triangle inequality.

If G has a vertex cover solution S, we define a pricing solu-
tion of G′ as follows: Let pi = 3 for each i ∈ S, pi = 5+ε for
each V \ S, pk =∞ for each edge k ∈ E and pk` = 5 + ε for
each k` ∈ Tk. By the commute costs defined above, every
node in V will buy an item from its own location, which in-
duces a revenue of 3·|S|+(5+ε)·(n−|S|) = (5+ε)n−(2+ε)|S|.
For each edge k ∈ E, since S is a vertex cover of G, there is
a neighbor i of k such that pi = 3. Thus, k can buy an item
from i, which contributes 3 to the total revenue. In addi-
tion, each node k` ∈ Tk wins from its own location, which
induces a revenue of 5 + ε. Therefore, the total revenue is
(5 + ε)mα+ 3m+ (5 + ε)n− (2 + ε)|S|.

On the other hand, consider any optimal pricing solution p
of G′. Assume without loss of generality that pi ≤ 5 + ε,
for any i ∈ V ′. In other words, all nodes in V and Tk,
for k ∈ E, are winners. Note that a trivial solution where
set price to be 5 + ε at all nodes gives a total revenue of
∆ , (5 + ε)(mα + n). Thus, the revenue generated by p
is at least ∆. We first argue that all edges in E must be
winners. Otherwise, assume there is k ∈ E such that k does
not buy an item. Consider a neighbor k1 ∈ Tk of k. We
know pk1 > 3. It can be seen that by reducing the price of
k1 to 3 (this will not affect any other nodes except k and k1),
k becomes a winner and the total revenue will be increased
by at least 2 · 3− (5 + ε) > 0, where the second term 5 + ε is
the upper bound of the revenue that can be extracted from
k1, which contradicts to the optimality of p. Secondly, it is
safe to assume pk > 4 for any k ∈ E. This is because, if
pk ≤ 4 for some k ∈ E, then the total revenue we extract

from Tk is at most 5α. In this case, even if we can extract
full revenue from all other nodes, the total revenue is at most
(5 + ε)(m− 1)α+ 5α+ 4m+ (5 + ε)n < ∆, a contradiction.
Therefore, each edge k ∈ E wins an item from one of its
neighbors. If k ∈ E wins from a neighbor k` ∈ Tk, then
pk` ≤ 3. In this case, by define pk` = 5 + ε and pi = 3,
where i ∈ V is a neighbor of k in V , k wins form i and the
total revenue will not decrease. Therefore, without loss of
generality, we can assume each k ∈ E wins from one of its
neighbors in V . Let

S = {i ∈ V | ∃ k ∈ E s.t. k wins from i}

By the above argument, we know S is a vertex cover solution
of G and pi ≤ 3 for each i ∈ S. Thus, the total revenue is
at most (5 + ε)mα+ 3m+ (5 + ε)n− (2 + ε)|S|.

Therefore, computing an optimal pricing solution is equiv-
alent to finding an optimal vertex cover, which yields the
desired NP -hardness result.

Given appropriate complexity assumptions, we can show the
problem is hard to approximate within a ratio of O(logε n)
for some ε > 0 without triangle inequality. (We defer the
proof to the full version of the paper.)

Theorem 6.2. Without triangle inequality, the problem
is hard to approximate within a ratio of O(logε n) for some
ε > 0, given the hardness of the balanced bipartite indepen-
dent set problem in constant-degree graphs or refuting ran-
dom 3CNF formulas.

7. MULTI-UNIT DEMAND
We next consider the multi-unit demand setting, where users
can have positive marginal value for more than one item.
Specifically, let G = (V,E) be a graph with a user at each
location and commute costs ci,j as before. Each user i ∈ V
now has a demand di ≥ 1, which is the maximum number
of items she is interested in. Her value for x copies, x =
0, 1, . . . , di, is now characterized by a value function fi :
{0, 1, . . . , di} → R+, where fi(x) is the maximum value that
i is willing to pay for x items. We assume that the value
functions satisfy fi(0) = 0 and are non-decreasing for each
i ∈ V .

In the multi-unit demand setting, when a user buys items
from a different location, we assume the commute cost is
paid only once, i.e., it is independent of the number of items
bought from that location2. Hence, when user i buys x items
from location j at price pj , her utility is fi(x) − xpj − ci,j .
Given a price vector, each user decides how many copies
to buy from each location rationally, i.e., to maximize her
utility. It is easy to see that for any pricing solution p and
user i ∈ V , we can assume that i either does not buy any
item or buys items from only one location. Again, given

2When the commute cost is paid once per unit, the problem
can be solved efficiently for linear value functions (i.e., con-
stant marginal value per unit), by a simple modification of
the algorithm described above. This is quite different from
the setting we are considering, as we will see in Theorem
7.1.

the underlying graph and value functions, the goal is to de-
cide a per-unit price for each location to maximize the total
revenue.

There are some important differences between the unit de-
mand setting and the multi-unit demand setting. Specifi-
cally, with multi-unit demands, Proposition 3.1 and there-
fore Proposition 3.2 do not hold, i.e., it is no longer true
that in an optimal price vector, every user who buys an
item buys it from her own location. Also note that the
number of items that i buys for a given price vector need
not match her demand, i.e., when user i buys x copies from
location j, we can have x < di if the marginal value of the
(x+1)-th copy, fi(x+1)−fi(x), is smaller than the per-unit
price pj at location j. Of course, when the marginal values
are constant, which corresponds to a linear value function
fi(x) = x · vi (where vi, as in the unit demand setting, is
the maximum value that i is willing to pay for one unit) for
0 ≤ x ≤ di, each user buys either nothing or di copies for
any price vector.

Another unusual property the multi-unit demand setting
possesses is a paradoxical non-monotonicity of the optimal
revenue w.r.t the demands: When the demands of some
users increase, the revenue generated by the optimal solution
can decrease, even when all value functions are linear.

Example 7.1 (Demand Paradox). There are three no-
des i, j, k, with costs ci,j = 50, ci,k = 100 and cj,k = 50. For
user i, let di = 10, vi = 10; for user j, let dj = 10, vj = 6;
and for user k, let dk = 100, vj = 1. In addition, we add
many isolated nodes (with demand 1 and value 20 each) and
connect them to i with cost 0. Note that when the number of
these isolated nodes is large enough, the price at i is always
at least 20. In the optimal solution, pj = 6 and pk = 1.
User i buys from location j with revenue 10 · 6 = 60 and j
buys from its own location with revenue 10 · 6 = 60. How-
ever, when the demand of i is increased to 20, the optimal
solution is pj = 3.5 and pk = 1, and the revenue obtained
from i and j is 30 · 3.5 = 105 < 120. (The revenue from
other users is unchanged.)

The following result shows that the problem with multi-unit
demand, unlike the unit demand case, is hard to solve. (We
defer the proof to the full version of the paper.)

Theorem 7.1. In the multi-unit demand setting, the rev-
enue maximization problem is APX-hard even when all value
functions are linear and demands are at most 5.

Now we will study approximation algorithms for the multi-
unit demand problem.

7.1 Linear Value Functions
We first give an approximation algorithm for the linear case,
i.e., fi(x) = x ·vi. We will define an instance of the input by
G(v, d), where G = (V,E) refers to the underlying weighted
graph, v refers to the vector of per-unit values of users in V
(this is well-defined since fi’s are linear), and d is the vector

of demands for these users. We will use OPT (G(v, d)) to de-
note the optimal revenue for this instance, and R(G(v, d), p)
to denote the revenue obtained from the instance G(v, d)
with a price vector p.

Algorithm: Given an input G(v, d), let D be value of the
largest demand in d (more precisely, we can define D to be
the ratio of the largest to smallest demand). For each α =
1, 2, . . . , log(D), define Sα =

˘
i ∈ V | 2α−1 ≤ di < 2α

¯
. For

each α = 1, 2, . . . , log(D), define a new instance Gα(vα, dα)
from the underlying graph G, where only users in Sα are
available and the modified values vα and demands dα are as
follows: for i ∈ Sα, the per-unit value is vi and demand
is 2α. Solve the instances Gα(vα, dα) for all α, and let the
corresponding optimal price vector be pα. Return the price
vector given by maxαR(G(v, d), pα).

We will prove the following theorem.

Theorem 7.2. The above algorithm runs in polynomial
time and gives an O(logD)-approximation to the revenue
maximization problem, where D is the upper bound of de-
mands.

The claim about the polynomial running time of the algo-
rithm follows immediately from the following lemma.

Lemma 7.1. When all demands are same, the optimal
pricing problem with multi-unit demand can be solved in
polynomial time.

Proof. Let G(v, d) be a given instance where di = d for
all users. Construct another instance G′ from G with values
v′i = d · vi and d′i = 1. By the algorithm established in the
previous section, we know the optimal price vector p′ for G′

can be computed in polynomial time. Consider a solution
p = p′/d (i.e. pj = p′j/d for any location j) for G. If i
wins (from location i, by Proposition 3.2) in G′, we know
(i) v′i ≥ p′i ⇒ vi ≥ pi; and (ii) v′i− p′i ≥ v′i− p′j − ci,j for any
j ∈ V , which implies d · (vi − pi) ≥ d · (vi − pj) − ci,j , i.e.,
user i still wants to buy all items from its own location in
G. So R(G, p) ≥ R(G′, p′). Conversely, let p∗ be an optimal
price vector for G(v, d). Let q∗ = d · p∗ (i.e., q∗i = d · p∗i for
any i ∈ V) be a pricing solution defined on G′. If i wins
from location j in G, we know (i) d · (vi − p∗j)− ci,j ≥ 0⇒
v′i−q∗j −ci,j ≥ 0, and (ii) d·(vi−p∗j)−ci,j ≥ d·(vi−p∗k)−ci,k
for any k ∈ V , which implies that v′i−q∗j−ci,j ≥ v′i−q∗k−ci,k,
i.e., user i still wants to buy the item from location j in G′.
Again, R(G′, q∗) ≥ R(G, p∗).

Therefore, R(G′, q∗) ≥ R(G, p∗) ≥ R(G, p) ≥ R(G′, p′). By
the optimality of p′ on G′, we know all inequalities are tight.
Hence, the price vector p defined above is optimal for G.

In the remainder of this subsection, we analyze the approx-
imation ratio of the algorithm. Consider any given instance
G(v, d), and let dmin = mini∈V di and dmax = maxi∈V di.
Let λ = dmax

dmin
. Define a modified instance G(v,dmax) from

G(v, d), with the same value vector v but with demand dmax

for each user.

First we prove two lemmas that will be used in the proof.

Lemma 7.2. R(G(v, d), p) ≥ 1
λ
OPT (G(v,dmax)), where

p is the optimal solution of G(v,dmax).

Proof. First we show that when prices p are used with
demands d, each user continues to buy from her own loca-
tion. Let S be the set of winners in the instance G(v,dmax)
given solution p. Note that since all demands are equal, ev-
ery winner buys at its own location. Therefore, for all i ∈ S,
pi ≤ vi, so that i can still afford the item at its own location
in the instance G(v, d). Further,

dmax · (vi − pi) ≥ dmax · (vi − pj)− ci,j
for any location j ∈ S. Hence,

pi ≤ pj+
cij
dmax

≤ pj+
cij
di
⇒ di ·(vi−pi) ≥ di ·(vi−pj)−ci,j .

Hence, i still prefers to buy from its own location in the
instance G(v, d). Therefore the revenue extracted by price
vector p is

R(G(v, d), p) ≥
X
i∈S

di · pi

≥ dmin

dmax

X
i∈S

dmax · pi

=
1

λ
OPT (G(v,dmax)).

Next we relate the optimal revenues with demand vectors d
and dmax. Note that the non-monotonicity in Example 7.1
implies that the factor 1/λ in the statement below cannot
be increased to one.

Lemma 7.3. OPT (G(v,dmax)) ≥ 1
λ
OPT (G(v, d)).

Proof. Let p∗ be the optimal solution for G(v, d) and S
be the set of winners. Let π(i) denote the location where i
buys the items for any i ∈ S. Note that π(i) need not be
equal to i, but i will always buy all of its items from one
location.

Consider the price vector q = p∗

λ
for instance G(v,dmax).

Since λ ≥ 1, for any i ∈ S, we have qπ(i) ≤ p∗π(i) ≤ vi which
implies

dmax ·
`
vi − qπ(i)

´
− ci,π(i) ≥ di ·

`
vi − p∗π(i)

´
− ci,π(i) ≥ 0.

That is, i can still afford to buy at location π(i) for the
instance G(v,dmax) given solution q.

Further, for any j ∈ V , we have

di ·
`
vi − p∗π(i)

´
− ci,π(i) ≥ di ·

`
vi − p∗j

´
− ci,j (1)

which implies that

λqπ(i) − λqj = p∗π(i) − p∗j ≤
ci,j − ci,π(i)

di
.

There are two cases.

• If ci,j ≥ ci,π(i), then

qπ(i)−qj ≤
ci,j − ci,π(i)

λdi
=
ci,j − ci,π(i)

dmax
dmin

di
≤
ci,j − ci,π(i)

dmax

which implies that

dmax ·
`
vi − qπ(i)

´
− ci,π(i) ≥ dmax · (vi − qj)− ci,j .

That is, i will still prefer to buy from location π(i).

• If ci,j < ci,π(i), according to (1), we know p∗j ≥ p∗π(i).
In this case, even if i prefers to buy from location j,
the price it pays is qj ≥ qπ(i).

Hence, in both cases, the revenue we obtain from i is at least
dmax · qπ(i).

Therefore, the revenue extracted with demands dmax and
price vector q is

R(G(v,dmax), q) ≥
X
i∈S

dmax · qπ(i)

=
X
i∈S

dmax · p∗π(i)

dmin

dmax

=
X
i∈S

dmin · p∗π(i)

≥ 1

λ
OPT (G(v, d))

and since OPT (G(v,dmax)) ≥ R (G(v,dmax), q), we are
done.

Combining Lemmas 7.2 and 7.3, we obtain the following
result.

Proposition 7.1. R(G(v, d), p) ≥ 1
λ2OPT (G(v, d)), where

p is the optimal solution of G(v,dmax).

We are now ready to finish the proof of Theorem 7.2.

Proof of Theorem 7.2. The claim about polynomial run-
ning time follows from Lemma 7.1. The claim about the
approximation ratio follows from the result above, from the
following sequence of inequalities. (Recall that pα is the op-
timal price vector for the instance Gα(vα, dα), where dαi =
2α.)

OPT (G(v, d)) ≤
logDX
α=1

OPT (Gα(v, d))

≤ 4

logDX
α=1

R(Gα(v, d), pα)

≤ (4 logD) ·max
α

R(Gα(v, d), pα)

≤ (4 logD) ·R(G(v, d), pα)

where the first inequality follows by using the price vector
corresponding to OPT (G(v, d)) for each Gα(v, d), and the
second inequality is exactly the result in Proposition 7.1.

7.2 General Value Functions
In this subsection we will describe anO(log3D)-approximation
algorithm for general value functions. The algorithm is sim-

ple: Given an instance G, for any user i, let vi = fi(di)
di

,

where di is the (maximum) demand of i. Construct an in-
stance G(v, d) from G with linear value functions where the
demand and per-unit value of each user i are di and vi,
respectively. We compute an approximately optimal price
vector for OPT (G(v, d)) by Theorem 7.2 and return it as
the solution for G. (We defer the proof to the full version of
the paper.)

Theorem 7.3. The above algorithm gives an O(log3D)-
approximation to the revenue maximization problem for gen-
eral value functions.

8. ACKNOWLEDGEMENTS
We thank Andrei Broder, Anna Karlin, Ravi Kumar, Mo-
hammad Mahdian and David Reiley for helpful discussions.
We are especially grateful to Anna Karlin and Ravi Kumar
for their insightful suggestions, which much improved the
paper. We also thank Jason Hartline for pointing out some
related work.

9. REFERENCES
[1] G. Aggarwal, T. Feder, R. Motwani, A. Zhu, Algorithms

for Multi-Product Pricing, ICALP 2004, 72-83.

[2] M. F. Balcan, A. Blum, Approximation Algorithms and
Online Mechanisms for Item Pricing, EC 2006, 29-35.

[3] P. Briest, Towards Hardness of Envy-Free Pricing, ECCC,
2006.

[4] P. Briest, P. Krysta, Single-Minded Unlimited Supply
Pricing on Sparse Instances, SODA 2006, 1093-1102.

[5] P. Briest, P. Krysta, Buying Cheap is Expensive: Hardness
of Non-Parametric Multi-Product Pricing, SODA 2007,
716-725.

[6] S. Chawla, J. D. Hartline, R. D. Kleinberg, Algorithmic
Pricing via Virtual Valuations, EC 2007, 243-251.

[7] N. Chen, A. R. Karlin, Cheap Labor Can Be Expensive,
SODA 2007, 707-715.

[8] M. Chudnovsky, N. Robertson, P. Seymour, R. Thomas,
The Strong Perfect Graph Theorem, Annals of
Mathematics, V.164, 51-229, 2006.

[9] E. D. Demaine, M. T. Hajiaghayi, U. Feige, M. R.
Salavatipour, Combination Can be Hard: Approximability
of the Unique Coverage Problem, SODA 2006, 162-171.

[10] X. Deng, C. H. Papadimitriou, S. Safra, On the Complexity
of Price Equilibria, JCSS, V.67(2), 311-324, 2003.

[11] N. R. Devanur, C. H. Papadimitriou, A. Saberi, V. V.
Vazirani, Market Equilibrium via a Primal-Dual-Type
Algorithm, to appear in JACM.

[12] M. Grötschel, L. Lovász, A. Schrijver, The Ellipsoid
Method and its Consequences in Combinatorial
Optimization, Combinatorica, V.1, 169-197, 1981.

[13] V. Guruswami, J. D. Hartline, A. R. Karlin, D. Kempe, C.
Kenyon, F. McSherry, On Profit-Maximizing Envy-Free
Pricing, SODA 2005, 1164-1173.

[14] T. Roughgarden, É. Tardos, How Bad is Selfish Routing?,
JACM, V.49(2), 236-259, 2002.

[15] P. Rusmevichientong, B. Van Roy, P. W. Glynn, A
Non-Parametric Approach to Multi-Product Pricing,
Operations Research, V.54(1), 82-98, 2006.

