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ABSTRACT
Motivated by the allocation problem facing publishers in
display advertising we formulate the online assignment with
forecast problem, a version of the online allocation problem
where the algorithm has access to random samples from the
future set of arriving vertices. We provide a solution that
allows us to serve Internet users in an online manner that is
provably nearly optimal. Our technique applies to the fore-
cast version of a large class of online assignment problems,
such as online bipartite matching, allocation, and budgeted
bidders, in which we wish to minimize the value of some
convex objective function subject to a set of linear supply
and demand constraints.

Our solution utilizes a particular subspace of the dual
space, allowing us to describe the optimal primal solution
implicitly in space proportional to the demand side of the
input graph. More importantly, it allows us to prove that
representing the primal solution using such a compact al-
location plan yields a robust online algorithm which makes
near-optimal online decisions. Furthermore, unlike the pri-
mal solution, we show that the compact allocation plan pro-
duced by considering only a sampled version of the original
problem generalizes to produce a near optimal solution on
the full problem instance.

Categories and Subject Descriptors
F.2.0 [Analysis of Algorithms and problem complex-
ity]: General; G.2.3 [Discrete Mathematics]: Applica-
tions

General Terms
Algorithms, Theory

Keywords
Online Matching, Computational Advertising, Guaranteed
Delivery
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1. INTRODUCTION
Display advertising—the practice of showing graphical ads

on webpages—is a multibillion dollar business. In the tra-
ditional display advertising setting a large publisher, such
as Yahoo!, enters into contracts with individual advertisers
guaranteeing to show their advertisements to a pre-specified
number of users matching the advertiser’s targeting con-
straints. For example, an advertiser may wish to target com-
puter scientists in New York visiting Fashion websites, and
ask for 50 Million such impressions. In guaranteed contracts
the publisher takes on the risk of uncertainty in supply and
guarantees displaying the ad 50M times to users matching
the targeting constraints. As the publisher faces penalties
for underdelivering, it is in his best interest to deliver on
every contract it promises.

A single publisher simultaneously manages tens of thou-
sands of contracts competing for overlapping inventory. For
example, a different advertiser may be seeking to advertise
to New Yorkers in the 18-26 age group. Yet another one may
only be interested in the 18-26 demographic across all of the
United States, and so on. Then, given a user visit by a 25-
year old Manhattan computer scientist to a fashion website,
the publisher must decide which of the possibly thousands
of matching advertisements to show. The split second deci-
sion must be consistent—ensuring that at the end all of the
guarantees are met.

The overall scenario can be modeled as an allocation prob-
lem. Consider a bipartite graph G = (I ∪ J,E). The set I
represents the individual user visits, J represents the guar-
anteed contracts, and there is an edge (i, j) ∈ E if user i
matches the targeting constraints of contract j. Moreover,
each advertiser has an overall demand dj ; while a user has a
supply parameter si, representing how many times the user
appears during the time period. The goal of the publisher
is to find an allocation of users to advertisers so that all of
the supply and demand constraints are satisfied: at most
one ad is shown on each user visit (supply constraint), and
each advertiser fulfills its demand (demand constraint). A
toy example of such a graph is shown in Figure 1.

To further complicate the overall problem, publishers and
advertisers are not happy simply to satisfy the guarantees.
Indeed, how would an advertiser feel to only have his na-
tional ad shown in only one state, or to have all of the ads
for a month-long campaign shown in one day? In fact, it
has previously been argued [4] that it is in the long term
interest of the publisher to strive for fair or representative
allocations. Of course, even more complicated or detailed
objectives are often desirable. Thus, the allocation problem
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Figure 1: An example allocation problem with six
types of different users and three guaranteed con-
tracts.

typically has a complex objective function associated with
it.

The one piece of good news is that, despite the pessimistic
worst-cast view of many online algorithms, the landscape of
future inventory is known to some degree. Thus, in theory,
we could produce the bipartite graph G (together with the
supply and demand constraints), and actually find the op-
timal solution for a given objective function. However, this
too has many problems in practice.

The first is that G is many orders of magnitude too large.
Of course, we could down-sample the graph and solve a
smaller problem. But what would the solution on the down-
sampled problem even tell us? For any user visit that was
not sampled, we would have no information at all. And for
user visits that were sampled, what guarantees do we have
that the solution is meaningful for the actual graph?

A second issue has to do with serving. Suppose we actu-
ally found an optimal solution using the full graph G. There
is no manageable way to have ad servers actually implement
this solution. It would require identifying a specific, pre-
dicted user visit as it arrived, then finding what the optimal
solution says to do. Recall that the full graph G has bil-
lions of user visits, with trillions of edges. The full optimal
solution could not be communicated to hundreds (or more)
servers and actually served.

A third issue is robustness. Although we could have good
forecasts for G, they will never be perfect. We would still
like to produce a solution that is good, even with imperfect
forecasts. Even more importantly, we need to generalize to
handle user visits that were never forecast; how do we serve
to a user that we never optimized for?

Our solution addresses each of this issues. We demon-
strate a method to produce a compact allocation plan using
a sampled version of G. This allocation plan is small, using
just O(1) state per contract. Further, we guarantee that the
serving decisions made using this allocation plan are nearly
optimal (within (1− ε)), even when the allocation plan was
computed on a sampled graph with imperfect forecasts. The
ad server implementation of this plan is simple and requires
no state, other than the allocation plan and contracts them-

selves; we do not need to remember how many times each
ad has been served.

1.1 Online allocation with forecast
The problem facing the publisher is a variant of the on-

line bipartite matching problem. This problem has a rich
history, beginning with a celebrated result by Karp et al. [5]
who provide a randomized online algorithm that can find a
matching of size n(1− 1

e
). They further show that the result

is tight: in the adversarial model no algorithm can achieve
a better competitive ratio.

Recent work [2, 3] has argued that the input is typically far
from worst case, and has resulted in algorithms that break
the 1 − 1/e threshold. Feldman et al. [3] assume that the
set of user visits is drawn i.i.d from a known distribution
D. Devanur and Hayes [2] propose using variations on the
random order model. In this scenario, the main assumption
is that the set of user visits, I, is fixed, but unknown, and a
random permutation of I arrives in the online fashion.

We introduce the online assignment with forecast problem,
a natural generalization of the bipartite matching problem
that occurs in many online applications. Instead of assuming
that the input is drawn i.i.d. from a known distribution or
that arrives in a random order, we give the algorithm the
ability to obtain a sample the set of vertices that will arrive
online (i.e., a sample of the future). This aspect models
common real world scenarios, where the input to the online
algorithm is not entirely unknown, but can be modeled in
some reasonable manner.

We propose a two-phase model for solving the online as-
signment with forecast problem. In the first (offline) phase,
we use a black box to obtain a sample of vertices that will ar-
rive online, and compute a compact allocation plan. In the
second (online) phase, we use the allocation plan to com-
pute assignments for vertices as they arrive. In this model
we show that the number of samples required in the offline
phase is relatively small, roughly quadratic in the number of
the known vertices (and for the problems described above,
independent of the number of unknown vertices that arrive
online). Further, we show that the allocation plan is also
small (linear in the size of the known set) and robust, lead-
ing to a near optimal solution with high probability.

More formally, given a graph on |I| source nodes and |J |
destination nodes, we show that there exists a concise repre-
sentation of the solution that takes only O(|J |) space, inde-
pendent of the number of source nodes, |I|. (Note that the
simple description of the matching in terms of edges may
take O(|I||J |) space; for convenience, we assume each real
number takes O(1) space.). We call such a representation
a compact allocation plan. We show that for a large set of
objective functions, not only does such a short description
exist, but it can be used to efficiently reconstruct the full
solution in time Õ(|Γ(j)|) per node (where following stan-
dard notation Γ((j) is the neighborhood of node j in the
allocation graph).

We then turn to solving the optimization problem at hand.
We show that taking a judicious sample of nodes, Î ⊆ I, and
then solving the assignment problem on the graph induced
by Î and J allows us to recover a near-optimal solution to
the full problem. We note here that the sample Î is not a
uniform sample of all nodes in I. Rather, for each j ∈ J we
use a variant of importance sampling to sample nodes from
Γ(j) ⊆ I. This restriction seems necessary, for consider a



j with a small Γ(j). Unless some of the nodes i ∈ Γ(j)
are selected, we have no information to guide our allocation
choices for j. As before, the online algorithm needs only the
O(|J |)-space compact allocation plan.

1.2 Related work
As we mentioned above the online allocation problem is a

variant of the online bipartite matching problem. Karp et
al. [5] proved a lower bound of 1 − 1/e on the competitive
ratio and gave an algorithm matching that bound. Recently,
Feldman et al. [3] broke through that barrier and gave a 0.67
competitive algorithm relying on the power of two choices.
While their algorithm achieves a better competitive ratio,
it is not applicable in our setting, in addition to assuming
that the online arrivals are independent, it requires one to
maintain O(|I|) state, which is prohibitively large.

A closely related problem is the AdWords problem from
sponsored search advertising, introduced by Mehta et al.[6].
In this problem at every point in time a set of bidders submit
bids on an item up for sale and the objective is to select the
winning bidders in such a way that by the end every bidder’s
budget is (nearly) exhausted. Here again, the exact set of
items (e.g., keywords in search advertising) is very large and
can only be approximately predicted based on historical logs,
and the goal is to optimally select the winning bidders at
every point in time.

Mehta et al. [6] show a 1− 1/e competitive ratio for this
problem under worst case assumptions. In recent work De-
vanur and Hayes [2] show that in the random order model, a
1−ε competitive algorithm exists for finding a revenue max-
imizing matching, provided that each bid is at most a ε3/n2

fraction of the overall revenue. Their algorithm is tuned for
the specific case of revenue-maximization, and they leave the
problem of finding fair allocation as an open problem.

On a high level we employ techniques similar to those of
Devanur and Hayes [2], namely looking at the dual space on
a sampled version of the problem. There are, however, two
key differences. The first lies in the ability to handle non-
linear convex objectives, which can be used to encode sophis-
ticated fairness constraints [4]. The other is in the nature of
the sampling: a uniform sample is not sufficient because in
that case, small contracts may not have any matching user
visits in the sample. In the work of [2], this does not cause a
problem because bidders with small budgets can simply be
ignored. In our work, however, these are hard constraints
that cannot be violated; further, small contracts may also
contribute in a non-linear way to the overall objective.

2. BACKGROUND AND DEFINITIONS
This paper is concerned with the problem of online as-

signment with forecast, which extends to a broad range of
optimization problems expressible with a set of linear con-
straints. However, for the purposes of exposition, we will
focus on the problem of online allocation with forecast. All
of our results will be stated and proven for this more specific
problem. The more general results appear in the technical
report for this paper [8].

2.1 General framework
The online assignment with forecast problem is a variant

of the classic online bipartite matching problem, in which we
are allowed to specify additional linear constraints for each
supply and demand node.

There is an underlying bipartite graph, with the right-
hand side nodes are known apriori. The left-hand side nodes
arrive one at a time, together with a specified amount of
supply and the graph neighborhood of the node. In an on-
line manner, the algorithm must decide how much supply
to assign to each right-hand side node in the neighborhood,
subject to the additional linear constraints specified; once
an assignment is made, the algorithm may not change the
decision. (In the classic matching problem, we have no ad-
ditional constraints.)

The ultimate goal in this setting is to minimize some ob-
jective function, over the set of solutions satisfying the ad-
ditionally specified linear constraints. We generally relax
the problem so that assignments may be fractional, rather
than the 0-1 solutions required in online matching. (For
the types of problems we are most interested in, the num-
ber of left-hand nodes is huge– on the order of billions or
more—therefore converting from a fractional solution to a
probabilistically served one has negligible impact.) We do
not assume the objective function to be linear, in fact one
motivation comes from the work of Ghosh et al [4]. There
the authors argue that publishers should optimize for fair, or
maximally representative allocations, to maximize long term
revenue. Due to competing contracts, such allocations may
be impossible, in which case the objective is to get as close
as possible (e.g. under an `22 norm) to the fairest allocation.

The key difference in the online assignment with forecast
problem is that we are given a forecast. Prior to the on-
line portion of the algorithm, we are given a forecast graph,
which is meant to represent the true underlying graph. (The
results we show in this paper will focus on the cases when
(1) the forecast graph is precisely the true underlying graph,
and (2) the forecast graph is generated by sampling nodes
from the underlying graph.) We may preprocess as we like,
but we are only allowed to store a small amount of informa-
tion; in our case, we keep just O(1) additional numbers per
right-hand node. We call this additional information the al-
location plan. The online algorithm then proceeds as before;
however, the algorithm now has access to the allocation plan
in order to make better decisions.

2.2 Online allocation with forecast
Let G = (I∪J,E) be a bipartite graph. We call the nodes

of I supply nodes and the nodes of J demand nodes. Our job
will be to find an assignment x ∈ [0, 1]E satisfying both the
demand constraints and the supply constraints (expressed
below). For an edge (i, j) we think of xij as the percentage of
supply from node i going to node j. In this problem, supply
nodes represent Internet website visits, while demand nodes
represent advertisers. So G is extremely unbalanced, with
|J | in the tens of thousands and |I| numbering in the billions
or more.

In the allocation problem, every demand node j ∈ J re-
quests a certain amount of supply, thus generating a sin-
gle demand constraint per demand node. The supply con-
straints are implied from the structure of graph G and the
supply vector s ∈ [0,∞)I . In particular, we say that x is a
feasible solution of the online allocation with forecast prob-



lem, denoted P = 〈G, s, d〉, if it satisfies

∀j
P
i∈Γ(j) sixij ≥ dj demand constraints

∀i,
P
j∈Γ(i) sixij ≤ si supply constraints

∀(i,j)∈E , xij ≥ 0 non-negativity constraints

where we use Γ(i) to denote the neighborhood of i (i.e. the
set of demand nodes adjacent to supply node i in graph G),
and likewise for Γ(j). We write x ∈ P if x is a feasible
solution to P, and x /∈ P otherwise.

In the pre-processing phase, the algorithm is given a prob-
lem instance P ′ = 〈G′, s′, d〉 and an objective function F (s, x),
where G′ and s′ are forecasts of G and s, but may or may
not actually be G and s.1 The output of the pre-processing
phase is an allocation plan, which may be represented as a
set of real numbers associated with each demand node.

In the online phase, the algorithm is given the nodes J ,
together with d and the allocation plan generated during
the pre-processing phase. Nodes of i ∈ I arrive one at a
time, along with the value of si and Γ(i) (the set of nodes
in J that are adjacent to i). The algorithm must decide
the allocation xij for every j ∈ Γ(i) so that the supply and
demand constraints are satisfied. Once the value of xij has
been decided, it cannot be changed. The goal of the online
algorithm is to produce an x ∈ [0, 1]E so that F (s, x) is
minimized (as much as possible), subject to x ∈ P. Note
that xij may be fractional.

Although it may not be apparent at first blush, finding the
optimum in terms of x, a percentage-wise solution, is crucial
for solving the problem using a sampled graph G′. Indeed,
a single node for the sampled graph may have an associated
supply that is orders of magnitude larger than in the original
underlying graph. So while the percentage-wise optimum
translates well to the original graph, an optimum expressed
in terms of the absolute magnitudes would be meaningless.
We will see later that this percentage-wise solution is also
quite robust to forecast and sampling errors.

2.3 Online budgeted-bidders with forecast
Although the results in this paper will be stated in terms

of the online allocation problem, we briefly describe the set-
ting for the online budgeted-bidders with forecast problem as
well. Here, a problem instance consists of bipartite graph
G = (I ∪ J,E), a supply s for the nodes of I, a budget Bj
for each node j ∈ J , and a cost cij for every (i, j) ∈ E. An
allocation x is feasible iff it satisfies the following:

∀j
P
i∈Γ(j) sicijxij ≤ Bj demand constraints

∀i,
P
j∈Γ(i) sixij ≤ si supply constraints

∀(i,j)∈E , xij ≥ 0 non-negativity constraints

Note that in this problem as well, the number of demand
constraints is quite small, one for each demand node (cor-
responding to advertisers), while the number of supply con-
straints is huge— one for each Internet visit.

1Throughout this paper, there are two ways of thinking
about G′. From the perspective of the pre-processing al-
gorithm, G′ will be created from G by sampling some small
set of vertices from I, and setting G′ to be the induced sub-
graph on the sampled vertices of I together with the vertices
of J . However, it is much cleaner mathematically to view G′

as precisely G, but with s′i = 0 for any vertex i ∈ I that has
not been sampled. We will take this latter view throughout.

In the pre-processing phase, the algorithm is given a fore-
cast graph G′ and forecast supply s′, as well as an objective
function F (s, x), the true budgets B and the true costs cij
for all (i, j) in the edge-set of G′. It must produce an allo-
cation plan. In the online phase, the online algorithm has
access to the allocation plan, the nodes j ∈ J , and the bud-
gets B. Supply nodes i ∈ I arrive online, together with si,
Γ(i), and cij for each j ∈ Γ(i). The algorithm must decide
xij for each j ∈ Γ(i) in an online fashion while respecting
the constraints, and attempting to minimize F (s, x).

2.4 Objective function
Instead of simply finding a feasible assignment, our goal is

to find one minimizing a particular objective function. Let
F (s, x) : RI × RE → R be a convex function. We say that

F (s, x) is well-conditioned if ∂2

∂x2
ij
F (s, x) exists and is strictly

positive for all (i, j) ∈ E. We say F (s, x) is separable if it
can be written as F (s, x) =

P
(i,j)∈E Fij(si, xij) for some

set of functions {Fij}(i,j)∈E .
Note that linear objective functions are not well-conditioned,

since the second derivative in each variable is 0. When faced
with a linear objective function, we first find the optimal
value for the linear objective, and then add a linear con-
straint to guarantee the objective is optimal. For the rest
of this paper, we restrict our attention to well-conditioned
objective functions.

We require an additional property of F in order for sam-
pling to be applicable. Let F (s, x) : RI × RE → R be an
objective function, differentiable in each xij for (i, j) ∈ E.
We say F (s, x) is scale-free if for each (i, j) ∈ E,

∂

∂xij
F (s, x) = sifij(x),

where each fij is independent of s. Intuitively, scale-freeness
says that we would get the same (percentage-wise) solution
even if all supply was uniformly scaled by the same factor.
Without this, it would be surprising if a sampled version
of the problem (in which we have, say, half the nodes but
with twice the supply for each) were guaranteed to give a
good approximately optimal solution in general, even on the
original underlying problem.

Definition 1. An objective function is well-structured if
it is convex, well-conditioned, separable, and scale-free.

For any well-structured function, F (s, x), there is a unique
minimal solution subject to x ∈ P, since P itself is a convex
space. Thus, we will often refer to the optimal solution,

x∗ = arg min
x∈P

F (s, x) .

Note that although linear objective functions are not tech-
nically well-structured, the techniques we describe here may
be extended to linear objectives, albeit with additional com-
putational effort.

2.5 Robustness
Finally, we address the issue of robustness. In general, we

will not be able to prove that the allocation plan obtained
using forecast graph and supply yields an online solution
that is both optimal and feasible. Instead, we define the
notion of ε-goodness. Given the problem P = 〈G, s, d〉, let
P ′ = 〈G, s, (1 + ε)d〉. That is, P ′ is the problem P in which



every demand dj has been increased to become (1 + ε)dj , so
that P ′ is harder to satisfy. If P ′ is feasible, then we say P
is ε-feasible, meaning intuitively that there is some slack in
the requirements for P.

If P is ε-feasible, then we say a solution x is ε-good for P
if x ∈ P, and further, x is at least as good as any feasible
solution to P ′, i.e. F (s, x) ≤ minx′∈P′ F (s, x′). (Recall we
are looking for x to minimize F .)

3. COMPACT ALLOCATION PLAN
In this section, we show the existence of a compact alloca-

tion plan, and prove several of its key properties. The main
theorem of this section holds for well-structured objective
functions, using perfect forecasts. In Section 4, we will ex-
plore the effects of sampling the input graph G in producing
the compact allocation plan.

One can easily represent the optimum solution x∗ by de-
scribing the fractional assignment on each edge. Our main
result in this section shows that the same solution has a
smaller implicit representation. In particular, there is a
function x̃, which, given the dual values only for the demand
constraints, can reconstruct the optimum solution. Later, in
Theorem 2 we will show that the reconstruction function x̃
remains optimal even for slightly perturbed versions of the
problem.

Theorem 1. Let G = (I ∪J,E) be a bipartite graph, and
let F (s, x) : RI × [0, 1]E → R be a well-structured function.
There is a continuous function, x̃(α) : RJ → RE with the
property that for any feasible problem, P = 〈G, s, d〉, there
exists α∗ ∈ RJ such that x̃(α∗) = arg minx∈P{F (s, x)}.

Theorem 1 is somewhat surprising, since it claims, in some
rough sense, that the optimal solution from [0, 1]E is ex-
pressible in the space RJ , independent of the size of I or
E. (And the continuity of x̃(α) tells us that this is a real
phenomenon, not simply an artificial packing of information
into real numbers.) This compact representation is key to
the utility of our solution.

The proof of the theorem stems from the Karush-Kuhn-
Tucker (KKT) conditions of the optimal solution to our
problem. We first phrase our problem in terms of the La-
grangian. Let αj be the Lagrangian multiplier for the j-th
demand constraint, let βi be the Lagrangian multiplier for
the i-th supply constraint, let γij be the Lagrangian multi-
plier for the ij-th non-negativity constraint. The Lagrangian
of our problem is then

F (s, x)−
X
j∈J

αj(
X
i∈Γ(j)

sixij − dj)

+
X
i∈I

βi(
X
j∈Γ(i)

sixij − si)−
X

(i,j)∈E

γijsixij

Let x∗ = arg minx∈P{F (s, x)}. Since each of the constraints
and the objective function are all continuously differentiable
at x∗ ∈ [0, 1], there are necessarily αj ,βi, γij , satisfying the

KKT conditions:

For all (i, j) ∈ E, sifij(x
∗)− siαj + siβi − siγij = 0

(1)

For all j, αk(
X
i∈Γ(j)

six
∗
ij − dj) = 0 (2)

For all i, βi(
X
j∈Γ(i)

six
∗
ij − si) = 0 (3)

For all (i, j) ∈ E, γijsix
∗
ij = 0 (4)

For all (i, j) ∈ E, αk ≥ 0, βi ≥ 0, γij ≥ 0 (5)

Condition 1 is referred to as stationarity, Conditions 2, 3,
4 as complementary slackness, and Condition 5 as dual fea-
sibility. Rewriting these conditions somewhat, we have the
following:

For all (i, j) ∈ E, (such that si 6= 0)

fij(x
∗)− αj + βi ≥ 0 with equality unless x∗ij = 0.

(6)

For all j,

αj ≥ 0, with equality unless
P
i∈Γ(j) six

∗
ij = dj (7)

For all i,

βi ≥ 0, with equality unless
P
j∈Γ(i) x

∗
ij = 1 or si = 0

(8)

As is often the case with primal-dual methods, we can
reconstruct the primal solution given only the dual solution.
For each (i, j) ∈ E, let gij be the inverse of fij .

Proposition 1. Let x∗, g, α, and βi be defined as above,
and suppose si > 0. Then

x∗ij = max{0, gij(αj − βi)}
Proof. The proof follows from Equation 6 of the KKT

conditions above. First, suppose that x∗ij > 0. Then we
see immediately that x∗ij = gij(αj − βi). On the other
hand, suppose x∗ij = 0, but gij(αj − βi) > 0 = x∗ij . Since
F (s, x) is convex in x, we see that fij is increasing. Thus,
αj − βi > fij(x

∗
ij), which implies that fij(x

∗)−αj + βi < 0,
a contradiction. Thus, gij(αj − βi) ≤ 0, and the proof fol-
lows.

For convenience, define ĝij(z) = max{0, gij(z)}. From the
above, we see x∗ij = ĝij(αj−βi) for all i such that si > 0. In
the case that si = 0, we may simply set x∗ij = ĝij(αj − βi).
Note that when si = 0, any relative allocation results in a 0
allocation, so this is fine to do. It also allows us to “interpo-
late” when the supply is 0, in a natural way. However, we
still need to produce a function purely of the α values. The
following key insight allows us to do just that.

Lemma 1. Let ĝ, αj, and βi be defined as above, and sup-
pose si > 0. If

P
j∈Γ(i) ĝij(αj) < 1, then βi = 0. If not, then

βi is the unique value satisfying the following equality:P
j∈Γ(i) ĝij(αj − βi) = 1 .

Proof. We use Equation 8 of the KKT conditions above.
First, consider

P
j∈Γ(i) ĝij(αj) < 1. Then, if βi > 0, we

would have X
j∈Γ(i)

x̃ij =
X
j∈Γ(i)

ĝij(αj − βi) < 1 ,



a contradiction. On the other hand, if
P
j∈Γ(i) ĝij(αj−βi) 6=

1 and βi > 0, we again have a contradiction. Thus, the claim
follows.

The uniqueness follows from the fact that gij(z) is strictly
increasing for all (i, j) ∈ E. Thus,

P
j∈Γ(i) max{0, gij(αj −

z)} is strictly decreasing in z unless the sum is 0. So there
is a unique z making the sum equal to 1.

Proof of Theorem 1. Even in the case that si = 0, we
may still define βi as in Lemma 1; note that this is consistent
with the KKT conditions. We then see that β is really a
[continuous] function of α. Thus, we will occasionally write

β̂(α) to denote this function. Given this, we define

x̃(α) = max{0, gij(αj − β̂(α))} .

Defining x̃ as above and setting α∗ to α satisfying the KKT
conditions proves the theorem.

We will refer to the setting of x̃ and α∗ as the compact
allocation plan. In Section 5 we fully specify the details of
the reconstruction algorithm.

3.1 Key property: Robustness of x̃
In this subsection, we describe a key property of the func-

tion x̃, which will allow us to extend our results to forecast
graphs G′ that are different than the true underlying graph
G. At a high level, it says the following: Suppose that we
find the optimum for a graph G with supply s and demand
d, i.e. for 〈G, s, d〉. Then if we perturb s a little to become
s′, there is a way to “tweak”d by a little to get d′ so that the
optimum for 〈G, s′, d′〉 is precisely the same! In other words,
if our forecast supply is a little bit off, and we had the om-
niscience to adjust the demand a little, then the solution we
obtain would be the same as the optimum solution for the
realized problem. (Note that this is not the same as saying
that the optimum for 〈G, s′, d〉 is the same as the optimum
for 〈G, s, d′〉, where d′ is close to d whenever s′ is close to
s. This is a much more technically difficult proof, and is the
subject of Section 4.)

In fact, this robustness property extends to interpolation
as well, an essential aspect for sampling. In particular, sup-
pose that s′i = 0 for some i, while si > 0. (In a sampling
scenario, this will happen for every node that is not included
in the sample.) The function x̃ is still well defined, even at
such points. The theorem below, in some sense, says that x̃
correctly interpolates, even at these zero-supply points.

Theorem 2. Let P, x̃ and α be as in Theorem 1, and
s′ ∈ RI be any supply such that s′i ≥ 0 for all i ∈ I. Let
x∗ = x̃(α∗), and let d′ be an adjusted demand such that
for all j, d′j ≥

P
i∈Γ(j) s

′
ix
∗,with equality whenever dj =P

i∈Γ(j) six
∗.Then x∗ is also an optimal solution of F (s′, x)

for x ∈ P ′, with P ′ = 〈G, s′, d′〉.
Proof. To prove the theorem, we will show that the α, β

used to satisfy the KKT conditions for F and P = 〈G, s, d〉
also satisfy the KKT conditions for F and P ′ = 〈G, s′, d′〉.
Since there are multiple choices for βi and x∗ij when si = 0,

we use the values described above. Specifically, β = β̂(α∗)
and x∗ = x̃(α∗). This is the key to interpolating to unseen
values. Note that by construction, x∗ is feasible for both
problems.

For each (i, j) ∈ E, set γij = fij(x
∗) − αj + βi. Since

x∗ = max{0, gij(αj − βi)}, we see that γij ≥ 0. Thus,

dual feasibility holds— all αj , βi, γij ≥ 0. Furthermore, the
stationarity condition holds:

s′ifij(x
∗)− s′iαj + s′iβi − s′iγij = 0 .

By our choice of βi when si = 0, we see that complemen-
tary slackness holds for the βi. Similarly, if x∗ij > 0, then
x∗ij = gij(αj − βi). Thus, by our choice of γij , we have
γij = fij(x

∗) − αj + βi = 0. So we only need to show that
complementary slackness holds for the αj .

By the condition on d′j , we have d′j =
P
i∈Γ(j) s

′
ix
∗
ij when-

ever dj =
P
i∈Γ(j) six

∗
ij . Thus, in this case, we see

αj(
X
i∈Γ(j)

s′ix
∗
ij − dj) = 0.

However, when dj >
P
i∈Γ(j) six

∗
ij , we see αj = 0 (by com-

plementary slackness for the original problem P). So again,
complementary slackness holds. Since F is well-structured,
this shows that x∗ is optimal for P ′.

Note that Theorem 2 also suggests that our allocation
plan is robust to small errors in the forecast. Suppose, for
example, that every supply si was replaced by a new supply
s′i that was approximately si, say si/(1+ε) ≤ s′i ≤ si(1+ε).
Then by tweaking each dj by at most (1+ε) factor to become
d′j , we see that the optimal solution to 〈G, s′, d′〉 is the same
as the optimal solution to 〈G, s, d〉. Of course, we are most
interested in proving that a small tweak to s′ results in only
a minor change to the delivery. This will be implied by
Theorem 3.

4. USING A SAMPLE OF P
So far we have shown how to construct a compact allo-

cation plan in the case where the whole input is known at
the beginning. But we are motivated to solve the problem
when the input is revealed in an online fashion, one vertex
at a time. Fortunately, in real-world scenarios, something
is known about the expected input. In many Internet ap-
plications, for example, historical logs serve as a very reli-
able indicator of future behavior, and can be sampled di-
rectly. More sophisticated applications may “project” these
logs into the future, essentially sampling from these logs
with appropriate re-weighting. For this paper, we will as-
sume that we have access to such a black box that allows
us to sample users arriving in the future. Note that unlike
scenario sampling used in stochastic optimization literature
and the Sample-Average-Approximation method (SAA, [7,
1]), we are sampling individual users, and not complete sce-
narios of future input.

An orthogonal motivation for sampling is the potential
size of the problem. Even if we know all of the parame-
ters to P, finding an optimal x ∈ P may be unrealistic in
a reasonable amount of time. In this section we use the
machinery developed in the previous section to quantify the
effects of sampling on the optimality of the final solution.

Our key insight stems from Theorem 2. It allows us to
work in the dual space of α ∈ RJ , rather than the actual
solution space RE . One of the most important consequences
of this is that it gives us the ability to correctly interpolate
the allocation on the unseen supply.

Given “tweaked” supply s′, Theorem 2 spells out the par-



ticular conditions on the “tweaked” demand d′, namely thatX
i∈Γ(j)

s′ix̃ij(α
∗) ≥ d′j ,

with equality whenever
P
i∈Γ(j) six̃ij(α

∗) = dj . In general,

this could mean that d′ and d are quite different. In this
section, we show that if we sample properly then this is not
the case: d′ and d are close with high probability.

Our results depend on the sensitivity of F to small changes
in the input. Intuitively, the higher the effect of small changes
in the input on the value of F , the more samples we will need
to draw to ensure the desired result. Formally, we define the
stretch of F , P for a well-structured F . Let σj =

P
i∈Γ(j) si.

Define

Str(F,P) =
αmax

∆

with ∆ = ε min
i,j,x∈[0,1]E

{ ∂

∂xij
fij(x)}min

j
{dj/σj}/2

where αmax is an upper bound on the maximum value of
αj . We will provide a bound for αmax that depends only on
the graph G and objective function. Here, ∆ is chosen so
that varying α by at most ∆ changes the value of x̃(α) by
at most εdj/σj . We see when F (s, x) is well-structured, the
stretch is well-defined.

4.1 Sampling algorithm
We now describe our sampling method, a type of impor-

tance sampling that it similar to Karp-Luby sampling. Let
P = 〈G, s, d〉 be as above, and let F be a well-structured

objective function. For any δ > 0, create set Î as follows:

• For each j ∈ J , choosemj = 9|J|
ε2

σj

dj
ln(3|J |Str(F,P)/δ)

supply nodes from I independently and with replace-
ment, where we choose supply node i with probability
1/σj .

Define ŝ by ŝi = (
P
j∈J mj/σj)

−1 for each i ∈ Î, with ŝi =

0 for i /∈ Î, and d̂ by d̂j = dj + 4εdj for each j ∈ J . LetbP = 〈G, ŝ, d̂〉 be the problem on sampled input. Notice thatbP (and its components) are random variables.

Theorem 3. Given problem instance P = 〈G, s, d〉 that

is 8ε-feasible, let bP be obtained by sampling, as described
above. Let F (s, x) be a well-structured objective function.
Further, let x̃ be the continuous function guaranteed by The-

orem 2 (which is the same for both P and bP).

Then with probability 1 − δ (over the choice of bP), there

is an α ∈ RJ so that x̃(α) is the optimal solution for bP and
x̃(α) is an 8ε-good solution to P, under F .

At first, it might appear that this proof follows easily.
In fact, given a fixed allocation x, we can show that with
high probability, over the choice of ŝ, that

P
i∈Γ(j) ŝixij ≈P

i∈Γ(j) sixij . In effect, this shows that an optimal solution

in the unsampled space (using s) is also an optimal solution
in the sampled space (using ŝ), with only minor tweaking
of the demands. However, the solution we obtain in the
sampled space is itself implicitly a function of ŝ, and so the
simpler argument does not apply.

We might hope that the optimal solution in the sampled
space and the optimal solution in the unsampled space are

close (or perhaps that their respective α values are close).
However, this turns out to be false in general. Indeed,
consider optimizing a function subject to any set of linear
constraints. Perturbing these constraints, even by a small
amount, can result in large changes in an optimal solution
(although the value of the objective function may change by
only a very small amount).

Essentially, we would like to show that for whatever so-
lution arises in the sampled space, say x′, we have thatP
i∈Γ(j) six

′
ij ≥ dj . To do this, we cover the dual space

of α ∈ RJ with points spaced just ∆ apart, with ∆ set as
above; we argue that varying α by at most ∆ in each coor-
dinate results in only a small variation in x̃(α). Denote this
set of points as A.

We further bound the maximum value αj may take for any
j, a value we denote αmax. Since αj is bounded above, this
also yields an upper bound on |A|, namely (αmax/∆)|J|, i.e.

(Str(F,P))|J|. Thus, we may apply a union bound (on all

(Str(F,P))|J| points inA) to guarantee that
P
i∈Γ(j) ŝix̃ij(α)

≈
P
i∈Γ(j) six̃ij(α) for all such points α ∈ A. Since α∗,

the actual solution found in the sampled space, must be
within ∆ (in each coordinate) of some α′ ∈ A, it will follow
by our choice of ∆ and the fact that x̃(α∗) ≈ x̃(α′), thatP
i∈Γ(j) ŝix̃ij(α) ≥ dj .
To complete the proof, we appeal to Theorem 1, allowing

us to show that the solution obtained in the sampled space
is 8ε-good in the original space.

Thus, our key technical tools in this proof are (1) working
in the dual space over RJ , rather than the original allocation
space over RE , (2) analyzing the sensitivity of the function
x̃(α), and (3) showing that for a fixed allocation, sampling
does not perturb the demand constraints by much.

We begin by showing that small changes in α do not affect
x̃(α) too much.

Lemma 2. Fix ε > 0. Let F (s, x) be a well-structured
function, let P = 〈G, s, d〉 be a problem instance as above,
and define the function x̃ as in Theorem 1. (Note that this

x̃ is identical to the one obtained using bP = 〈G, ŝ, d̂〉 since
they use the same graph G.) Set ∆ as above. Let α, α′ ∈ RJ ,
and suppose that for all j ∈ J , αj ≤ α′j ≤ αj + ∆. Then we
have for all (i, j) ∈ E,

|x̃ij(α)− x̃ij(α′)| ≤ εdj/σj

Proof idea. We begin by bounding βi (which is implic-
itly a function of α) using Lemma 1. The rest of the proof
then follows using calculus and the fact that x̃ij can be writ-
ten in terms of αj , βi, and the inverse of fij (again, by
Lemma 1).

Define ∆ as in the previous lemma, and define A ⊆ RJ as
follows:

A = {(∆n1, ...,∆n|J|) :

For all j ∈ J , 0 ≤ nj ≤ Str(F,P), with nj ∈ Z.}

Notice that |A| ≤ Str(F,P)|J|. However, we still need to
argue that αmax actually exists (and that it is dependent on
G, F , but independent of s, d.) The following lemma proves
exactly that.

Lemma 3. Fix P = 〈G, s, d〉, and let F (s, x) be a well-
structured function. Finally, let x̃ be the continuous function



guaranteed in Theorem 1. Then for any s, d, there is an α∗

such that x̃(α∗) is the optimal solution of P, and for all j,
we have that 0 ≤ α∗j ≤ 2|J |fmax, where fmax is defined as
maxi,j,z∈[0,1]{fij(z)}.

Furthermore, given any α satisfying the KKT conditions
of the problem, there is a polynomial-time algorithm that
calculates such an α∗.

Proof idea. The proof follows from repeated use of the
fact that

fij(x
∗)− αj + βi ≥ 0 with equality unless x∗ij = 0.

We are most interested in edges for which x∗ij 6= 0, since
the above inequality is tight there. Consider starting at a
supply node i for which βi = 0 and finding a path through
G walking along only edges for which x∗ij 6= 0. Then we may
immediately bound the dual value for every vertex we reach,
using the above equality. In fact, we see that every step we
take on this path, we have increased the upper bound by at
most fmax. (Notice that the equality implies αj ≤ βi + fmax

as well as βi ≤ αj + fmax whenever x∗ij 6= 0.) Since any
simple path in this bipartite graph has length at most 2|J |
(recall |J | < |I|), this gives us the upper bound of the lemma.

But what if there is no i for which βi = 0, or at least none
in a given component (when only considering the edges of G
for which x∗ij 6= 0)? In this case, we argue that we may shift
both the values of β and α uniformly by the same amount
so that we still maintain the same primal solution. The
algorithm for finding the proper α is a direct extension of
the full proof.

For the budgeted bidders problem, we may bound αmax by
fmax divided by the smallest query cost (but always divided
by at least 1). In the most general setting, αmax is bounded
by |E|λfmax, where |E| is the total number of edges inG, and
λ is the ratio of the largest minor (in absolute value) of the
full constraint matrix, divided by the smallest (in absolute
value) non-zero minor. Note that none of these quantities
involve the supply or the demand.

There is one subtlety in Lemma 3. Although the optimal
primal solution is unique, the optimal dual solution in gen-
eral is not. However, given any optimal dual solution, there
is a simple algorithm to find an optimal dual solution that
falls within the bounds of αmax.

Finally, we wish to show that for all j ∈ J and for all
α ∈ A, that

P
i∈Γ(j) six̃ij(α) ≈

P
i∈Γ(j) ŝix̃ij(α), unless the

sum is bounded far below or far above dj . Unfortunately,
we will not be able to apply standard Chernoff-Hoeffding
bounds. Instead, we need the somewhat stronger Bernstein
Inequalities, which allows us to show that the probability
of being far from the mean drops exponentially with the
inverse of the variance. This allows us to show that for any
fixed α ∈ A, the probability of a large error is exponentially
small. Thus, we may apply a union bound over all α ∈ A,
yielding a good result for all α ∈ A with high probability.

Lemma 4. Let P, bP, F , and A be defined as above. With
probability at least 1− δ, the following holds: For all α ∈ A,

• If
P
i∈Γ(j) sixij(α) < dj/2, then

P
i∈Γ(j) ŝixij(α) <

3/4dj.

• If
P
i∈Γ(j) sixij(α) > 2dj, then

P
i∈Γ(j) ŝixij(α) >

3/2dj.

• Otherwise, |
P
i∈Γ(j) ŝixij(α)−

P
i∈Γ(j) sixij(α)| < εdj.

Furthermore,
P
i∈Γ(j) ŝi ≤ 2σj for all j. (Recall that σj =P

i∈Γ(j) si.)

Proof idea. It is straightforward to see that the expected
value of

P
i∈Γ(j) ŝixij(α) is precisely

P
i∈Γ(j) sixij(α). With

some algebra and the correct inequalities, we may also bound
the variance of the quantity. The last claim of the lemma
follows easily using this analysis, but the three bullets take
a little more work.

The most straightforward case is the third bullet. Here,
an application of the Bernstein Inequalities yields the proper
results, since the variance and error are in balance with each
other. For the first bullet, the variance in relation to the
expected value is actually too high, and it may not be the
case that

P
i∈Γ(j) ŝixij(α) ≈

P
i∈Γ(j) sixij(α). However, the

probability that the left-hand side is very large is still quite
small, which is all that is needed. For the second bullet, the
variance is good in relation to the expected value, but too
high with respect to dj , the quantity we really care about.
So, although

P
i∈Γ(j) ŝixij(α) and

P
i∈Γ(j) sixij(α) are not

within εdj with high probability, the first quantity will still
be much greater than dj ; again, this is all we need.

Finally, we apply a union bound to all Str(F,P)|J| points
in A to obtain the claim. Notice that in order for our
bounds to be tight enough, this requires an extra factor of
lg(Str(F,P)|J|) number of samples.

We are now ready to complete the proof of the main the-
orem in this section.

Proof of Theorem 3. With probability 1− δ, bP satis-
fies the conditions of Lemma 4. So we need only consider

such bP. Let α∗ be the optimal α guaranteed by Lemma 3.
Let α ∈ A be such that αj ≤ α∗ ≤ αj + ∆; by Lemma 3
and the definition of A, such an α exists. By Lemma 2,
|x̃ij(α) − x̃ij(α∗)| < εdj/σj for all (i, j) ∈ E. In particular,
this means that

|
X
i∈Γ(j)

six̃ij(α)−
X
i∈Γ(j)

six̃ij(α
∗)| ≤

X
i∈Γ(j)

si(ε
dj
σj

) = εdj , and

|
X
i∈Γ(j)

ŝix̃ij(α)−
X
i∈Γ(j)

ŝix̃ij(α
∗)| ≤

X
i∈Γ(j)

ŝi(ε
dj
σj

) = 2εdj .

Since bP satisfies the conditions of Lemma 4, we have three
cases to consider.

1. If
P
i∈Γ(j) six̃ij(α) < dj/2, then

P
i∈Γ(j) ŝix̃ij(α) ≤

3/4dj . Hence,
P
i∈Γ(j) ŝix̃ij(α

∗) ≤ 3/4dj + 2εdj < dj ,
a contradiction.

2. If
P
i∈Γ(j) six̃ij(α) > 2dj , thenX

i∈Γ(j)

six̃ij(α
∗) > 2dj − εdj ≥ dj .

With an eye towards the second part of the proof, also
notice thatX

i∈Γ(j)

ŝixij(α
∗) ≥

X
i∈Γ(j)

ŝixij(α)− 2εdj

> 3/2dj − 2εdj > dj(1 + 4ε).

That is, the j-th demand constraint is not tight for the
sampled problem.



3. In the last case, we have that

|
X
i∈Γ(j)

ŝix̃ij(α)−
X
i∈Γ(j)

six̃ij(α)| ≤ εdj

Hence, we see

|
X
i∈Γ(j)

ŝix̃ij(α
∗)−

X
i∈Γ(j)

six̃ij(α
∗)|

≤ |
X
i∈Γ(j)

ŝix̃ij(α
∗)−

X
i∈Γ(j)

ŝix̃ij(α)|

+ |
X
i∈Γ(j)

ŝix̃ij(α)−
X
i∈Γ(j)

six̃ij(α)|

+ |
X
i∈Γ(j)

six̃ij(α)−
X
i∈Γ(j)

six̃ij(α
∗)|

≤ 2εdj + εdj + εdj = 4εdj

But
P
i∈Γ(j) ŝix̃ij(α

∗) ≥ dj(1+4ε) since α∗ was chosen

to satisfy the demand constraints with d′j = dj(1+4ε).
Hence, X

i∈Γ(j)

six̃ij(α
∗) ≥ dj .

Again, looking towards the second part of the proof, we
also note that if the j-th demand constraint is tight in
the sampled problem (i.e.

P
i∈Γ(j) ŝix̃ij(α

∗) = dj(1 +

4ε)), then
P
i∈Γ(j) six̃ij(α

∗) ≤ dj(1 + 8ε).

In every viable case, x̃(α∗) satisfies the demand constraints
on the true underlying problem instance P, as we wanted.

To finish the proof, we appeal to Theorem 1. Consider
the following problem instance P ′ = 〈G, s, d′〉, where G and
s are in the underlying instance, and d′ is defined by

d′j =
X
i∈Γ(j)

six̃ij(α
∗) if

P
i∈Γ(j) ŝix̃ij(α

∗) = dj(1 + 4ε)

d′j = dj otherwise

(Notice the first case corresponds to the demand constraint
being tight in the sampled problem.) By Theorem 1, we have
that x̃(α∗) is in fact the optimal solution for P ′. Further, by
the above case analysis, we see that dj ≤ d′j ≤ dj(1 + 8ε).
Hence, x̃(α∗) is 8ε-good. (Specifically, x̃(α∗) is a feasible
solution for P ′′ = 〈G, s, (1 + 8ε)d〉. Since it is an optimum
for a space containing P ′′, it must be at least as good as the
optimum for P ′′.)

We remark that the result of Theorem 3 assumes we sam-
ple from the true supply s. In general, the techniques we use
here extend to handle sampling from both a biased supply
— in which the true supply may vary by as much as, say
a (1 + ε) factor from the forecasted supply — and from a
noisy supply — in which the true supply is a random vari-
able where only the mean is known. However, we do not
prove any formal statements in this extended abstract.

5. OVERALL ALGORITHM
In this section we put together the results of previous the-

orems to obtain a simple algorithm for the linear assignment
problem. Given a problem P, Theorem 3 shows that only
a limited sample of the supply nodes I ′ ⊆ I is necessary to
compute a near optimal allocation plan x̃(α). In this section
we show how to use this plan in an online fashion:

Given problem instance P = 〈G, s, d〉, and well-structured
objective function F (s, x):

1. In the pre-processing phase, first create the sampled

problem, bP, as described in Section 4. Then find α∗ ∈
RJ such that x̃(α∗) = arg minx∈ bP{F (s, x)} and α∗j ≤
αmax for all j ∈ J .

2. In the online phase, as each i ∈ I arrives, together with
si, Γ(i):

• If
P
j∈Γ(i) ĝij(αj) ≤ 1, then set βi = 0.

Otherwise, find βi such that
P
j∈Γ(i) ĝij(αj−βi) =

1.

• Allocate x̃ij(α) = ĝij(αj − βi) for each j ∈ Γ(i).

When the objective function is quadratic in the xij values,
we can solve for βi exactly. Unfortunately, we will not be
able to produce the exact βi in general. Instead, we approx-
imate βi within an additive ∆ using the bisection method,
where ∆ is the same as in the proof of Theorem 3. Notice
that using such a ∆ guarantees that our reconstructed so-
lution is at most another εmink{tk} away in each demand
constraint. Further, the proof bounding the α values also
bounds the β values, showing that βi ≤ αmax for each
i ∈ I. Thus, the bisection search method takes as most
O(lg(αmax/∆)) = O(lg Str(F,P)) iterations.

We may now state the main theorem of this section.

Theorem 4. There is an online algorithm whose starting
input consists of a set of demand nodes, a well-structured
objective function, F , and a compact plan, denoted α∗, and
whose online input consists of a sequence of requests, each
request being a supply node i, along with its supply si, and
its neighborhood Γ(i) (a subset of the demand nodes), and
whose online output is an allocation from i to each of its
adjacent demand nodes j (denoted yij); for any ε > 0, this
algorithm has the following properties:

• For P = 〈G, s, d〉, create bP by sampling as described in
Section 4, and find α∗ as described in step (1) above.
Then the solution y output by the algorithm is 9ε-good
for P.

• The compact plan described above requires just |J | val-
ues.

• The processing time per request is O(|Γ(i)| lg Str(F,P)).

6. CONCLUSION
We introduce the online assignment with forecast prob-

lem, in which an Internet publisher equipped with a forecast
of future user visits must compute and implement an assign-
ment of users to contracts in an online fashion. We show that
the dual space of the resulting optimization problem is useful
not just for analysis, but also as a tool for creating alloca-
tion plans used to guide the online algorithm. By further
moving to a subspace of the dual space, we not only cre-
ate an incredibly compact allocation plan, we also produce
a robust online algorithm that generalizes to unseen input.
In practice, this result has an important consequence: the
ability to solve a problem (nearly) optimally and actually
serve it in a distributed, essentially stateless fashion, with a
lightweight plan and no communication between servers.

More generally, this framework allows us to prove that
an allocation plan produced over even a sampled problem



instance still yields near-optimal results. There are two
equally valid reasons why we may chose to work with such
a restricted version: (1) only some information about the
overall problem is known ahead of time, or (2) the non-
linear optimization problem cannot be solved on larger in-
puts. These insights allow us to tackle the new class of on-
line problems we propose: online problems with forecast, a
theoretical model motivated by the need to produce online
algorithms that function under more realistic assumptions
about online input.
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