
Hiring a Secretary from a Poset

Ravi Kumar
Yahoo! Research

701 First Ave
Sunnyvale, CA 94089.

ravikumar@yahoo-inc.com

Silvio Lattanzi∗
Google Inc.

76 Ninth Avenue
New York, NY, 10011.

silviol@google.com

Sergei Vassilvitskii
Yahoo! Research
111 W 40th Street

New York, NY 10018.
sergei@yahoo-inc.com

Andrea Vattani∗
UC San Diego

9500 Gilman Drive
La Jolla, CA 92093.

avattani@cs.ucsd.edu

ABSTRACT
The secretary problem lies at the core of mechanism design
for online auctions. In this work we study the generaliza-
tion of the classical secretary problem in a setting where
there is only a partial order between the elements and the
goal of the algorithm is to return one of the maximal ele-
ments of the poset. This is equivalent to the auction set-
ting where the seller has a multidimensional objective func-
tion with only a partial order among the outcomes. We
obtain an algorithm that succeeds with probability at least

k−k/(k−1)

„“
1 + log k1/(k−1)

”k
− 1

«
, where k is the number

of maximal elements in the poset and is the only informa-
tion about the poset that is known to the algorithm; the
success probability approaches the classical bound of 1/e as
k → 1. On the other hand, we prove an almost matching
upper bound of k−1/(k−1) on the success probability of any
algorithm for this problem; this upper bound holds even if
the algorithm knows the complete structure of the poset.

Categories and Subject Descriptors
F.2.2 [Theory of Computation]: Analysis of Algorithms
and Problem Complexity—Nonumerical Algorithms and Prob-
lems

General Terms
Algorithms, Theory

Keywords
Secretary problem, Partial order

∗Part of this work was done while the authors were visiting
Yahoo! Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’11, June 5–9, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0261-6/11/06 ...$10.00.

1. INTRODUCTION
The secretary problem [7, 8] is a perfect example of online

decision-making under uncertainty. The setting is humble:
candidates for a secretary position arrive online in a random
order and the goal is to choose the best candidate, with the
constraint that no past decision can be reverted. The opti-
mal algorithm is to skip the first 1/e fraction of the candi-
dates and to choose the next arriving candidate who is the
best seen so far; this algorithm yields a success probability
of 1/e. The secretary problem has a rich history dating back
at least a century, and is a frequent object of study even
to this day. See the survey article by Ferguson [8] for an
excellent historical perspective of the secretary problem.

Implicit in the classical setting is the assumption that
there is a total order on the candidates, but this assumption
rarely holds in real life since candidates often have incom-
parable attributes. This leads to the natural poset secretary
problem: if the elements of the permutation (candidates) are
only partially ordered, how to maximize the probability of
returning a maximal element in the poset? Note that the
incomparable elements present the main challenge: many
simple modifications of the total order algorithm to handle
the incomparable elements can be shown to have vanishing
success probabilities.

Secretary problems have recently been shown to lie at the
core of online auction and mechanism design problems [4].
For instance, Hajiaghayi, Kleinberg, and Parkes [13] showed
how to convert the classic secretary problem into a group
strategy-proof mechanism for the online single item auction.
The algorithm we present can be adapted in a similar fashion
to a setting where the seller has a multidimensional utility
function that does not lead to a total ordering on the bidders.
The bidders arrive with potentially incomparable bids and
the goal is to sell the item at a no-regret price, i.e., to select
a bidder who is not dominated by any of the others.

The poset secretary problem was first studied by Preater
[19], who proposed an algorithm with a success probabil-
ity of 1/8. Recently, Georgiou et al. [10] improved this
bound to 1/4; they also showed that this bound is tight for
Preater’s algorithm. These algorithms suffer from two ma-
jor drawbacks. First, the success probability does not match
the classical bound when the poset is a total order. Second,
these bounds do not improve with the number of maximal
elements in the poset, which is undesirable since the prob-

 0

 0.2

 0.4

 0.6

 0.8

 1

 50 100 150 200 250 300 350 400 450 500

W
in

ni
ng

 p
ro

ba
bi

lit
y

k

Bounds on the competitive ratio

Asymptotic behavior of the algorithm
Upper bound on success probability

Figure 1: A visualization of the upper and lower
bounds for the poset secretary problem as a function
of the number of maximal elements in the poset.

lem should only become easier as the number of solutions
grows.

1.1 Main results
In this paper we study the secretary problem in the partial

order setting. We assume that we know k, the number of
maximal elements in the poset. Our algorithms take on the
standard form with one subtle difference. As before, we ex-
amine all of the elements up to a threshold and then consider
the first undominated element. We select this element only
if the poset at the time has at most k maximal elements.
The latter condition may make us pass on a maximal ele-
ment early in the sequence, but we will never pass on the
last maximal element. We show that for a judicious choice
of the threshold (that depends on k) our algorithm succeeds

with probability roughly k−
k
k−1

„“
1 + log k1/(k−1)

”k
− 1

«
;

see Theorem 3 for a precise statement. This quantity recov-
ers the 1/e bound in the limit as k → 1, but quickly surpasses
it, reaching 0.47 at k = 2 and 0.52 at k = 3. We show an
almost matching upper bound of k−1/(k−1) +o(1) (Theorem
9), showing that no algorithm succeeds with probability bet-
ter than 0.5 for k = 2 and better than 0.57 for k = 3. Figure
1 shows these bounds. Closing the gap between the two re-
mains an interesting open problem.

On the technical side, we proceed as follows. To analyze
the algorithm, we concentrate on the probability of the al-
gorithm reaching the last maximal element. We introduce
the concept of a blocking set and show that if the blocking
set occurs early in a random permutation of elements, then
the second condition on accepting an element (requiring that
the number of maximal elements in the induced poset be at
most k) prevents the algorithm from returning a suboptimal
element. We then proceed to construct such permutations
by starting from the end and increasing the suffix so as to
keep the blocking sets early in the sequence.

For an upper bound on the success probability of any al-
gorithm, we use a linear programming approach introduced
in the work of Buchbinder, Jain, and Singh [6]. We use this
approach to consider the very specific poset of k disjoint to-

tal orders, each on n/k elements, and show that no algorithm
has a good competitive ratio on this poset. To that end, we
construct a linear program whose value upper bounds the
probability of success of any algorithm on this poset. We
then present a feasible solution to the corresponding dual,
thus establishing a bound on the success probability of any
algorithm for this problem. It is worth to note that this
bound holds even if the algorithm knows that the poset un-
der consideration consists of k disjoint total orders.

1.2 Related work
Independently and concurrently with our work, Freij and

Wästlund [9] recently proposed an algorithm for the par-
tially ordered secretary problem and claimed a bound of 1/e
on its success probability. Their algorithm works as follows.
Assign a score uniformly at random in [0, 1] as elements ar-
rive, skip the first 1/e fraction of elements, and pick the first
element which is the greedy maximum of the poset seen so
far including this element. Here, the greedy maximum of
a poset with weighted elements is defined inductively: it is
the lowest weight element if it is the maximal or it is the
greedy maximum of the sub-poset induced by the elements
that are bigger than the lowest weight element. Their al-
gorithm has the same downside as that of [10, 19], namely,
the competitive ratio does not increase with the number of
maximal elements and remains bounded by 1/e.

The poset secretary problem has been previously consid-
ered for specific cases of posets. For example, Morayne [18]
and Kubicki et al. [16] present an optimal stopping time for
the case of the complete binary tree. Gnedin [11] explored
other specific poset structures. Generally, Bruss [5] defined
a way (known as the Odds algorithm) to compute optimal
stopping rules for any last-success problem, which applies
to the classical version of the secretary problem as well as
to the case of any known poset with a single maximal ele-
ment. For poset-oblivious algorithms, very recently, Kozik
[15] proposed a dynamic threshold algorithm that selects
a maximal element of any poset with probability at least
1/4 + ε (for some small ε > 0), therefore beating the 1/4
bound of Georgiou et al. [10].

Other variants of secretary problems have been previously
applied to the online auction setting. For example, design-
ing mechanisms to maximize some function of the top k
elements [1, 2, 14] or some function on the accepted set
of elements, such as online submodular function maximiza-
tion [12, 17], finding the heaviest weight independent set of
a matroid [3, 20], etc. See [4] for a survey of some of these
results.

2. PRELIMINARIES
Let U be a universe of n elements. A poset P ⊆ U2

is a binary relation that is reflexive, anti-symmetric, and
transitive. We use a ≺P b to denote (a, b) ∈ P and use
a‖Pb to denote (a, b) /∈ P ∧ (b, a) /∈ P, i.e., a and b are
incomparable. A linear extension of P is a permutation π
on U such that a ≺P b =⇒ π−1(a) < π−1(b).

An element a is maximal (aka a secretary) if there is no
element b such that a ≺P b. Let maxP be the set of all sec-
retaries of P and let k = |maxP|, the number of secretaries.

We denote by Si =
S
j<i{π(j)} the set of elements pre-

ceding i in the permutation.
Given S ⊆ U , let P|S = P ∩ S2, the poset obtained from
P by using the elements only in S.

Definition 1 (Pareto frontier). Given a poset P and
a subset S ⊆ U , the Pareto frontier FP(S) is defined to be
maxP|S.

3. ALGORITHM AND ANALYSIS
Let P be the given poset. We assume that the algorithm

is given k = |maxP|, the number of secretaries. Our al-
gorithm proceeds in a way similar to the algorithm in the
total order setting. It examines all of the elements before
a threshold τ . An element a arriving after the threshold is
returned if two conditions are met. First, the element must
be undominated, i.e., a ∈ FP(S), where S is the set of all of
elements seen thus far; since any dominated element cannot
be maximal, this is without loss of generality. Second, the
total size of FP(S) is at most k. While the second condition
may lead the algorithm to pass on a maximal element, it will
never pass on the last maximal element in the permutation.

We will denote by π the order in which the elements arrive.
To describe the algorithm, let τk be the stopping threshold :

τk =


n/e, k = 1,

n/k
1
k−1 , k > 1.

Note that limk→1+ τk = n/e.

Algorithm 1 Secretary (π, k).

1: S = {π(1), . . . , π(τk)}
2: for i = τk + 1 . . . n do
3: a = π(i)
4: S ← S ∪ {a}
5: if a ∈ FP(S) ∧ |FP(S)| ≤ k then
6: return a
7: end if
8: end for

3.1 Warmup: Analysis for k = 1

Theorem 2. For any poset P with k = 1, Algorithm 1
succeeds with probability at least 1/e.

Proof. Let PL be an arbitrary linear extension of P; by
definition, if a ≺PL b, then either a ≺P b or a‖Pb. Now,
we compare the performance of Algorithm 1 on P and PL.
Consider any permutation π such that the algorithm outputs
the secretary when run on PL. We claim that the algorithm
outputs the secretary when run on P as well. This will com-
plete the proof since Algorithm 1 on a linear order (i.e., PL)
is the optimal algorithm for the classical secretary problem,
and therefore succeeds with probability at least 1/e.

To prove the claim, we only need to show that the algo-
rithm does not output any element before encountering the
secretary. Let i∗ be the position in π where the secretary
occurs and consider any position i ∈ (τ1, i

∗). It must be the
case that π(j) �PL π(i) for some j < i, since otherwise the
algorithm would have output π(i) when run on PL. There-
fore, either π(j) �P π(i) or π(j)‖Pπ(i). In both cases, the
element π(i) is not output when the algorithm runs on P:
indeed, in the former case, π(i) /∈ FP(Si) and in the latter
|FP(Si)| ≥ 2 > k, where Si =

S
j≤i{π(j)}.

3.2 Analysis for general k
In this section we show that the algorithm succeeds with

increasing probability as k increases.

Theorem 3. For any poset P with k maximal elements,
Algorithm 1 succeeds with probability at least`

τk
k

´`
n
k

´ · „1 + log
n− k
τk

«k
− 1

!
.

Before proceeding further, let us briefly interpret the above
bound. Let k = εn, and consider a slightly different thresh-

old τ ′k = (1 − ε)τk = (1 − ε)nk−
1
k−1 . Note that holding k

fixed and letting n→∞, we have ε→ 0.

Then, we can bound
`
τ ′k
k

´
/
`
n
k

´
as:Qk

i=0(1− ε)nk−
1
k−1Qk

i=0(n− i)
>

(1− ε)k−

1
k−1 − ε

(1− ε)

!k
≥ k−

k
k−1 −O(ε).

And,„
1 + log

n− k
τ ′k

«k
=

1 + log

(1− ε)nk
1
k−1

(1− ε)n

!k

=

„
1 +

1

k − 1
log k

«k
≥ k(1− ok(1)).

Combining the two, we obtain that the probability of win-
ning is at least“
k−

k
k−1 −O(ε)

”
k(1− ok(1)) = (1− ok(1))k−

1
k−1 −O(ε).

As we will show in Section 4, the term k−
1
k−1 is tight and

thus the maximum difference between the lower bound and
the upper bound approaches 0 for large k (Figure 1).

3.2.1 Proof of Theorem 3
To prove the theorem, we will describe the set of per-

mutations on which the algorithm is guaranteed to succeed.
In particular, we focus on the probability that the algorithm
does not return an element before reaching the last secretary
in the permutation. Observe that the algorithm will never
pass on the last secretary: it will surely be in FP(S), and at
that point FP(S) = k. Obviously, the algorithm will fail if
all of the secretaries come before the threshold. A harder to
analyze failure mode is that of returning a faux -secretary:
an element that looks like a maximal element before reach-
ing the actual secretary that dominates it. A way to avoid it
is to insist that either FP is of size at least k+ 1 before the
last secretary is reached or that the maximal element comes
before any of the potential faux-secretaries (the latter is ex-
actly the analysis in the k = 1 case).

We begin by describing the permutations on which Algo-
rithm 1 will succeed. We first give few definitions that we
use in the proof.

Let τ = τk. Fix any k + 1 special positions in the permu-
tation 1 ≤ `0 ≤ · · · ≤ `k ≤ n, such that for some 0 ≤ i∗ < k
we have `i∗ = τ , and the other positions are all distinct from
each other. We define the set P = P`0,...,`k of all permuta-
tions such that the positions `i with i 6= i∗ are occupied by
the secretaries in any order.

For a suffix ti of elements from position `i to n, we define
P (ti) be the set of all permutations in P that have ti as a
suffix. For a set of suffixes T , we let P (T) =

S
t∈T P (t).

We will now inductively define a set Ti∗ of suffixes such
that Algorithm 1 returns a maximal element in all permu-
tations in P (Ti∗). To begin, let Tk be the set of all suffixes

from `k to n; thus we have that P (Tk) contains all the per-
mutations in P . Inductively, define Ti, for i = k − 1, . . . , i∗,
in the following way. Let the FP (U \ ti+1) be Pareto fron-
tier of the elements that are not in ti+1, and define G(ti+1)
to be the set of non-secretary elements of FP (U \ ti+1).

Now let B(ti+1) be any subset of G(ti+1) of min{k −
i, |G(ti+1)|} elements; we call the set B(ti+1) a blocking set.
Note that in a permutation π where all of the elements in
B(ti+1) come before `i, Algorithm 1 cannot terminate with
any element between `i and `i+1. In this case, we say that
B(ti+1) is a good blocking set in π. In order to find a lower
bound on the number of winning permutation for a fixed
position of i∗, we can bound the number of permutations
where B(tj+1) is a good blocking set for every i∗ ≤ j < k.
To this end, let A(ti+1) be the set of all suffixes from `i to n
that agree with ti+1 and that do not contain elements from
B(ti+1). Let Ti =

S
ti+1∈Ti+1

A(ti+1).

Lemma 4. Algorithm 1 returns a maximal element on all
permutations in P (Ti∗).

Proof. Suppose not and consider any permutation in
P (Ti∗) where the algorithm fails. Suppose the returned
element is in the interval between `i and `i+1 for some
i∗ ≤ i ≤ k − 1. Then, this permutation has to be in P (Ti)
(since P (Ti) ⊆ P (Ti+1)). But by definition of Ti, if G is the
Pareto frontier of the elements before `i+1, either all of G
or a subset of at least k − i elements of G comes before `i.
Either way, in the positions ti, . . . , ti+1, the Pareto frontier
is composed of at least i secretaries and the good blocking
set Bi+1. Thus the if statement in step 5 of Algorithm 1
avoids that an element is returned in the interval between
`i and `i+1. So we have a contradiction.

Suppose there were j secretaries that came after the thresh-
old. In this case, we can look at the fraction of the permu-
tations whose suffix agrees with Tk−j . Let

γ(j) =
|P (Tk−j)|
|P | .

Note that γ is implicitly a function of `k, . . . , `i∗ . We begin
by bounding γ(j) from below. Let

γ′(j) =

k−1Y
i=k−j

k−i−1Y
w=0

„
`i − i− w

`i+1 − (i+ 1)− w

«!
.

Lemma 5. γ(j) ≥ γ′(j).

Proof. By definition, P (Ti) ⊆ P (Ti+1) and hence

|P (Ti)| = |P (Ti+1)| ·
`
fraction of permutation

in P (Ti+1) with good Bti+1

´
≥ |P (Ti+1)| ·

`
fraction of permutation

in P (Ti+1) with k elements of

G(ti+1) before k − i− 1
´

≥ |P (Ti+1)|
k−i−1Y
w=0

„
`i − i− w

`i+1 − (i+ 1)− w

«
.

Therefore, we can conclude that

|P (Ti∗)| ≥ |P |
k−1Y
i=i∗

k−i−1Y
w=0

„
`i − i− w

`i+1 − (i+ 1)− w

«!
.

And,

γ(k − i∗) =
|P (Ti∗)|
|P |

≥
k−1Y
i=i∗

k−i−1Y
w=0

„
`i − i− w

`i+1 − (i+ 1)− w

«!
= γ′(k − i∗).

We first show that γ′(r) can be rewritten in a more con-
venient way; the proof is in Appendix A.

Lemma 6.

γ′(r) =
(`k−r − (k − r))!

(`k−r − k)!

r−1Y
s=0

1

`k−s − k
.

Next, we obtain an analytical bound that will be useful later;
the proof is in Appendix B.

Lemma 7.X
`k,...,`k−j+1:

n≥`k>···>`k−j=τ

j−1Y
s=0

s+ 1

`k−s − k
≥ logj

n− k
`k−j − (k − j) .

Now we are ready to put all of the pieces together. To count
the total number of permutations on which the algorithm
succeeds, we begin by conditioning on the number of secre-
taries that come after the specified threshold, τ . Let Ej be
the event such that there are exactly j ≥ 1 fixed secretaries
after the threshold `k−j = τ and let win be the event of the
algorithm returning a maximal element.

Lemma 8.

Pr[win|Ej] ≥
(τ − (k − j))!

(τ − k)!

(n− τ − j)!
(n− τ)!

logj
„

n− k
τ − (k − j)

«
.

Proof. We enumerate over all permutations that have j
maximal elements after the threshold. Since γ(j) depends
only on the position and not on the order of these elements,
we have:

Pr[win|Ej] = j!

·
X

`k,...,`k−j+1:
n≥`k>···>`k−j=τ

„
1

n− τ · · ·
1

n− τ − (j − 1)

«
γ(j).

Since `k−j = τ , applying Lemma 5, Lemma 6, and Lemma
7 completes the proof.

Pr[win|Ej]

≥ (τ − (k − j))!
(τ − k)!

(n− τ − j)!
(n− τ)!

j!

·
X

`k,...,`k−j+1:
n≥`k>···>`k−j=τ

j−1Y
s=0

1

`k−s − k

=
(τ − (k − j))!

(τ − k)!

(n− τ − j)!
(n− τ)!

·
X

`k,··· ,`k−j+1:
n≥`k>···>`k−j=τ

j−1Y
s=0

s+ 1

`k−s − k

≥ (τ − (k − j))!
(τ − k)!

(n− τ − j)!
(n− τ)!

· logj
„

n− k
τ − (k − j)

«
.

Proof of Theorem 3. Finally, we can remove the con-
ditioning in Lemma 8 to prove an overall bound on the suc-
cess probability of the algorithm.

Pr[Ej] =

k

j

!„
τ

n
· · · τ − (k − j − 1)

n− (k − j − 1)

«
·
„

n− τ
n− (k − j) · · ·

n− τ − (j − 1)

n− (k − 1)

«
=

k

j

!
τ !

(τ − (k − j))! ·
(n− τ)!

(n− τ − j)! ·
(n− k)!

n!
.

Now, using Lemma 8, we have that

Pr[win] =

kX
j=1

Pr[win|Ej] Pr[Ej]

=
τ !

(τ − k)!
· (n− k)!

n!
·
kX
j=1

k

j

!
logj

n− k
τ − (k − j)

≥ τ !

(τ − k)!
· (n− k)!

n!
·
kX
j=1

k

j

!
logj

n− k
τ

=
τ !

(τ − k)!
· (n− k)!

n!
·

 „
1 + log

n− k
τ

«k
− 1

!
.

4. UPPER BOUNDS ON SUCCESS
In this section we prove an upper bound on the success

probability of any algorithm for the poset secretary problem.
For k = 1, it is well-known that no algorithm can succeed
with probability more than 1/e. Here we explore how the
bound grows with k. Our main result is the following:

Theorem 9. Let 2 ≤ k = o(
√
n). For any poset P with

k maximal elements, every algorithm has success probability

at most k−
1
k−1 + o(1).

To prove this result we will analyze the performance of
any algorithm on a specific poset Pk. Let L be a total
order on n/k elements; we will call such a poset a line.
We define Pk to be the poset consisting of k disjoint lines:
Pk = {L1, . . . ,Lk}.

Our strategy is to write down a linear program whose
value is an upper bound on the success probability of any
algorithm. We will then analyze the dual formulation and
derive a feasible solution for it, which will serve as the bound
in Theorem 9.

We begin by restricting the class of algorithms and the
class of permutations we consider. A τ -threshold algorithm
is one that never returns any of the first τ elements. Recall
that Si = ∪j<i{π(j)} denotes the set of elements preceding
i in the permutation and F(Si) denotes the set of maximal
elements of Si. We insist that the algorithms we consider
are sane, i.e., they never knowingly return a dominated el-
ement; formally, if the element at position i is returned by
the algorithm, then π(i) ∈ F(Si+1).

We also restrict the permutations under consideration. A
permutation π is called τ -covering if the following two con-
ditions hold:

1. F(Sτ) ∩ FP = ∅, i.e., π has no maximal elements in
the first τ positions; and

2. for any 1 ≤ j ≤ k, F(Sτ) ∩ Lj 6= ∅, i.e., at least one
descendant of each maximal element occurs among the
first τ elements.

These restrictions on the algorithm and the permutations
do not change the success probability substantially.

Lemma 10. Consider any algorithm A that succeeds with
probability ρ. Then A succeeds with probability at least ρ −
o(1) on all (2k logn)-covering permutations. Furthermore,
when run on (2k logn)-covering permutations, A is a sane
and (2k logn)-threshold algorithm without loss of generality.

Proof. To prove the first claim, observe that (2k logn)-
covering permutations constitute an

O

 „
1− 1

k

«2k logn

+

„
1− 2k logn

n

«k!
= o(1)

fraction of all of the permutations, when k = o(
√
n). More-

over, on these permutations, any algorithm returning one
of the first 2k logn elements is guaranteed to fail, therefore
we can assume that the algorithm is a (2k logn)-threshold
algorithm without loss of generality.

For the remainder of the proof we therefore assume that
the algorithms under consideration are sane and (2k logn)-
threshold. We proceed by writing down a linear program
that encodes the success probability of any algorithm on
Pk.

Lemma 11. Consider any optimal solution of the linear
program in Fig. 2 and let v be its value. Then, any sane
(2k logn)-threshold algorithm A, has success probability at
most v on the poset Pk.

Proof. Let pi = Pr[A returns π(i)] denote the proba-
bility that A returns the ith element of the permutation1.
Similarly, let qi = Pr[A returns π(i)|π(i) ∈ F(Si+1)]. Note
that since A is sane, A never returns π(i) if π(i) /∈ F(Si+1).
Therefore we can write pi = qi Pr[π(i) ∈ F(Si+1)]. More-
over, A returns an element π(i) only if it discards all of the
elements in positions j < i. Thus we can write:

qi ≤ 1−
X
j<i

pj = 1−
X
j<i

fjqi, (1)

where fj = Pr[π(j) ∈ F(Sj+1)].
We can express the probability that A returns a maximal

element as

Pr[A wins]

=

kX
j=1

nX
i=1

Pr[A returns π(i)|π(i) ∈ F(Lj)]

·Pr[π(i) ∈ F(Lj)]

=
k

n

nX
i=1

Pr[A returns π(i)|π(i) ∈ F(Si+1)]

=
k

n

nX
i=1

qi,

where the second step follows because the algorithm can-
not determine whether a maximal element of the poset in-
duced from the first i elements in π is a maximal element
1The probability is over both the permutations and the coins
of the algorithm.

max
q1,...,qn

k

n

nX
i=1

qi

qi +

i−1X
j=1

k

j
qj ≤ 1, 1 ≤ i ≤ n

qi ≥ 0, 1 ≤ i ≤ n

min
x1,...,xn

nX
i=1

xi

xi +
k

i

nX
j=i+1

xj ≥
k

n
, 1 ≤ i ≤ n

xi ≥ 0, 1 ≤ i ≤ n

Figure 2: Linear program (left) and its dual (right).

of the whole poset or not, and hence the contributions are
equal. More formally, we observe that, for every 1 ≤ j ≤ k,
Pr[A returns π(i)|π(i) ∈ F(Pk) ∩ Lj] = Pr[A returns π(i)|
π(i) ∈ F(Si+1) ∩ Lj]. This follows because for any two
permutations π, π′ identical up to i − 1, and with π(i) ∈
Fπ(Pk) ∩ Lj and π′(i) ∈ Fπ′(Si+1) ∩ Lj , we have that the
poset induced by the first i elements is exactly the same.
Hence, the algorithm’s behavior is unchanged (here the sub-
script on F denotes the permutation of the elements under
consideration).

Finally we show that we correctly captured the constraints
on q. Assume that i > 2k logn, and denote by Sτ the set
of elements appearing before the threshold. Since for all j,
Sτ ∩ Lj 6= ∅, the size of the Pareto set at i is exactly k.
Therefore fi = k/i. For i > 2k logn, inequality (1) implies
that qi +

P
j<i

k
j
qj ≤ 1.The same inequality trivially holds

when i ≤ 2k logn since qi = 0 for these elements.

Next, we focus on the feasible solution to the dual program.

Lemma 12. There exists a feasible solution to the dual

program in Figure 2 that has value k−
1
k−1 + o(1).

Proof. We define the following feasible solution to the
dual program in Figure 2: inductively, xn = k

n
and xi =

max{0, k
n
− k

i

Pn
j=i+1 xj}. Note that the value of the ob-

jective function for this solution is
Pn
i=1 xi =

Pn
i=T+1 xi,

where T is the maximum index such that xT = 0. Con-
sider the sequence ai inductively defined by an = k

n
and

ai = ai+1 +
`
k
n
− k

i
ai+1

´
. We observe that for any j ≥

T + 1, it holds that aj =
Pn
i=j xi and that k

n
− k

j
aT+1 ≤ 0.

Specifically, either aT < aT+1 and aT+1 > · · · > an, or
aT−1 < aT = aT+1 and aT+1 > · · · > an.

Note that the problem of computing
Pn
i=1 xi now reduces

to the problem of finding the last local maximum of the
sequence {ai}ni=1.

We proceed as follows. First, we introduce the function
s(z) defined over the real domain [1, n] by

s(z) =
k

n

n−zX
`=0

Ỳ
t=1

„
1− k

z + t− 1

«
.

Note that s(i) = ai for every i ∈ {1, . . . , n}. We study
s(z) in [g(n), n] with g(n) = ω(1) and show that it has only
one stationary point (a maximum) in this interval at z∗ =

(1 ± o(1))n/k1/(k−1). Finally, since s(z) is continuous, we
can conclude that T + 1 = max{bz∗c, dz∗e}.

We have

s(z) =
k

n

n−zX
`=0

Ỳ
t=1

„
1− k

z + t− 1

«

=
k

n

n−zX
`=0

exp

"X̀
t=1

log

„
1− k

z + t− 1

«#

≥ k

n

n−zX
`=0

exp

»Z `

t=1

log

„
1− k

z + t− 1

«
dt

–

=
k

n

n−zX
`=0

exp

»
(z + t− 1) log

„
1− k

z + t− 1

«

−k log(z − 1− k + t)

˛̨̨̨`
t=1

#

=
k

n

n−zX
`=0

“
1− k

z+`−1

”z+`−1

(z − k)k`
1− k

z

´z
(z + `− 1− k)k

.

One can similarly show that

s(z) ≤ k

n

n−zX
`=0

“
1− k

z+`

”z+`
(z − k)k`

1− k
z

´z
(z + `− k)k

.

For z ≥ k logn, we have that
“

1− k
z+l−1

”z+l−1

= (1 −
o(1))e−k and

`
1− k

z

´z
= (1−o(1))e−k, where the o(1) term

hides factors going to 0 as n→∞. So we can write s(z) as

s(z) ≥ (1− o(1))
k

n
(z − k)k

n−zX
`=0

1

(z + `− 1− k)k

≥ (1− o(1))
k

n
(z − k)k

Z n−z

`=0

1

(z + `− 1− k)k
d`

= (1− o(1))
k

n

1

k − 1
(z − k)k„

1

(z − k − 1)k−1
− 1

(n− k − 1)k−1

«
≥ (1− o(1))

k

n

1

k − 1

„
(z − k)− (z − k)k

(n− k − 1)k−1

«
.

One can similarly show that

s(z) ≤ (1 + o(1))
k

n

1

k − 1

„
(z − k)− (z − k)k

(n− k − 1)k−1

«
.

Taking the derivative and setting it to zero gives a maxi-
mum at z∗ at n

k1/(k−1) (1±o(1)). Define i∗ = max{bz∗c, dz∗e}.
By definition of ai and the maximality of i∗, it must be that

k
n
− k

i∗ ai∗+1 ≥ 0, which implies

ai∗+1 ≤
i∗

n
≤ k−1/(k−1)(1 + o(1)).

Finally,

nX
i=1

xi = ai∗ ≤ ai∗+1 +
k

n
≤ k−1/(k−1) + o(1).

This gives a feasible solution to the dual and a bound on its
value.

5. TIGHTNESS OF ALGORITHM 1
In Section 4 we showed that no algorithm can succeed

with probability more than k−
1
k−1 − o(1) on the poset Pk

consisting of k disjoint total orders. In this section we use
a different analysis to show that Algorithm 1 achieves this
bound on a large family of posets including Pk.

The main idea is to define an event of the algorithm pass-
ing on a maximal element after the threshold τk and then
returning a non-maximal element; call this event pass. For
any τk < i ≤ n, we define Ai as the event that the first
secretary after the threshold occurs at position i and Di as
the event that the algorithm discards the element π(i); let
Di1:i2 = Di1 ∧ · · · ∧Di2 . Now, if win denotes the event that
the algorithm returns a secretary, then pass = ∪i>τkpassi,
where passi = Dτk+1:i ∧Ai ∧win.

We begin by showing that the disjoint events win and
pass together account for the vast majority of the outcomes
of the algorithms. We then show how to upper bound the
probability of pass on particular posets, leading to a bound
on the success probability of the algorithm.

Lemma 13. Pr[win] + Pr[pass] ≥ k
n

Pn
i=τk+1

(τkk)
(i−1
k)

.

Proof. Suppose the first secretary after the threshold
is at i. Then the algorithm can win by returning π(i) or
discarding π(i) and then winning later on. In the first case,
it must be that F(Si+1) ≤ k while in the other, F(Si+1) ≥
k+1. Let Fi denote the event that |F(Si+1)| ≥ k+1. Then,
we have

Pr[win] =
X
i>τk

`
Pr[Dτk+1:i−1 ∧Ai ∧ Fi]

+ Pr[Dτk:i−1 ∧Ai ∧ Fi ∧win]) .

The second term can be rewritten as

Pr[Drk:i−1 ∧Ai ∧ Fi ∧win]

= (1− Pr[win|Drk:i−1 ∧Ai ∧ Fi])
·Pr[Drk:i−1 ∧Ai ∧ Fi]

= Pr[Drk:i−1 ∧Ai ∧ Fi]− Pr[passi].

Since the events passi are disjoint, we have that Pr[win] +
Pr[pass] =

Pn
i=τk+1 Pr[Dτk:i−1 ∧Ai]. We proceed to bound

Pr[Dτk:i−1 ∧ Ai]. Note that the probability of π(i) being a
secretary is k/n. Consider any subset B of F(Si) that con-
tains all secretaries in F(Si) and is of size min{|F(Si)|, k}.
B is a blocking subset: if all elements in B appear before the
threshold, no element between τk + 1 and i − 1 (inclusive)
will be accepted. Moreover, this implies that there are no

maximal elements between τk + 1 and i− 1. The lemma fol-
lows observing that the probability of this event is at least
(τk`)
(i−1
k)

.

We can now prove a concrete bound on the winning prob-
ability that closely resembles the bound in Section 4.

Theorem 14. For any k,

Pr[win] ≥ k−
1
k−1 − Pr[pass]−O(k/n).

Proof. By Lemma 13,

Pr[win] + Pr[pass]

≥ k

n

nX
i=rk+1

τk · · · (τk − k + 1))

(i− 1) · · · (i− k)

≥ k

n
(τk − k + 1)k ·

nX
i=τk+1

1

(i− k)k

≥ k

n
(τk − k + 1)k ·

Z n+1

i=τk+1

1

(i− k)k

=
k

n
(τk − k + 1)k

1

k − 1„
1

(τk − k + 1)k−1
− 1

(n− k + 1)k−1

«
=

τk − k + 1

n

k

k − 1

1−

„
τk − k + 1

n− k + 1

«k−1
!

≥ τk − k + 1

n

k

k − 1

„
1−

“τk
n

”k−1
«
.

Now, by definition, we have τk = n/k
1
k−1 . Therefore,

Pr[win] + Pr[pass] ≥ τk − k + 1

n
= k−

1
k−1 − k + 1

n
,

which concludes the proof.

Note that the only way for the algorithm to discard a
secretary π(i) with i > τk is if |F(Si+1)| > k. This event
has zero probability in the poset Pk consisting of k disjoint
total orders.

Corollary 15. Algorithm 1 succeeds with probability k−
1
k−1−

O(k/n) on any poset of width at most k. In particular, this
holds true for the poset Pk.

6. REFERENCES
[1] M. Ajtai, N. Megiddo, and O. Waarts. Improved

algorithms and analysis for secretary problems and
generalizations. SIAM J. Discrete Math., 14(1):1–27,
2001.

[2] M. Babaioff, M. Dinitz, A. Gupta, N. Immorlica, and
K. Talwar. Secretary problems: Weights and
discounts. In Proc. 20th SODA, pages 1245–1254,
2009.

[3] M. Babaioff, N. Immorlica, and R. Kleinberg.
Matroids, secretary problems, and online mechanisms.
In Proc. 18th SODA, pages 434–443, 2007.

[4] Moshe Babaioff, Nicole Immorlica, David Kempe, and
Robert Kleinberg. Online auctions and generalized
secretary problems. SIGecom Exchanges, 7(2), 2008.

[5] F. T. Bruss. Sum the odds to one and stop. Annals of
Probability, 28:1384–1391, 2000.

[6] N. Buchbinder, K. Jain, and M. Singh. Secretary
problems via linear programming. In Proc. 14th
IPCO, pages 163–176, 2010.

[7] E. B. Dynkin. The optimum choice of the instant for
stopping a Markov process. Sov. Math. Dokl.,
4:627–629, 1963.

[8] T. Ferguson. Who solved the secretary problem.
Statist. Sc., 4:282–296, 1989.

[9] R. Freij and J. Wästlund. Partially ordered
secretaries. Electronic Communication in Probability,
15:504–507, 2010.

[10] N. Georgiou, M. Kuchta, M. Morayne, and J. Niemiec.
On a universal best choice algorithm for partially
ordered sets. Random Struct. Algorithms,
32(3):263–273, 2008.

[11] A. V. Gnedin. Multicriteria extensions of the best
choice problem: Sequential selection without linear
order. Contemp. Math, 125:153–172, 1992.

[12] A. Gupta, A. Roth, G. Schoenebeck, and K. Talwar.
Constrained non-monotone submodular maximization:
Offline and secretary algorithms. In Proc. 6th WINE,
pages 246–257, 2010.

[13] M. T. Hajiaghayi, R. Kleinberg, and D. C. Parkes.
Adaptive limited-supply online auctions. In Proc. 5th
EC, pages 71–80, 2004.

[14] R. Kleinberg. A multiple-choice secretary problem
with applications to online auctions. In Proc. 16th
SODA, pages 630–631, 2005.

[15] J. Kozik. Dynamic threshold strategy for universal
best choice problem. In Proc. 21st International
Meeting on Probabilistic, Combinatorial, and
Asymptotic Methods in the Analysis of Algorithms,
pages 439–452, 2010.

[16] G. Kubicki, J. Lehel, and M. Morayne. A ratio
inequality for binary trees and the best secretary.
Combinatorics, Probability, and Computing,
11:146–161, 2002.

[17] M. Zadimoghaddam M. H. Bateni, M. T. Hajiaghayi.
Submodular secretary problem and extensions. In
Proc. 6th WINE, pages 39–52, 2010.

[18] M. Morayne. Partial-order analogue of the secretary
problem; the binary tree case. Discrete Math,
184:165–181, 1998.

[19] J. Preater. The best-choice problem for partially
ordered objects. Oper. Res. Lett, 25:187–190, 1999.

[20] J. A. Soto. Matroid secretary problem in the random
assignment model. In Proc. 22nd SODA, pages
1275–1284, 2011.

APPENDIX
A. PROOF OF LEMMA 6

Proof. We prove the statement by induction. By inspec-
tion, the equality holds for r = 1. Now suppose it holds up

to a certain 1 ≤ r < k. Then, we have

γ′(r + 1) =

k−1Y
i=k−r

k−i−1Y
w=0

„
`i − i− w

`i+1 − (i+ 1)− w

«!

= γ′(r) ·
rY

w=0

„
`k−(r+1) − (k − (r + 1))− w

`k−r − (k − r)− w

«

=
(`k−r − (k − r))!

(`k−r − k)!

r−1Y
s=0

1

`k−s − k

!

· (`k−r − (k − r)− (r + 1))!

(`k−r − (k − r))!

·
(`k−(r+1) − (k − (r + 1)))!

(`k−r+1 − (k − (r + 1))− (r + 1))!

=
(`k−(r+1) − (k − (r + 1)))!

(`k−r+1 − k)!
· 1

`k−r − k

·

r−1Y
s=0

1

`k−s − k

!
,

which concludes the proof.

B. PROOF OF LEMMA 7
Proof. For convenience, define φ as φ(k+1) = 1 and for

r ≤ k,

φ(r) =

n−(k−r)X
`r :`r=`r−1+1

k − r + 1

`r − k
φ(r + 1).

It is easy to see thatX
`k,...,`k−j+1:

n≥`k>···>`k−j=τ

j−1Y
s=0

s+ 1

`k−s − k
= φ(k − (j − 1)).

We now provide a lower bound on φ(r).

φ(r) ≥ logk−r+1 n− k
`r−1 − (r − 1)

.

We proceed by backward induction on r. For r = k + 1,
the claim holds trivially. Suppose the claim holds down to
a certain r + 1. Then,

φ(r) =

n−(k−r)X
`r=`r−1+1

k − r + 1

`r − k
φ(r + 1)

=

n−(k−r)X
`r=`r−1+1

k − r + 1

`r − k
logk−r

n− k
`r − r

≥
n−(k−r)X
`r=`r−1+1

k − r + 1

`r − r
logk−r

n− k
`r − r

≥
Z n−(k−r)

`r−1+1

k − r + 1

x− r logk−r
n− k
x− r

= − logk−r+1 n− k
x− r

˛̨̨̨n−(k−r)

x=`r−1+1

= logk−r+1 n− k
`r−1 − (r − 1)

.

