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Abstract

We introduce the hiring problem, in which a growing company continuously interviews and
decides whether to hire applicants. This problem is similar in spirit but quite different from the
well-studied secretary problem. Like the secretary problem, it captures fundamental aspects of
decision making under uncertainty and has many possible applications.

We analyze natural strategies of hiring above the current average, considering both the
mean and the median averages; we call these Lake Wobegon strategies. Like the hiring problem
itself, our strategies are intuitive, simple to describe, and amenable to mathematically and
economically significant modifications. We demonstrate several intriguing behaviors of the two
strategies. Specifically, we show dramatic differences between hiring above the mean and above
the median. We also show that both strategies are intrinsically connected to the lognormal
distribution, leading to only very weak concentration results, and the marked importance of the
first few hires on the overall outcome.

1 Introduction

One of the most famous combinatorial mathematical questions is the secretary problem (also known
as the marriage problem, the optimal stopping problem, the Sultan’s dowry problem, and by several
other names): applicants for a secretarial position are interviewed in a random order, and the
relative rank of an applicant compared to previous applicants is revealed. After an interview, the
applicant must either be accepted or rejected before the next interview. The goal is to maximize the
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probability of accepting the best applicant, and the problem is to design a strategy that maximizes
this probability.

Since its introduction in the 1960’s [6], the secretary problem has been the subject of dozens
of papers. (See, e.g., [1,4,5,7,9-11,16,17,19] and the references therein.) This simple abstraction
highlights the problem of choosing the best of a set of sequentially presented random variables, and
thereby captures fundamental issues and inevitable tradeoffs related to making irrevocable decisions
under an uncertain future. As such, it spans multiple scientific disciplines, such as mathematics,
economics, and computer science. Furthermore, the basic form of the problem is easily stated,
understood, and amenable to many variations that capture particular settings.

We introduce a problem in the same spirit that also captures basic tradeoffs in the face of
uncertainty. To honor mathematical history and the connection to the secretary problem, we call
it the hiring problem. In our setting, a small, nimble, start-up company that intends to grow into
a huge, evil, multinational corporation begins hiring employees. The company wants to ensure a
high quality of staff by consistently improving average employee quality. On the other hand, the
company needs working bodies, and it cannot simply wait for the best candidate to come along.
As in the secretary problem, applicants are interviewed, and the decision is immediate. In contrast
to the secretary problem, however, hiring is done continuously, with no fixed limit in mind. The
basic tradeoff in this setting is between the rate at which employees are hired and their quality.

Like the secretary problem, the hiring problem captures a fundamental issue that arises in
many applications where one must make decisions under uncertainty. We emphasize that the
hiring problem is as much about a company hiring employees as the secretary problem is about a
person hiring a secretary. (That is, only tangentially.) Rather, the general problem statement is
meant to give insight into a general mathematical question with many possible applications.

While one could consider many strategies that balance the rate of hiring and the quality of the
resulting hires, we analyze two natural strategies, that, following Peter Norvig [14], we denote as
Lake Wobegon strategies': hire applicants that are better than the average employee you already
have, where by average we refer to either the mean or the median. Such strategies are not entirely
theoretical: in [14] it is claimed that Google actually uses hiring above the mean, and a small
simulation is presented to show that it leads to higher average quality than hiring above the
minimum, even in the presence of noise. (Ignoring noise, this follows easily from our results: the
average quality when hiring above the mean converges to 1, while when hiring above the minimum,
it converges to (1 — p)/2 where p is the initial minimum quality.) Additionally, at least one author
of this paper has heard of this strategy in the setting of tenure decisions within a department:
to improve a department, only tenure junior faculty member whose quality lies above the current
average tenured faculty. As we explain further below, the intuition behind this approach is that it
leads to consistent improvement in employee quality.

One initial issue to be dealt with regards how applicant scores are determined. In this paper, we
consider applicant scores to be interpreted as arbitrarily small quantiles of some predictive measure
of an applicant’s contribution to the company (for example, IQ, although that is unlikely to be the
most desirable measure in practice). Thus, for reasons we explain more clearly below, we model
scores as uniformly distributed on the interval (0,1). Our notion of an average employee is one

! As explained in the Wikipedia, Lake Wobegon is a fictional town where “the women are strong, the men are good
looking, and all the children are above average.” The Lake Wobegon effect in psychology refers to the tendency of
people to overestimate their abilities, so that a large majority of people believe themselves to be above average. This
term matches our strategies in which every employee, at least at the time they are hired, is above average.



whose quality score is either the mean or the median of all employees.
We find several interesting behaviors for these processes, using both mathematical analysis and
simulation, including the following;:

e Hiring above the median and hiring above the mean lead to greatly different behaviors.

e Both processes are intrinsically connected to lognormal distributions, leading to only very
weak concentration bounds on the average quality.

e Both processes exhibit strong dependence on the initial conditions; in economic terms, this
means the first few hires of your start-up can have a tremendous effect!

We emphasize that this paper represents just a first attempt to study this problem (and indeed
some of our results are cut here for lack of space). Given our initial findings, we expect there to
be further work on variations of and alternative strategies for the hiring problem in the future. We
discuss some natural directions in the conclusion.

2 Introducing the Model

2.1 Definitions and Motivation

We suppose that we are interviewing applicants for positions at a company, one-by-one. Each
applicant has a quality score (Q;, and we assume that these scores are independent with common
distribution @ ~ Unif(0, 1), where this notation is read as @ is distributed according to the uni-
form distribution on (0, 1). While interviewing an applicant, we observe his quality score; for the
strategies we study, we choose to hire an applicant if and only if his quality score is at least the
average score of the current employees, for an appropriate notion of average. We assume henceforth
that we start with one employee with some particular quality ¢ € (0,1). We do this because if the
first employee has quality score U ~ Unif(0,1), then the number of interviews needed to hire a
second employee with score at least U is geometrically distributed with mean 1/(1 —U), and hence
is E[1/(1 — U)] = oo. We avoid this undesirable situation by conditioning on the first employee
having fixed quality 0 < ¢ < 1.

The choice of @ ~ Unif(0,1) has a natural interpretation. If @) instead has some non-uniform
continuous distribution, then we can define an alternate notion of the quality of a candidate by
F~YQ;), where F is the cumulative distribution function of Q. Then the F~(Q;)’s are inde-
pendent Unif(0, 1) random variables, and F~1(Q;) is a natural measure of quality: it corresponds
to the applicant’s quality presented as an arbitrarily small quantile in the original metric. Since
this transformation can be performed regardless of the original distribution of quality scores, the
assumption that @; ~ Unif(0,1) is not only very realistic, it is arguably the best one to use. Note
that this transformation preserves ordering, so that hiring above the median leads to the same
decision process regardless of the initial measure. It is perhaps less clear that the strategy of hiring
above the mean is natural in the setting of such a transformation, although we still suspect it to be
relevant to practical scenarios, if only because the mean is an intuitively simpler concept for most
people than the median.

We emphasize that throughout our analysis of the Lake Wobegon strategies, we assume that
the exact value of @); is determined during the interview process. Of course, it is natural to try to
extend the model so that, during an interview, we obtain only an estimate Q; of Q;. We consider
this variation of the model in Section 6.3.



2.2 Baseline Strategies

Before studying our Lake Wobegon strategies, it is worth considering two other seemingly natural
strategies and pointing out their potential flaws. We emphasize, however, that all strategies involve
tradeoffs between the quality and speed of hires, so there is no single best strategy.

Let us first consider what happens if we choose to only hire applicants with quality scores above
a pre-specified threshold t. It should be clear that this strategy leads to a collection of employees
with scores uniformly distributed between ¢ and 1. With a large value of ¢, this strategy guarantees
high quality from the beginning. However, because the threshold is fixed, this strategy does not
lead to continual improvement as the size of the company grows. Perhaps more problematically,
since the rate at which employees are hired is 1 — ¢, fixing ¢t requires us to make a very stark
tradeoff between the overall quality of our employees and the rate of our company’s growth (which
is particularly important early on, when the company is small). This weakness in the threshold
strategy seems difficult to overcome. In contrast, the Lake Wobegon strategies generally allow
faster hiring when the company is small, with increasingly selective hiring as the company grows.

It is also natural to consider the strategy where we start with a single employee with some
particular quality score ¢ and only hire applicants whose quality scores are higher than the scores
of all current employees. We refer to this as the Maz strategy, and we sketch an analysis of it
here because it introduces some important ideas that appear in our analyses of the Lake Wobegon
strategies. For convenience, rather than considering the quality score Q); of the ith hire, we consider
the gap G; = 1 — @; between the score and 1, with Gy = g = 1 — ¢ denoting the gap for the
first employee. By conditioning, we have that G; is uniformly distributed on [0, G;_1], so that
E[G; | Gi—1] = G;—1/2, and hence inductively we find E[G,]| = ¢g/2". Thus, the expected size of
the gap shrinks exponentially as the number of hires grows.

On the other hand, we also have the multiplicative representation G; = G;_1U;, where the U;
are independent uniform (0, 1) random variables. This equation shows that the expected number
of interviews required between any two hirings is actually infinite, for reasons similar to those given
in Section 2.1. For example, since Gog = g, we have G; = gU; and hence the expected number of
interviews between the first and second hirings is E[1/G1] = E[1/U1]/m = oco. While one could
conceivably avoid this problem by changing the model in various ways, this issue certainly highlights
a key problem with this strategy: large lags between hires.

Turning our attention away from the time between hires and back to the employees’ quality
scores, we can also use the multiplicative representation to determine the limiting distribution
of G,. This multiplicative process is best handled by taking the logarithm of both sides, from
which we obtain InG; = InG;_1 4+ In U;, or inductively, InG,, =Ing + Z?:l In U;. The summation
> 1 InU; has an approximately normal distribution by the central limit theorem. More formally,
E[lnU;] = —1 and Var[lnU;] = 1, and hence ﬁ > (14 1InU;) converges to N(0,1), the normal
distribution with mean 0 and variance 1, as n — oo. Thus, for large n, we have

n
InG,, :lng—l—ZIDUi
i=1
~Ing+ N(—n,n) =N(lng — n,n),

and so Gy, has an (approximately) lognormal distribution (see, e.g., [12]). Interestingly, the above
equation implies that the median value for G,, is approximately g/e™ for large n, since the normal
distribution is symmetric around its mean. The mean and the median of GG,, are therefore vastly



different (recall that E[G,] = g/2"), and we can see that the distribution of G,, is highly skewed
for large n. This phenomenon is a recurring theme throughout our analysis.

3 Hiring Above the Mean

We now move on to studying our Lake Wobegon strategies. We begin with hiring above the mean,
for which the analysis is a bit simpler.

Let A; denote the average quality after ¢ hires, with Ag = ¢ being the quality of the initial
employee (so that A; refers to the average of i + 1 employees). The following basic convergence
result is straightforward and given without proof, but we state it so that we are clear that all of
the random variables that we use in our analysis are well-defined.

Proposition 3.1. With probability 1, we hire infinitely many candidates and lim; ., A; = 1.

3.1 Analysis of Expectations

To quantify the rate at which we hire applicants and the rate of convergence of the A;’s, we proceed
by studying the gap sequence given by G; = 1 — A;, which converges to 0 almost surely. In what
follows, we let ¢ = Gg = 1 — ¢ denote the initial gap. In this setting, we have a pleasant form for
G, for any t > 0, as given by the following lemma:

Lemma 3.1. For any t > 0, the conditional distribution of Gy given G; is the same as that of
G; H;:l[l —U;/(i+ j+1)], where the U;’s are independent Unif (0, 1) random variables.

Proof. We proceed by induction on t > 0. For ¢t = 0, the result is trivial. Now, suppose that
t > 0 and that the claim holds for ¢ — 1. Then conditioned on Gj, ..., Giy+—1, the quality score of
the (i + t)th hired candidate is clearly Unif(1 — Giyi—1,1) ~ 1 — Gi44—1U;. Thus, conditioned on
Gi,...,G;14-1, we have

(t4+t)Airi—1 + (1 = Gig—1Up)

Gipt=1—Ajpe~1—

i+t+1
_ g (A = Gipt) + (1 = Gip1 U)
1+t+1
1—Ut Ut
=Gy |l—-——— ) ~Gipy1 (|1 — ——
z+t1< i—l—t—|—1> 2+t1< z‘—i—t—l—l)’
completing the proof. O

Using Lemma 3.1, we can derive formulas for the expected gap and the expected number of
interviews after hiring n people. We then compute the asymptotics of these quantities directly from
these formulas.

Proposition 3.2.



Proof. By the Taylor series for In(1 + z) for |z| < 1,

w6 =511 (- 3575

= gexp z”:m (1_ 2(]1—0)

j=1

— gexp [_;mm @(1)] e (\}ﬁ) .

Proposition 3.3. Let T,, be the number of candidates that are interviewed before n are hired.

n i—1

B(T,] = ; S TI6 + D+ 1/5) = © (n¥?).

i=1 j=1

Proof. By Lemma 3.1,

E [G}n] = ;lj[lE [1 - Unif(Ol, 1)/(i + 1)]

_ lﬁ(H 1) In(1+ 1/4)
9 =1

=6/(vi).

Let T]’- denote the number of candidates interviewed between the (j — 1)st hire and the jth
hire. Then the conditional distribution of TJ’ given G;_1 is geometric with parameter G;_1, and so
E[T}] = E[1/G—1]. Therefore,

E[T,] = zn:E [ij - zn:@ (\/z) e <n3/2) .




It is worth noting that the initial starting gap g = G has a multiplicative effect on the expected
gap and the expected number of interviews, as seen in Proposition 3.2 and Proposition 3.3. This
would still be true even if we started with more than one employee; that is, generally, initial
differences in the gap lead to multiplicative differences in these expectations, demonstrating the
importance of the initial hires on the growth of an organization under this strategy.

Also, it is worth noting that after n3/2 candidates, the expected value for the mean gap for the
best n candidates is @(nil/ 2). Hence hiring above the mean is, in this sense, within a constant
factor of optimal.

3.2 Convergence and Concentration

We have now given results concerning the expectation of the number of interviews to hire n people
and the expectation of the resulting gap after hiring n people. While these results are already
useful, there is more that we can say. In this section, we show that the distribution of the gap
weakly converges to a lognormal distribution. By weak convergence, we mean that the body of
the distribution converges to a lognormal distribution (under suitable initial conditions), but there
may be larger error at the tails. In fact, our simulation results demonstrate this, as we show in
Section 5.

In order to give stronger bounds regarding the behavior of the gap at the tails of the distribution,
we provide a martingale-based concentration argument. It is important to note that this argument
does not give the extremely strong concentration around the mean that usually arises in applications
of this technique; indeed, it clearly cannot, since the body of the distribution is converging to the
heavy-tailed lognormal distribution. Still, we find substantially better concentration at the tails of
the distribution through our martingale-based argument than can be obtained using Chebyshev’s
inequality or other weaker, standard approaches.

We begin our convergence arguments with a technical lemma.

Lemma 3.2. Let U ~ Unif(0,1) and j > 1. Then
Elln(l —U/j)] = =1 = (G = D)In(l = 1/5) = =1/2j + o(1/])
Var(in(l = U/j)] =1 = (j = )7 *(1 = 1/5) = 1/125% + o(1/5%)
E [(In(1 - U/j) — Eln(1 - U/j))*] = 1/805* + o(1/5%)
Proof. This result follows easily from integration and the Taylor series of In(1 + z) for |z| < 1. O

Proposition 3.4. InG,, — E[InG),] converges to some random wvariable G almost surely and in
mean square as n — oo.

Proof. In light of Lemma 3.1, we may abuse the definition of our probability space and write
Gn=g]l-,(1=U;/(i+1)), for independent Unif(0, 1) random variables Uy, Us, . ... Letting

Y =In(1 —U;/(i 4+ 1)) — E[ln(1 — U; /(i + 1))]

for i > 1 gives Z, £ InG,, — E[InG,] = Y1, V;. Since E[Y;] = 0 and the Y;’s are independent,

the sequence Z1,Za, ... is a zero-mean martingale. Furthermore, E[Z2] = > 52 Var[yj] = O(1)
by Lemma 3.2. We may now apply a variant of the martingale convergence theorem (see, e.g. [8,
Theorem 7.8.1]) to obtain the desired result. O



Given that InG), is the sum of independent random variables, one might expect that it can
be asymptotically approximated by a normal distribution, implying that GG,, can be asymptotically
approximated by a lognormal distribution. Some care must be taken however, since In GG, is not the
sum of identically distributed independent random variables, and the means and variances of the
summands shrink rather quickly. These facts require that we use some care in stating the result,
and that we use a strong form of the central limit theorem commonly known as the Berry—Esséen
inequality.

Lemma 3.3 ( [15, Theorem 5.4]). Let X1, Xo, ..., X, be independent random variables with B[X ;] =
0 and E[|X;[}] < oo forj=1,...,n. Let B, = > j—1 Var[X;]. There is a constant c such that

sup |Pr B,;l/ZZXj <z | —-®(x) < CBJB/QZE [121°]
z j=1 J=1

where ®(-) denotes the cumulative distribution function of N(0,1).

Now, once we have enough employees so that no single new hire can have too dramatic an
effect on the final gap after n hires, the conditional distribution of the final gap given the gap after
these first few hires is approximately lognormal. In other words, the first few hires influence the
distribution of the final gap a great deal, but once we condition on them, the distribution of the
final gap is essentially lognormal. This idea is expressed formally in the following proposition.

Proposition 3.5. Suppose f : Zso — Zso satisfies f(n) = w(1) and limsup,,_,., f(n)/n < 1.
Then

sup
X

G G G
Pr(ln—" —E [ln i } < z Var [ln = ] —®(z)| =0 (f(n)"Y?) = o(1),
< Grn) Grn) Gn) ( )

where ®(-) denotes the cumulative distribution function of N(0,1).

Proof. Let Uy,Us,..., be independent Unif(0, 1) random variables, and define

Ui [ Ui
o= (1= grren) B e (0 )

By Lemmas 3.1 and 3.2,

G
1 n —E[l L VN Yo
F(n) Grm) z;
and
n—f(n) n—f(n) 1
VarlY,, ; 9) : =0 -1
2 Varlul = ) (G eee) =20



Also, for fixed n, the Y;,;’s are independent, E[Y;, ;] = 0, and

n—f(n) n—f(n) 1
> Bl = 3 B[]
=1 =1

IN
i
=
<<
e
o~

where the third step follows from Jensen’s inequality and the fourth step follows from Lemma 3.2.
Since 3/2

Q) ™) 20 (Fn)72) = 0 (F()72) = o(1),
an application of Lemma 3.3 completes the proof. 0

Proposition 3.5 shows that, assuming we take our starting point to be after a sufficiently large
number of hires, the body of the distribution of the final gap will be approximately lognormally
distributed. The bounds given by Proposition 3.5, however, are weak at the tail of the distribution,
since those bound give results only within O (f(n)_l/g) = O(n~Y?) (for, say, f(n) = [n/2]). When
we are dealing with subpolynomially small probabilities, such a bound is not useful.

To cope with this, we provide a martingale-based concentration bound, making use of the fact
that changes in the average are generally small.

Proposition 3.6. For any s > 0 and t, A > 0, we have

e |Gore GH( S+J)>

8A2(s+t+2) >

< 2exp <_6G§ In(1+t/(s+1))

Proof. For i = 0,...,t, let X; = E[Gs4¢ | Gs,...,Gsyi]. Then the conditional distribution of the
X,’s given G forms a martingale. For ¢ > 1, let

M= ﬁ( m))

J=t



Then for 7 > 1

Therefore,

| X — Xi—1|
= |E[Gs+t | GSa cee 7Gs+i] - E[Gs+t ‘ Gs; cee 7Gs+i—1”
= [Gs1iMip1 — Gsyi1 M|

1

= |Gepi —Gsqi1 |1l — ——— || M;

s+1 s+1—1 < 2(8—|—i+ 1)>‘ i+1

Unif (0, 1) 1

~Gegric1 |1l ——2 ) —Gepjm1 |1 — —————— ) | M

S+1 1( 8+i+1> s+1 1( Q(S—i-i—i-l))‘ i+1
_ Gsyia
= m - Unlf(O 1) i+1

G
< ———— M,
“2(s+it+1)
< Gs 1 -
_2(s+z+1 231115—1—]4—1
B Gs stl1 s+z+17
2(s+z+1 = 1 J =
< Gs +t4+2)—In(s+i+1)—1]
— X — [In(s —In(s+1 —
_2(s+z+1) p{ -3l

e
_7 (s+t+2)(s+i+1)

t t
G?e 1
X;— X, 4> < s
D IXi = X _4(s+t+2);s+i+1

i=1
G2 s+t+1 1
< Ts€ / — dz
4(s+t+2) x

G2eln (14+t/(s+1))
4(s+t+2) ’

and the result now follows immediately from Azuma’s inequality.

O]

It is worth examining the bound of Proposition 3.6. When s = 0, t = n, so that the expected

value of G; is ©(y/n), choosing values of A that are
surprising given what we know regarding the distribution of G,.

©(1/4/n) gives useless bounds.
However, if we choose A =

This is not

(clogn)/+/n for some constant ¢ > 0, we obtain inverse polynomial bounds on deviations from the
expectation, and if we choose A\ = n~(1/2%9) for any constant € > 0, we obtain probability bounds
that are exponentially small.

10



4 Hiring Above the Median

We now analyze the hiring problem when the distribution of applicants’ quality scores is Unif(0, 1)
and one hires above the median. More precisely, we begin with one employee with quality ¢ € (0,1).
Whenever we have 2k 4+ 1 employees, we hire the next two applicants with quality scores at least
the median Mj, of the 2k + 1 employees. The restriction that we only update the median when we
have an odd number of employees is an interpretation that greatly simplifies the analysis.

One might suspect that hiring above the mean and hiring above the median would have essen-
tially the same behavior, perhaps from the intuition that the median and means of several uniform
random variables are generally quite close to each other. In fact this is not the case, as we now
show. Hiring above the median leads to smaller gaps with fewer hires. Of course, the tradeoff is
that the number of interviews between hires is much larger when hiring above the median than
when hiring above the mean.

Our analysis is essentially analogous to that of Section 3. We begin with the following propo-
sition, which we state without proof.

Proposition 4.1. With probability 1, we hire infinitely many applicants and limyg_, oo My = 1.

We proceed by studying the gap sequence given by G, £ 1 — M, which converges to 0 almost
surely as k — oo. For convenience, we let ¢ = G = 1 — ¢q. Notice that G}, refers to the setting
where we have 2k 4+ 1 employees.

4.1 Analysis of Expectations

Whereas in studying hiring above the mean we dealt with uniform distributions, when studying
hiring above the median the beta distribution arises naturally. (Recall that Beta(i,j) for integer
values of 7 and j is the distribution of the ith smallest of a sample of i+ j — 1 independent Unif (0, 1)
random variables; we use this fact repeatedly in our analysis.)

Lemma 4.1. For any t,k > 0, the conditional distribution of G:t-s-k gwen G is the same as
G, H;:1 Bj, where the Bj’s are independent and Bj ~ Beta(k + j +1,1).

Proof. The main idea of the proof is that when there are 2k 4+ 1 employees, the quality scores of
employees that are above My, as well as the quality scores of the next two hires, are independent
Unif (M, 1) random variables. M is therefore the minimum of 2k + 3 independent Unif (M, 1)
random variables, and the result follows by induction on k.

More formally, we proceed by induction on ¢ > 0. For ¢ = 0, the result is trivial. Now suppose
that ¢ > 0 and that the claim holds for ¢ — 1. Let Uy,...,Ukyt2 be independent Unif(0,1)
random variables, and let Uy, ...,U; ., ., be random variables that, given G} ,,_,, are distributed
as independent Unif(G)_,_;,1) random variables.

Now condition on G’ £ (Go, ..., Gy, +t_1). Then the highest k£ 4+t — 1 employee quality scores
when there are 2(k +¢ — 1) + 1 employees are distributed as k 4t — 1 independent Unif(G}_,_;,1)

random variables. Furthermore, the quality scores of the next two hires are also independent
Unif(G),,_;,1) random variables. Thus, we have that My, is distributed as

min {Uf,..., U/ g1} ~min{l = Gy Ur,...,1 = Gipy 1 Ungegr }
= 1 — G;C-i-t—l HlaX{U17 .. .,Uk+t+1}
~1— Gl qBeta(k+t+1,1).

11



The conditional distribution of G, given G’ is therefore given by G/, Beta(k +t + 1,1), and
the result now follows immediately from the induction hypothesis. ]

With Lemma 4.1, we can find the expected gap E[G}], as well as the expected number of
interviews to reach 2k 4+ 1 employees, which turns out to have a very nice form. The proofs of the
following propositions are analogous to those of Propositions 3.2 and 3.3.

Proposition 4.2.

ElG] =¢]] (1_]+2> = O(1/k).

Jj=1

Proof. By Lemma 4.1,

E[G}] —gHE [Beta(j + 1,1)] —gH< _]—|-12>

7j=1

=g ]Jexp (-1/i+©(1/5%))
=1
=gexp(—Ink +06(1)) = O(1/k).
O

Proposition 4.3. Let T} be the number of interviews until there are 2k + 1 employees. Then
E[T]] =k(k+1)/g.

Proof. For i > 1, let T/ denote the number of interviews between when there are 2(i — 1) + 1
employees and when there are 2i + 1 employees, so that T} = Z,’f:l T/. Then the conditional
distribution of T} given G)_, is the sum of two independent geometric random variables with
parameter G;_1, and thus E[T}'] = 2E[1/G}_,]. Now, by Lemma 4.1,

1 = 1 =
E[G;_J _gjl_IlE[Beta(j—l—l 1} ;H
where the second step follows from integration. Thus,

Tk—2ZE[ }zi@ k(k+1)

=1

z 1

O]

Again, we note that after n? candidates, the expected value for the median gap for the best n
candidates is ©(1/n). Hence hiring above the median is, in this sense, within a constant factor of
optimal.
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Propositions 4.2 and 4.3 strongly suggest that the strategy of hiring above the median leads to
higher quality employees than the strategy of hiring above the mean, at the cost of significantly
slower company growth. However, one could reasonably believe that these results cannot be directly
compared against those in Section 3.1. Indeed, in Section 3.1 we analyze the average quality score
for the strategy of hiring above the mean, and in Proposition 4.2 we analyze the median quality
score for the strategy of hiring above the median. Thus, we desire results about the median quality
score for the strategy of hiring above the mean and the mean quality score for the strategy of hiring
above the median. The former seems difficult, but we achieve the latter in Proposition 4.4 below.

Proposition 4.4. Let Al denote the mean quality score of the first n employees when hiring above
the median. Then E[A]] =1— 0(logn/n).

Proof. Let Q) denote the quality score of the ith hire. Then @, = ¢ and for ¢ > 1, the conditional
distribution of @/ given G’[ = is Unif(1 — G’[ = 1). A simple calculation then gives
2 2

BIQ) = 1- 3B [Gf.u] = 1-001/0),

where we have used Proposition 4.2. It now follows that

n—1 n—1

E[4;] = 1ZE[QQ] =1 —iZ@(l/i) —1-0 <10g”> _

n

O

Proposition 4.4 can be directly compared with Proposition 3.2 to conclude that the strategy of
hiring above the median really does give significantly higher quality employees than the strategy
of hiring above the mean.

4.2 Convergence and Concentration

Hiring above the median also yields a weak convergence to a lognormal distribution, in the same
sense as hiring above the mean. We can also obtain a martingale argument to handle the tails in
this case, but the proof requires a more challenging argument. The additional difficulty comes from
the fact that, for the strategy of hiring above the mean, a single new hire cannot change the mean
employee quality scores significantly. However, when hiring above the median, a single new hire
can have a drastic impact on the median employee quality score, although this is rather unlikely.
Dealing with this difficulty makes the martingale argument slightly more complicated.

The proofs of the following two propositions are essentially analogous to those of Propositions 3.4
and 3.5. We begin with a technical lemma, which is easily checked by integrating appropriately.

Lemma 4.2. Forj > 1,

1. E[lnBeta(j +1,1)] = —ﬁj
2. Var[lnBeta(j + 1,1)] = 75

3. E |(InBeta(j +1,1) —E[lnBeta(j+1,1)])4] = oy

13



Proposition 4.5. In G}, — E[ln G}] converges to some random variable G' almost surely as k — oo.
Furthermore, the moment generating function of G' is Y (t) = L'(t + 2)e"r=Vt for t > —2, where
v = limg_, o0 Z§:1 % — Ink is the Fuler—Mascheroni constant.

Proof. In light of Lemma 4.1, we may abuse the definition of our probability space and write G} =
9H§=1 Bj, where the Bj’s are independent and B; ~ Beta(j 4+ 1,1). Letting Y; = In B; — E[In Bj]
gives Z, = InG), — E[InG,] = Z§:1 Yj. Since E[Y;] = 0 and the Yj’s are independent, the Z’s
form a zero-mean martingale. Furthermore, by Lemma 4.2,

=

E [Z}] = Var[Z;] = ZVar o(1).

J:1

Therefore, we may apply a variant of the martingale convergence theorem (for example, [8, Theorem
7.8.1]) to obtain almost sure convergence of Zj, to some random variable G’ as k — oco. Now, for
t>—2,as k — oo,

[1°_, B [Beta(j + 1,1)']

B[] -
exp (t Z§:1 E[lnBeta(j + 1, 1)])
k j+1
_ II= jil+t
exp (—t Z?:l #)
k
r
_TE+2rk+2) tZ.l
D(k+2+1t) —~ j+1
Kt 2). DR D
(k_|_2+t)k‘+2+tef(k+2+t)/ E+2+t
US|
X Yy —
7j=1
—riro(1- L e iRk
N k+2+t (k+2)tV k+2
U |
X £y —
P |27
j=1
t k
~T(t+2)e" 1 ty ——
(EDe gy Lo ;j+1

where the fourth step follows from Stirling’s formula for the Gamma function. Since the Zj’s
converge almost surely to G, we are done. O
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Proposition 4.6. Suppose f : Z~o — Z¢ satisfies f(k) = w(1) and limsup,_, . f(k)/k < 1. Then

! / !
Pr <ln Gcl;k —E |In GC’;k ] < x Var lln Gcik ] > — ®(x)
f(k) f(k) f(k)

=0 (f(R)772) =o(1),

sup
xX

where ®(-) denotes the cumulative distribution function of N(0,1).

Proof. Let Bi, B, ... be independent random variables with B; ~ Beta(j + 2,1) and let Y} ; =
In By — E[ln Bf(k)+j]~ By Lemmas 4.1 and 4.2,

In—* —E [In % | ~ Vi j
Gk Crwy] o
and
k—f (k) k—f (k)
Var[Y; ;] = Q(fR)+5)73) =Q(f(k)7)
j=1 j=1

Also, for fixed k, the Y} ;’s are independent, E[Y}, ;] = 0, and

k—f(k) k—f(k)

Z; E[vil’]= ) E[(Yﬁj)g/ﬂ

A\
=
L
S

~

where the third step follows from Jensen’s inequality and the fourth step follows from Lemma 4.2.

Since
—-3/2

Q)0 (F)72) = 0 (FR)T2) = o(1),
an application of Lemma 3.3 completes the proof. 0

As before, we may use a martingale argument to obtain bounds where Proposition 4.6 breaks
down, although the argument is a bit more sensitive.

Proposition 4.7. For s,t > 1, u < s, and A > 0, we have

t
1
/ !
Pr G5+t_stl_{<l_W> 2)\ Gs
N (s+t42)°
<2 —— | te vt
- exp[ 2t< euG’, e
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Proof. For i = 0,...,t, let X; = E[G,; | G},...,G},,;]. Then the conditional distribution of the
X;’s given G, forms a martingale, to which we wish to apply some variant of Azuma’s inequal-
ity. Unfortunately, this requires an effective bound for |X; — X;_1| which is difficult, as there is
some chance that when the median changes there is an unusually large difference between the
corresponding gaps. While these events are rare, we must take them into account.

Let us suppose we have values ¢; and b; such that | X; — X;_1| < ¢; with probability 1 — b;.
Then it follows (in a manner similar to [3, Theorem 5.1]) that we can use the following Azuma’s
inequality variant:

n
Pr(|X; — Xo| > A) < 27220 1 3,
i=1
Intuitively, we think of having a bad event when |X; — X;_1| > ¢;, and separate out the probability
of any bad event; if no bad events occur, we have a well-behaved martingale.

Now, we know that the distribution of G'_; given G', ;_; has the form G, ,Z;, where Z; is a
random variable with distribution Beta(s+i+1, 1), which has expectation 1—1/(s+i+2). Let us con-
sider the event Z; < 1—u/(s+i+2) £ z;, which occurs with probability (1 — u/(s + i+ 2))*™ <
e Tt Now for i > 1, if Z; > z;,

X — Xi 1| = |[E[GLy, | Gy, ..., Gl —ElGyy | Gy Gy ]|

t t
1
= |G .. || 1 — ”
s+1 ( 8—|—]+2> s+z ( S—|—]—|—2>

j=i+1

t
=G .. -G .. 1 — -
s+t s+z—1< —I—Z—|—2>' 1_‘_[|_ ( S—I—j+2>

t
1 1

~\Glri 12 — G 1-— 1~

s+i—1 Ss+i1— 1( S+i+2> H < S+j+2>

Jj=i+1
t
1 1

=G - =7 1—- —

sti-l s+i+42 ’Jlll< s+j+2>

U i 1

“rsiefl (s

s+z+2j:i+1 s+j7+2

es

exp | —

T 54142 P +18—|—]+2
B uG’ s+t+2 Z+ 1

s+1i+42 P o = j

Gl
_Sfij—Qexp( In(s+t+2)—In(s+i+2)—1])
_euGl
s+ t+2
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Hiring above the Mean || Hiring above the Median
Average Expected Average Expected
Hires Gap Gap Gap Gap
256 0.03556 0.03518 0.00761 0.00769
512 0.02493 0.02490 0.00370 0.00388
1024 || 0.01755 0.01762 0.00189 0.00195
2048 || 0.01251 0.01246 9.68 x 10~ [ 9.75 x 10~ *
4096 || 0.00867 0.00881 4.89 x 1077 [ 4.88 x 1077
8192 | 0.00630 0.00623 247 x107% [ 244 x 1072
16384 || 0.00444 0.00441 125 x 107 | 1.22 x 10~ 4
32768 || 0.00313 0.00312 6.09 x 107° | 6.10 x 10—°
65536 || 0.00223 0.00220 3.10 x 107° [ 3.05 x 107

Table 1: Average gap values (from simulation) and their expected values (calculated).

and so .
euG, \?
Xi—XiP<t|————) .
Z' i~ Xl s <s+t+2>
=1
The result now follows directly from the variant of Azuma’s inequality given above. O

Proposition 4.7 tells essentially the same story as Proposition 3.6. For s = 1 and t = n, we have
E[Gt] = ©(1/n), and so choosing values of A that are ©(1/n) gives useless bounds. As before, this is
not surprising. However, if we fix s = u = [¢1 lnn], G}, = O(E[G]) = O(1/s), and A = y/(c2Inn)/n
for some constants c1,co > 1, then we obtain inverse polynomial bounds on deviations from the
expectation. Similarly, if we choose s = u = [¢(Inn)?], G% = O(E[GL]) = ©(1/s), and A = n~(1/2+¢)
for some constants ¢ > 1 and € > 0, we obtain probability bounds that are sub-polynomially small.

5 Simulations

In this section, we present simulation results related to our analysis. We give these results with two
goals in mind. First, we wish to check our theoretical analysis of the expected values associated with
these processes against simulation results. Second, we wish to verify and examine the relationship
between the gap distributions and the lognormal distributions, with a particular emphasis on the
tails.

In Tables 1 and 2, we provide the average (that is, the mean) and expected number of interviews
and gaps from our simulations, each of which consists of 1000 trials, starting with one employee with
quality score 0.5. (The expectations are calculated directly from the formulas in Propositions 3.2,
3.3,4.2, and 4.3.) As can be seen, across the board the simulation numbers match the exact answers
obtained from our analysis.

Examining the lognormal approximation discussed in Sections 3.2 and 4.2 through simulation
requires a little more work. The results in those sections tell us that, for either the strategy of
hiring above the mean or the strategy of hiring above the median, if we let H,, denote the threshold
gap score for hiring a new employee after hiring n people, then for any k < n, we have that

» InH, — E[ln H, | Hy]
Znk =

£ ~ N(0,1
’ Var[ln H,, | Hy)] (0. 1),
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Hiring above the Mean || Hiring above the Median
Average Expected Average Expected
Hires || Interviews | Interviews || Interviews | Interviews
256 5192 5261 33560 33024
512 14865 14856 133547 131584
1024 41987 41986 561442 525312
2048 118011 118706 2408235 2099200
4096 340552 335682 8195709 8392704
8192 939643 949352 35427404 33562624
16384 2669107 2685031 130726647 | 134234112
32768 7585301 7594213 548812815 | 536903680
65536 || 21273638 | 21479393 || 2180257224 | 2147549184

Table 2: Average numbers of interviews (from simulation) and their expected values (calculated).

Hiring above the Median

Hiring above the Mean
(Normal Probability Plot)

(Normal Probability Plot)

Ordered Data
o oo A N O N b

Ordered Data
P ON—L2LO-2DMNDWD

I k=0 ]
» k=32 |
y =X

4 3 2 44 0 1 2 3 4
Normal N(0,1) Order Statistic Medians

Normal N(0,1) Order Statistic Medians

Figure 1: Plots of the samples of Z1g24 -
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where the approximation is in the sense of probability distributions. Furthermore, this approxima-
tion is good for the body of the distribution of Z, j, but fairly inaccurate at the tails.

To demonstrate these claims via simulation, we set n = 1024 and the quality score of the first
employee to 0.5. Then we take 10000 independent samples of Z,  for k = 0 and k£ = 32. (Note
that the conditional expectations and variances needed to compute Z,, ;, from H,, and Hy, are easily
determined from the results in Sections 3 and 4.) We graph the results in Figure 1 using normal
probability plots [13]. (Intuitively, each graph is obtained by plotting the samples so that, if they
were truly drawn from N(0, 1), they would all lie very close to the line y = = with high probability.)

It is clear from Figure 1 that the approximation Z,, , ~ N(0,1) is fairly accurate for the body
of the distribution of Z,, ;, but weaker at the tails. It is also evident that as £ increases, the
approximation improves, which tells us that first few hires really do have a substantial effect for
both strategies. Furthermore, we see that the normal approximation is better for the strategy of
hiring above the mean than for the strategy of hiring above the median, which indicates that the
latter strategy is more sensitive to the quality scores of the first few hires.

By using standard techniques for interpreting normal probability plots [13], we can also see how
the tails of Z,, j differ from those of N(0,1). Indeed, both curves on the graph for hiring above
the median depart markedly downwards from the line y = x on the tails, especially on the lower
tail, which tells us that, in this case, the distribution of Z,, j has a long left tail and a short right
tail, and that this effect diminishes as k grows. Since lower values of Z,, ;. correspond to higher
employee quality scores, this observation tells us that for the strategy of hiring above the median,
the first few hires really do have a tremendous impact on the final result, and this impact is much
more likely to be positive than negative.

6 Variations and Extensions

One of the key features of the hiring model is that it naturally allows for variations and extensions,
which may be useful for considering more realistic scenarios or gaining more insight into the under-
lying tradeoffs. While we expect other researchers will consider more elaborate extensions in future
work, we briefly consider some natural extensions here, focusing on situations where our analysis
can be generalized easily.

6.1 Preprocessing Interviews

The number of interviews required to hire an employee for the Lake Wobegon strategies starts small
but grows quickly. As interviews are themselves expensive, the fact that the number of interviews
grows in this way suggests a potential problem with our model.

In reality we expect interview preprocessing to occur. This preprocessing may simply stem from
self-selection; low quality people do not bother to apply. Alternatively, a weeding process could
discard weak candidates early in the process, such as after a read of the résumé instead of after a
full interview.

Such preprocessing does not substantially affect our model, as long as the conditional distri-
bution of the quality of a person above the current hiring threshold remains uniform. That is,
the quality of the ith hire does not need to be different, just the number of interviews to reach
the person, which can be handled separately. As an example, if when hiring above the mean the
applicants have quality uniform over (1 — ¢Gy, 1) for some constant ¢ > 1 and current gap G, then
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on average only c interviews are needed per hire, but the change in the gap over each hire follows
the same distribution. One can devise similar models for hiring above the median.

6.2 Alternative Quantile Hiring Strategies

In some sense, there is really nothing special about the median in the hiring problem; we could
consider hiring people above the 60th percentile of the current work force instead, for example.

For purposes of analysis, the easiest way to generalize our previous work is to consider strategies
of the following type: fix some employee () in the ranking, hire a additional people whose quality is
above @), and then move the threshold up b employees in the rank order. Our median strategy can
be thought of as the “hire 2, move up 1”7 strategy, and we generalize this to a “hire a, move up b”
strategy. Other quantiles can be suitably approximated by an appropriate choice of a and b, and
the analysis in Section 4 can be appropriately generalized as follows. Let G}, denote the quality at
the threshold employee after ka hires. Then the proof of Lemma 4.1 (corresponding to the “hire 2,
move up 1”7 strategy) can be immediately generalized.

Lemma 6.1. For any t,k > 0, the conditional distribution of Gy, giwen Gy, is the same as
Gy, szl Bj, where the Bj’s are independent and B; ~ Beta((a —b)(k + j) + 1,b).

Following Section 4, we use Lemma 6.1 to calculate various important quantities related to this
hiring strategy. We therefore have in this setting, starting with G = g,

k
E(G;] = g || E[Beta((a — b)j + 1,b)]
j—l

(a—0b)j+1
_QH (a—b)j+1+b

zgj[[l (1_(a—bb)j+1)
:gﬁexp (ln (1_(a—bb)j—|—1)>

—gHeXp —b/( a—b)j—i—@(l/g ))

= gexp(—b/(a —b)Ink +©(1)) = Ok Y/ (="),

For i > 1, let T;* denote the number of interviews between when there are a(i—1)+1 employees
and when there are ai+1 employees, so that T} = Zle T7* is the total number of interviews before
there are ak + 1 employees. Then the conditional distribution of T;** given G7_; is the sum of a
independent geometric random variables with parameter G}_,, and thus E[T}*] = aE[1/G}_4].
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Now, by Lemma 6.1,

1 1] 1
B [_J N QHE [Beta((a —b)j+1,b))
157 (@=0)j+b
gg (a—10)j

— @(ib/(a—b))’

where the second step follows from integration. Thus,

k
* 1 a/(a—
E[Tk]:aE:E{G, ]:@(k /(a=b)y,
i=1 i-1

Similarly to the strategies of hiring above the mean and the median, here we have that after n®/(¢—?)
candidates, the expected value of the gn order statistic of the smallest n gap scores is @(n_b/ (“_b)).
Hence the “hire a, move up b” strategies are, in this sense, within a constant factor of optimal.

6.3 FErrors

In our analyses in Sections 3 and 4, we assume that an applicant’s exact quality score is revealed
during the interview. In reality, however, the interview process cannot be perfect, so the interview
score will differ from the applicant’s true quality. We may therefore hire applicants whose true
quality scores lie below the threshold prescribed by the hiring strategy, and similarly we may reject
applicants whose scores lie above this threshold. Furthermore, it may also be unrealistic to assume
that we know the exact value of the threshold when interviewing applicants, as this may require
more information about our employees’ quality scores than we can exactly determine.

We would like to take these sorts of errors into account in our analysis. Unfortunately, it seems
quite difficult to formulate a model for all, or even just some, of these errors that is simultaneously
justifiable and analyzable. In particular, our analysis in Sections 3 and 4 relies heavily on the
fact that the conditional distribution of an applicant’s quality score Q); given that Q; > =z is
Unif(z,1) ~ 1 — (1 — z) Unif(0, 1). This observation allows us to derive the simple expressions for
the form of the gap distribution given in Lemmas 3.1 and 4.1. But if we allow for errors in the
interview process, then the conditional distribution of an applicant’s true quality score @Q); given
that the observed score QZ > x does not seem to have an analogous form for most standard models
of measurement error. We believe that resolving this issue is a worthwhile open problem.

As an example of what we can analyze, for the case of hiring above the mean, suppose that
the conditional distribution of the true quality score of the ith employee hired given the prior
history of the system and G;_1 < gg is Unif(1 — G;_1R;—_1,1), where G;_1 is the true gap and the
R;’s are random variables with common distribution 0 < R < 1/gg that are independent of each
other and the applicants’ true quality scores; the case R = 1 corresponds to the model analyzed in
Section 3. This model is somewhat artificial, but it captures the idea that there may be noise in
our observations of our quality scores.

Going through the same calculations as in the proof of Lemma 3.1 now tells us that, given G5 <

Jo, the conditional joint distribution of the G;’s for i > sis the same as if G; = G H (1 _ 1ZRU

K3
J=s+l1 J
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where the U;’s are independent Unif(0, 1) random variables that are also independent of the R;’s.
This formula could be used to prove analogues of the results in Section 3.

6.4 Hiring and Firing

Another natural extension to the hiring problem would be to allow a firing strategy, in order to
remove the low performers.? Intuitively, a good firing strategy should allow the company to op-
timize the tradeoff between increasing its employees’ average quality and reducing their number.
Unfortunately, most natural combinations of hiring and firing strategies seem difficult to analyze,
because they introduce challenging dependencies among employee quality scores. We can, how-
ever, partially analyze an important class of firing strategies in conjunction with hiring above the
median. These strategies are generalizations of the (in)famous rank-and-yank system (sometimes,
and perhaps more properly, called the wvitality curve system), used extensively by Jack Welch at
General Electric [18].

The basic tenet of the rank-and-yank system is that employees should be periodically ranked
and those near the bottom should be fired. The key (and most controversial) detail of this system
is that the fraction of employees fired is fixed in advance, without regard to any absolute or overall
measurements of the employees’ qualities or performance. Such a strategy is easily modeled in the
context of hiring above the median examined in Section 4, assuming that quality scores do not
change over time. Indeed, if candidates’ quality scores are independent Unif(0, 1) random variables
and we condition on having 2k + 1 employees with median quality score M at some particular time,
then the distribution of the top k& employees’ quality scores is the same as the order statistics of k
independent Unif(M, 1) random variables. Thus, if we were to fire the bottom 2j < 2k employees
at this time, the conditional distribution of the resulting median of the employees’ quality scores
would be the same as the distribution of the jth smallest of k¥ independent Unif(M,1) random
variables, which is 1 — (1 — M)Beta(k — 5,7 + 1).

With this in mind, we consider the following variant of hiring above the median in conjunction
rank-and-yank firing. We start with one employee with some fixed quality 0 < ¢ < 1, and we fix
some firing parameter 0 < f < 1. Whenever we have 2k + 1 employees, we first hire the next
two applicants whose quality scores are above the current median of the current employees’ quality
scores, giving a total of 2k 4+ 3 employees. If (2k +2) f is an even integer, we then fire the (2k +2) f
employees with lowest quality scores. (Note that the number of employees is always odd, so there
is no ambiguity in determining the median. Also, if f = 0, the model is exactly the same as the
one studied in Section 4.)

Let G} and n(t) denote the gap and number of employees after ¢ iterations of this process, so
that Gj = g =1 — ¢ and n(0) = 1. For convenience, let m(t) = (n(t) —1)/2 and let r(¢) denote the
(deterministic) number of employees fired during the ¢-th iteration. Then by the argument above,
we immediately have a natural analogue to Lemma 4.1.

Lemma 6.2. Fort > 1, the conditional distribution of G given everything that occurs in the first
t — 1 iterations of the process is the same as G}_Beta(m(t — 1) +2 — r(t),r(t) + 1).

This lemma provides a starting point from which more detailed analyses of rank-and-yank
strategies could proceed.

2Tt is interesting to note that under our simple model, the lowest performers are always the ones with the most
seniority. Hence there may be some truth to the essentially universally held belief that you are better than your boss.
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6.5 Quality Changes

A direction we have yet to consider, but that seems ripe for future work, would be to consider
how the hiring model behaves if candidate quality scores are themselves variable over time. In
this way, early hires could improve and become more valuable to the company over time, and
candidates who appear strong at their initial interview could eventually become ripe for firing.
Introducing time-varying dynamics would require significantly more insight into the structure of
the work environment, taking us fairly far afield from the more universal starting point of the
original hiring problem. However, we hope that the basic insights from the simple hiring problem
may prove useful for more detailed economic analyses of hiring and firing dynamics.

7 Conclusions

We have introduced the hiring problem, a mathematical model for decision making under uncer-
tainty related to the secretary problem. We have also introduced and analyzed the behavior of
Lake Wobegon strategies, where one hires new applicants that lie above the mean or the median of
the current employees. These simple scenarios already provide rich mathematical structures, with
connections to lognormal distributions, weak convergence results, and nonintuitive differences be-
tween the mean and median. Furthermore, the large number of possible variations and extensions
suggests that there are many more interesting connections and developments yet to make.
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