Worst-case and Smoothed Analysis of the ICP Algorithm,
with an Application to the k-means Method

David Arthur*
Stanford University
darthur@cs.stanford.edu

Abstract

We show a worst-case lower bound and a smoothed up-
per bound on the number of iterations performed by the It-
erative Closest Point (ICP) algorithm. First proposed by
Besl and McKay, the algorithm is widely used in compu-
tational geometry where it is known for its simplicity and
its observed speed. The theoretical study of ICP was initi-
ated by Ezra, Sharir and Efrat, who bounded its worst-case
running time between Q(nlogn) and O(n*d)?. We sub-
stantially tighten this gap by improving the lower bound to
Q(n/d)?*t. To help reconcile this bound with the algo-
rithm’s observed speed, we also show the smoothed com-
plexity of ICP is polynomial, independent of the dimen-
sionality of the data. Using similar methods, we improve
the best known smoothed upper bound for the popular
k-means method to n°*), once again independent of the
dimension.

1. Introduction

What can be said when an algorithm is known to be fast
in practice, but slow in the worst case? The smoothed anal-
ysis of Spielman and Teng [17] helps bridge this gap by
considering the expected running time after first randomly
perturbing the input. Intuitively, this models how fragile
the bad cases are, and whether they could reasonably arise
in practice. Smoothed analysis of algorithms remains a very
challenging task, but following the seminal work of Spiel-
man and Teng on the complexity of the Simplex method
[17], there have been several recent successes [3, 4].

We are interested in smoothed analysis within the con-
text of iterative geometric algorithms. The smoothness as-
sumption is especially plausible in geometry, where many

*Supported in part by NDSEG Fellowship, NSF Grant ITR-0331640,
and grants from Media-X and SNRC.

TSupported in part by NSF Grant ITR-0331640, and grants from
Media-X and SNRC.

Sergei Vassilvitskiif
Stanford University
sergei@cs.stanford.edu

algorithms already explicitly assume points are in “gen-
eral position,” i.e. no three points are collinear, no four are
coplanar, etc. We consider two local search heuristics, the
Iterative Closest Point (ICP) algorithm and the k-means
method. The two techniques are similar — both work to
minimize a particular potential function, and both terminate
with a locally optimal (but potentially globally suboptimal)
solution. While neither algorithm offers any approximation
guarantees, they are known for their speed, and both are
widely used in practice [1, 5, 9, 13].

Our primary focus is on ICP, for which we prove an ex-
ponential lower bound on the number of iterations required,
and a smoothed polynomial upper bound that is indepen-
dent of dimension. We also consider k—-means, for which
we have previously shown a superpolynomial lower bound
[2]. Our techniques from this work apply to k—-means as
well, and we prove a smoothed upper bound of n©*).

1.1. The 1cP algorithm

An important problem in computational geometry is
comparing patterns and shapes that may be viewed with dif-
ferent coordinates. Applications include object recognition
and image alignment — for example, arranging overlapping
satellite images. Typically, the problem reduces to trans-
lating (and possibly rotating or scaling) a given point set
A until it is as close as possible to another given point set
B. One standard metric for this comparison is the average
squared distance from each point in A to its closest point in
B.

Besl and McKay [6] proposed ICP as a local search so-
lution to this problem. It is simple but generally fast, which
has made it a standard tool in practice [15]. ICP has several
variants, but following [7], we focus on one that allows only
translations of A. For each point a € A, the algorithm be-
gins by computing the point’s nearest neighbor Nz (a) in B.
The algorithm then fixes N and translates A so as to mini-
mize ¢ = Y, ||la — Np(a)||?. These two steps are repeated
until the nearest neighbor assignment stabilizes. Each step
decreases ¢ and there are only a finite number of possible



nearest neighbor assignments (namely |B|4), so TCP is
guaranteed to eventually terminate.

The algorithm’s efficiency has been well studied empiri-
cally [8, 15, 16], but the theoretical running time has proven
more elusive. Recently, Ezra, Sharir, and Efrat [7] achieved
a worst-case lower bound of 2(nlogn) iterations in one
dimension, and an upper bound of O(n??) iterations in d
dimensions (where n = | A| + |B|). Our first result is an an
exponential lower bound that tightens this gap considerably.

Theorem 1.1 (ICP lower bound). There exist point sets
A and B in R? for which the ICP algorithm requires
Q(n/d)4*1 iterations.

This lower-bound construction relies on a precise place-
ment of points in order to achieve exponential growth. Such
situations are unlikely to arise in practice, and we use
smoothed analysis to help show this formally.

Theorem 1.2 (Smoothed ICP complexity). Suppose A and
B are chosen according to independent d-dimensional nor-
mal distributions with variance o2, and let D denote the
maximum diameter of A and 5. Then the expected running
time of ICP on (A, B) is polynomial in d,n and %.

1.2. The k-means method

The k—means method is a well known geometric clus-
tering algorithm based on work by Lloyd [14] in 1982.
Its practical importance and widespread use are difficult to
overstate. As one survey of data mining techniques points
out, “k—means is by far the most popular clustering algo-
rithm used in scientific and industrial applications” [5].

Given a set of n data points, k—-means uses a local
search approach to partition the points into k clusters. A set
of k initial cluster centers is chosen arbitrarily. Each point
is then assigned to the center closest to it, and the centers
are recomputed as centers of mass of their assigned points.
This is repeated until the process stabilizes. As with ICP,
each iteration decreases a potential function, and so the al-
gorithm is guaranteed to eventually terminate.

Again, the efficiency of k—-means is well studied empir-
ically [12], but there has been less theoretical progress. The
best known upper bound is O(n*?) [11], and it has now re-
mained intact for over a decade. Earlier this year, however,
we improved the best known lower bound from §2(n) [10]
to 220V 2],

Our methods for ICP carry over surprisingly well to the
case of k-means, and we show a smoothed upper bound
that substantially improves on the O(n*?) result.

Theorem 1.3 (Smoothed k—means complexity). Suppose
a set of n points X is chosen according to independent d-
dimensional normal distributions with variance o2, and let
D denote the diameter of the resulting point set. Then the

expected running time of k—means on X is polynomial in
d,n* and g.

2. Preliminaries (ICP)

Given two point sets .4 and B in R, the TCP algorithm
seeks a translation 2 € R and a nearest neighbor function
Npg : A — B such that the potential,

¢=7 lla+z—Ns(a)|?

acA

is minimized.

When z is fixed, ¢ is minimized by choosing N (a) to
be the point in B closest to a + x. Conversely, suppose
Np(a) is fixed for all a. Recall the following result from
linear algebra (see [10, 12]).

Lemma 2.1. Let S be a set of points with center of mass
¢(S), and let x be an arbitrary point. Then,

Ysesls =zl = Xeslls = (S +[S] - [le(S) — ||

If we take S = {Ng(a) — a}, Lemma 2.1 implies ¢ is

. _ ()
minimized by choosing = = %’f(@“'

ICP is a local search algorithm based on these two ob-
servations. Formally, it works as follows.

1. Choose an arbitrary starting translation z.

2. For each a € A, set Ng(a) to be the point in B that is
closest to a + x (ties can be broken arbitrarily, as long
as the method is consistent).

. Ng(a)—
3. Set the next translation x = W.

4. Repeat Steps 2 and 3 until the algorithm stabilizes.

There are only finitely many choices for Np (namely
|B| A1), and as discussed above, each step can only decrease
the potential function ¢. Thus, the algorithm must terminate
after a finite number of steps.

Formally, we define an “iteration” to be an execution of
Step 2 followed by Step 3. We often consider the first itera-
tion separately because of its arbitrary starting translation.

We are interested in analyzing how many iterations ICP
requires before it converges.

3. Lower bounds for ICP

In this section, we prove that ICP can require up to
Q(n/d)4*+1 iterations in d dimensions. This resolves the
worst-case running time of ICP in one dimension, which
Ezra, Sharir, and Efrat refer to as a “major open problem”
[7]. It also gives an exponential lower bound for the general
problem.



3.1. Lower-bound preliminaries

ICP;: The ICP algorithm explicitly uses the number of
points in A each time it calculates the translation z. This
dependence is inconvenient, and we remove it via a mod-
est generalization of ICP that we call ICPy. Our gener-
alization is identical to ICP, except that we first fix some
k > |A|, and then in Step 3, we choose

_ ZaGA NB(CL) —a
3 .
Note that standard ICP is precisely ICP| 4.

Regions: Consider a partitioning of point sets
A=A UAU---UA,and B=B;UByU---UDB,. Let

0 =max max

i P,QE{Ai,Bi}”p - q”

We say (A1,B1),(Az2,Ba2),...,(4,,B,) is a region-
decomposition of (A, B) if the distance between any two
points in distinct regions is greater than 39.

Lemma 3.1. Suppose (A,B) has region-decomposition
(A;, B;), and suppose ICPy, is executed on (A, B) with ini-
tial translation 0. If a € A;, then Np(a) remains in the
corresponding B; throughout the execution of ICPj.

Proof. Consider an iteration beginning with translation x
where ||z]| < §. Fora € A;,b € B; and b/ € B;(j # 1),
we have,

latz—bl < la—bl+ ]zl
< 26
< la—¥ - iz
< lla+a-vl,

and hence Ng(a) will remain in the corresponding B; dur-
ing this iteration. Conversely, as long as this condition on
Np holds, the next translation = will satisfy ||z|| < 4§. O

As long as the nearest neighbor assignments Np never
cross regions, uniformly translating an entire region does
not alter the execution of ICPy in any way. Therefore, it
suffices to consider each region in isolation, and to ignore
its exact position within (A, B). In fact, we will think of
each region as being a smaller ICP configuration, impacted
by other regions only via the global translation.

Finally, we note that any set of ICP configurations can
be translated and combined so as to become regions of a
larger ICP configuration.

Remark 3.1. Given ICP configurations (A1, Bi),
(A2, B3),..., (A, By),  there exists some ICP
configuration  (A,B)  with  region-decomposition
(A1, B1),(As, Bs),..., (A, By).

Relative translation: We noted above that different re-
gions can only impact each other via the global translation
z. However, a simple observation of Ezra, Sharir and Efrat
[7] shows that even this effect is limited.

Remark 3.2. Consider some iteration of ICPj after the
first. Let © and ©' denote the translations before and af-
ter this iteration, and let Ng and N denote the nearest
neighbor functions before x and x' were calculated. Then,

' —x= %Za Ng(a) — Ng(a).

We will always be interested in the case where only one
region changes nearest neighbor assignments during each
iteration. In this case, Remark 3.2 implies the change in
global translation can be understood by simply restricting to
the one unstable region during each iteration, and ignoring
the rest.

3.2. Building Blocks

We now describe two widgets that will serve as build-
ing blocks for our main lower-bound construction. We will
always place each widget in its own region.

3.2.1 The Linear Shifter

The Linear Shifter is a one-dimensional configuration of
points (A, B) upon which ICPj can require |B| iterations
to terminate even when |A| = 1.

Define B = {bg,b1,...,bn} by setting by = 0, and
bi=1+ 1+ + g fori > 0. Let A = {a = 0}, and
suppose we initially have x = by and Ng(a) = by.

Lemma 3.2. The ICPy, algorithm requires |B| — 1 itera-
tions to run on the Linear Shifter described above.

Proof. Suppose that during some iteration we compute a
translation of = = b; from a nearest neighbor assignment of
Ng(a) = b;_1. (This is the case initially with ¢ = 1). We
will then update Ni(a) to b;, and by Remark 3.2, this will

increase x by bﬁk"'*l to b;y1. The result follows. O

3.2.2 The Redirector

The Redirector is a widget (A4, B) that triggers a large shift
v of our choosing once the global translation x exceeds
some threshold y.

It has two regions A; = {a = 1kv — y} and B; =
{b1 = 0,by = kv}, as well as Ao = {a'} and B, = {V/ =
a + tkv —y}.

Lemma 3.3. Suppose the ICPy, algorithm is run on an ICP
configuration containing the Redirector described above. If
the global translation x satisfies x - v > y - v, then the
Redirector contributes v to the translation next iteration.
Otherwise, it contributes nothing.



Proof. We assume for clarity of exposition that Ng(a) is
set to by if a + x is equidistant from b; and by. In this
case, it is straightforward to check that Np(a) is set to b if
x-v < y-v, and it is set to by otherwise. Also, Ng(a’') = b’

in either case. The result now follows from the fact that
(ma)tV=d) _ () gpq Gz=att=a)) _ ) O

We say the Redirector “triggers” when x - v increases to
be above y - v, and it “untriggers” when z - v decreases to
be below ¥ - v. Thus, the Redirector causes an extra shift of
v on an iteration in which it triggers, but it causes no extra
shift while it remains fixed in one state.

3.3. Q(n?) lower bound in R

We now proceed with the £2(n?) lower-bound construc-
tion for ICP on the line, which will serve as a base case for
our general lower bound. Combined with the known O(n?)
upper bound, this fully resolves the worst-case running time
of ICP in one dimension.

Theorem 3.4. There exist point sets A,B C R with
|Al,|B| = O(n) for which the ICP algorithm requires
Q(n?) iterations.

Instead of proving this result directly for ICP, we prove it
holds for ICPy, for all k. The number of points in .4 will
not depend on k, so we can choose k = |.A] to recover the
theorem.

We construct .4 and B as follows.

1. Begin with a region (A, B) consisting of the Linear
Shifter with n points described in Section 3.2.1. Let
=1+ % + -+ k,ln denote the final position of
a € A after passing through this shifter.

2. Augment A in the region above, setting it to be
{ag,a1,...,a,} where a; = —2il.

3. Foreachi € {0,1,...,n—1}, add a Redirector region,
so that once the total translation is at least (27 + 1),
there is a further shift of £ + 1 (i.e., use a Redirector
withy = (26 + 1)l and v = £+ 1).

4. Suppose ICPy is run on the above configuration with
initial translation 0. Let x; denote the translation after
one iteration. Add aregion ({a'}, {V'}) with¥' = a’ +

Now, suppose we run ICPj on this configuration with
initial translation 0. Each Redirector begins untriggered,
and initially, Np(a;) = bo for all 4. Since Ng(a') = ¥V,
Step 4 ensures the translation after the first iteration is 1.

Every point in .4 is now stable except for ag, and Lemma
3.2 implies that the next n iterations will be taken by ag
stepping through the Linear Shifter. This will eventually
result in a total translation of ¢, which will cause the first

Redirector in Step 3 to trigger. This, in turn, will lead to
a total translation of 2/ + 1, which will force a; to pass
through the Linear Shifter over another n iterations. This
process will repeat n + 1 times, once for each a;, and the
Q(n?) lower bound follows.

3.4. Q(n/d)¥*! lower bound in R?

We now inductively build upon our £(n?) lower bound
on the line to prove an exponential lower bound for higher
dimensions.

Theorem 3.5. There exist point sets A, B C R? with
|Al,|B| = O(n) for which the ICP algorithm requires
Q(n/d)4*1 iterations.

This result substantially tightens the gap between the previ-
ous bounds of Q(nlogn) and O(n?d)? [7].

We prove Theorem 3.5 inductively, once again focusing
on ICPy. Suppose we are given A, B C R9~! and an initial
translation z for which ICPy, requires 7' iterations. Letting
x; denote the translation after ¢ iterations, we suppose there
exists some vector v € R4~ for which z; - v < zp - v for
all + < T. We show that such a configuration can be lifted
to R? and augmented with O(n/d) points to obtain a con-
figuration that now requires 7'n/d iterations. The theorem
follows from applying this augmentation repeatedly to the
one-dimensional ©(n?) construction.

For notation, we refer to R?~! x {0} as the “base space”
and to {0,0,...,0} x R as the “lift dimension”. We also
use p € R? to denote a point in R? that projects down to
p € RI-L,

3.4.1 Resetting overview

As above, suppose we are given A, B C R4"!, along with
an initial translation xg, for which ICPy requires 7' iter-
ations. We begin by embedding this entire ICP configu-
ration into R? with lift coordinate 0. Clearly, ICP; will
still require 7 iterations for this lifted configuration (A, B).
We now wish to increase this running time by adding a few
points.

Fix constants H and H’, and suppose we could add a
“Reset Widget” region that contributes the following trans-
lation at each iteration.

Translation
Iteration | Base space  Lift dimension
<T+1](0,0,...,0) 0
T + 1 o — T H
>T+1 | (0,0,...,0) H’

This new region will have no impact on ICPy as it runs
to completion on (A, BB) over the first 7" iterations. There-
fore, at the beginning of iteration 7' 4+ 1, we know (A, B)



will be contributing a translation of (zr, 0). Combining that
with the translation from the new Reset Widget, we have a
total translation T 1 = (xo, H).

Ignoring the lift coordinate, this translation Z7 ;1 is iden-
tical to the starting translation Zy. Since every point in
(A, B) has a lift coordinate of 0, the translations Z7 1
and Tj result in the same nearest neighbor assignments
for (A, B). Therefore, (A, B) will contribute a translation
of precisely (x1,0) at iteration 7' 4+ 2. Combining this
with the Reset Widget, we then have a total translation of
TT42 = (x 1, H ,)'

From this point on, it is easy to check that the translation
TT1114 1s always equal to (z;, H'), and so the augmented
ICP configuration now requires precisely 27"+ 1 iterations.

Therefore, if we can construct a Reset Widget region
with the above properties, we will be able to “reset” ICPy,
and double the number of iterations it requires. This is the
key mechanism that will allow us to prove Theorem 3.5.

3.4.2 The Reset Widget

We now describe a Reset Widget that accomplishes the task
set forth above (except that it requires two iterations to
achieve the xg — x shift).

First fix a large constant height /7, and recall our initial
assumption on (A, B): there exists v such that z;-v < zp-v
foralli < T.

1. Add a Redirector with redirection vector (v, H) and
with triggering translation y = (z7, 0).

By our initial assumption, we know (z;,0) - (v, H) < y -
(v, H) for all i+ < T, so this Redirector will first trigger
during iteration 7" + 1.

Now consider an execution of ICP, with this Redirector
added. After the Redirector triggers, the nearest neighbors
for (A, B) could change, and this could result in another
shift during iteration 7" + 2. We focus on x4 2, the base-
space translation after iteration 7" + 2. (If there are no iter-
ations after the Redirector triggers, take 749 = x741).

2. Add a Redirector with redirection vector (zo —
X742, H) and with triggering translation y = (xp +
v, H).

If H is sufficiently large, (x;,0)-(xo—2142, H) < y-(zo—
Zr49, H) forall i < T'. Therefore, this Redirector will first
trigger during iteration 7" + 2. Without it, the translation
after ¢ 4 2 iterations is precisely (xr12, H). However, the
Redirector causes a further shift of (xg — z7y2, H), which
resets the translation to (zo, 2H) as desired.

It remains to reset the base-space translation due to the
Reset Widget back to 0.

3. Add a Redirector with redirection vector (zpy2 —xo—
v, H) and with triggering translation y = (20, 2H).

As above, this Redirector will first trigger during iteration
T+ 3 as long as H is sufficiently large. The total translation
due to the Reset Widget is then (v, H) + (2o — 2742, H) +
(xr42 —x0 —v, H) = (0,3H), as required.

As long as all three Redirectors remain triggered, the Re-
set Widget will continue to contribute (0, 3H) to the global
translation, and, as discussed in the previous section, ICPy,
will then require another 7" iterations. Since the Redirectors
will never untrigger if H is sufficiently large, we now have
a working Reset Widget.

3.4.3 Putting it together

We prove Theorem 3.5 by stringing together a number of
Reset Widgets, but two details remain unresolved.

First of all, recall that an ICP configuration can only be
augmented with a Reset Widget if there exists v such that
z; v < xp -v forall i < T. This holds for the one-
dimensional base case with v = 1. Moreover, augmenting
an ICP configuration with a Reset Widget does not prevent
one from augmenting it again:

Remark 3.3. Consider (A, B) for which ICPy, takes T it-
erations, and suppose there exists v such that x; -v < xp-v
foralli <T.

Lift this configuration and augment it with a Reset Wid-
get as described above. Let Tpr denote the final translation

when ICPy is run on the augmented configuration. Then,
T (v, H) <Tp - (v,H) foralli <T'.

Therefore, we can add a Reset Widget in each dimension to
obtain a lower bound of Q(n?) - 27.

To achieve the stronger bound in Theorem 3.5, we must
add Q(n/d) Reset Widgets in each dimension:

Remark 3.4. Consider (A, B) for which ICPy, takes T it-
erations, and suppose there exists v such that x; -v < xp-v
foralli <T. Also fixm > 1.

Lifting only one dimension, we can add m Reset Widgets
to (A, B) that trigger in sequence, each resetting (A, B)
(but not each other). Then, ICPy will require at least mT
iterations on this augmented configuration.

We achieve this by adding m Reset Widgets as described
above, but then modifying Reset Widget ¢ so that it triggers
with lift coordinate 3 H+ rather than with lift coordinate 0. It
is straightforward to check this configuration has the desired
properties, and Theorem 3.5 now follows immediately.

4. A smoothed upper bound for ICP

Despite the exponential lower bound given by Theorem
3.5, we know ICP usually runs fast in practice. To help ex-
plain this, we prove a smoothed polynomial upper bound.



We assume the points in .4 and B are chosen from indepen-
dent d-dimensional normal distributions with variance 2.
If A and B have diameter at most D, we then show ICP
will run in expected time polynomial in | Al, B, d and 2.

Our argument is based on an analysis of the potential
function ¢ = Y _,lla + x — Np(a)||>. We show that
with high probability, every ICP iteration after the first will
substantially decrease ¢. Our result then follows from the
fact that after one iteration, ¢ < |A[(2D)2.

On the one hand, if Np changes value for only a few
points during a single iteration, we show that z is likely to
change significantly. This causes a corresponding drop in
the potential during Step 3 of the algorithm (see Lemma
2.1).

Conversely, if N changes value for a larger number of
points during a single iteration, we show there must be some
a for which N (a) becomes substantially closer to a + x.
We do this by arguing there is no translation = for which
many points a+x are almost equidistant between two points
in B. In this case, we obtain a large potential drop during
Step 2 of the algorithm.

The main property of the normal distribution we use is
that it is not concentrated in any ball.

Lemma 4.1. Suppose y is chosen according to a d-
dimensional normal distribution with variance o®. Then,
y is in a fixed ball of radius € with probability at most (i) ¢
Proof. The probability distribution function for y has max-
imum value m Furthermore, a ball with radius € is

contained in a hypercube with side length 2¢, so the proba-

@9 (i)d. O

bility y is in such a ball is at most Vomo)d >

4.1. Case 1: Small changes in Ng

Fix a constant k. We begin by analyzing the case where
Np changes value for at most k£ points. In this case, we
show ¢ remains constant only if two size-k subsets of B
have equal centers of mass.

Definition 4.1. We say B is (k, §)-sparse if no pair of dis-
tinct size-k multisets By, By C B satisfies ||3, cp b1 —
Zb26B2 b2|| <.

We will later use the same property with £ = 1, which we
denote as simply d-sparse.

We first show that if B is (k, d)-sparse, then any small
change in Np results in a significant potential drop. We
conclude by showing that B is likely to be (k, 0)-sparse for
k = O(d). Our potential analysis in this case only depends
on Step 3 of the algorithm (see Section 2).

Proposition 4.2. Let A and B be point sets in R?. Sup-
pose B is (k,d)-sparse, and consider any ICP iteration on

(A, B) after the first. If Np changes value for at most k

points during this iteration, it results in a potential drop of
2

at least ﬁ, or in the termination of the algorithm.

Proof. Let Ny and N3 denote the multiset Ng(.A) before
and after the ICP iteration. Also let No = N1 N Ny, B =
N1 — N2 and B2 = N2 - Nl, so that N1 = NO @] Bl and
Ny = Ny U Bs. If Ng(A) changes its value for at most &
points, then By and B are each of size at most k. If By and
B- are identical, then the translation did not change at all
this iteration, and the algorithm terminates.

Otherwise, we know that since B is (k,J)-sparse,
1225, e, b1 — D4, e, b2ll > 0. It follows that the transla-

. Ng(a)— .
tion x = w must change by at least ﬁ during

this iteration. By Lemma 2.1, this causes a potential drop of
2
at least |.A| - (ﬁ) = %. O

Proposition 4.3. Let B be a point set in R? chosen accord-
ing to independent d-dimensional normal distributions with
variance o®. Then, B is (k,d)-sparse with probability at

least 1 — |B|?* (g)d.

Proof. Fix distinct subsets By and By of B, and let y =
ZbleBl b — Zb2682 by. Then, y = ;5 cpb for some
integer constants ¢,. Since B; and B are distinct, there
exists some b for which ¢, # 0. Fixing all of B other than
this b, we see ||y|| < § if and only if b is in some fixed ball
of radius C% < 4. However, this happens with probability at

most (g)d by Lemma 4.1. The result now follows from a
union bound. O

4.2. Case 2: Large changes in Nj

We now analyze the case where N changes value for at
least k points.

We show that not too many points in A can be equidistant
from two points in B, even after an arbitrary translation.
This ensures that large changes in N lead to a substantial
improvement in N (a) for some a, and to a corresponding
potential drop in Step 2 of the algorithm.

First fix ordered sets Y C A and Z, 7’ C B of size k.
We aim to show there is no translation = for which every
translated y € Y is within $ of the hyperplane bisecting the
corresponding z € Z and 2’ € 7.

Definition 4.2. Given points y,z,2" € R% we say y is e-
centered between z and 2 if y is within a distance 3 of the
hyperplane bisecting z and z'.

Letting v denote the unit vector in the direction of 2’ — z,
we can also phrase this definition in terms of linear algebra.
Specifically, y is e-centered between z and 2’ if and only
ZEZI

ify-ve ) v+ g Using this formulation, we can



bound the translation x in the case where y + x is e-centered
between z and 2’.

Remark 4.1. y + x is e-centered between z and 2’ if and
onlyifz-v € (% —y) vEs.

Definition 4.3. Let Y = {y1,y2,...,yx}, Z =
{#1,22,..., 2k}, and Z' = {2{,25,...,2,} be ordered
point sets in R%. We say (Y, Z, Z') is e-centerable if there is
a single translation x for which y; +x is e-centered between
zj and z} for all j.

Definition 4.4. Let A and B be point sets in R%. We
say (A, B) is (k,€)-centerable if there exist Y C A and
Z,7' C Bwhere|Y|=1Z| =|Z'|=kand (Y,Z,2') is
e-centerable. Here, we allow Z and Z' to contain repeated
points, but each point in Y must be distinct.

We can now state the conditions required on .4 and B to
guarantee a certain potential drop.

Proposition 4.4. Let A and B be point sets in RY. Also,
suppose B is 6-sparse and (A, B) is not (k, €)-centerable.
Consider any ICP iteration after the first on (A, B). If Ng
changes its value for at least k points during this iteration,
it results in a potential drop of at least €).

Proof. Suppose a subset Y = {y1,92,...,yx} of A
changes nearest neighbors in one iteration of ICP begin-
ning with translation z. Let Z = {z1,22,...,2;} and

Z" = {21,25,...,2,} denote the original and new nearest
neighbors for each y;. Since (A, B) is not (k, €)-centerable,
there exists j such that y; + x is not e-centered between z;
and 27.

Now, ||z = (y; +2)[* = |25 — (y; +2)[I* = (2(y; +2) -
zj — 25) - (2j — z;j). Since y; + x is not e-centered between
zj and z}, we know 2(y; + x) — 2; — 2} has magnitude at
least € in the z; — #z; direction. Since B is d-sparse, we also
know that ||25 — z;| > &, and hence, ||z; — (y; + =)||* —
12— (y; + )| = 0.

Thus, after the nearest neighbor recomputation, the po-
tential arising from ||y; + = — Np(y;)||? has decreased by
at least €. 0

We have already bounded the probability that B is J-
sparse. It remains to show that (A, B) is unlikely to be
(k, €)-centerable. For this part of the analysis, we will as-
sume B is fixed, and we consider only the randomness in-
herent in .A. We begin with a technical lemma.

Lemma 4.5. Let V denote a point set in RY. Then, there
exists Vo C V with Vo| = d such that any v € V can be

expressed as ), cy, cyu for scalars ¢, € [—1,1].

Proof. Decreasing d if necessary, we may assume without
loss of generality that Span(V) = R?. Let H(X) denote the

hyperplane passing through the points X U{0} and let S(X)
denote the simplex with vertices X U {0}. We choose Vg
so as to maximize the volume of S(V,). Note this ensures
Span(Vy) = Span(V). Given any v € V, we may therefore
write v = Zuevo ¢, u for some scalars ¢,. It remains to
show each |c, | < 1.

Towards that end, consider ug € V,. Let X denote
Vo — {uo}, and let V; = X U {v}. By assumption, we
know the volume of S(V);) is at most the volume of S(V).
Since both simplices share the face S(X), this implies the
distance from v to H(X) is at most the distance from u to
H(X). Letting = denote a vector orthogonal to H(X), we
therefore have,

‘x~ (Zcuu)) =z -v| < |x-ugl.

However, z is orthogonal to u for u # wug so this implies
|z - (cuguo)| < | - ug|, and the result follows. O

Proposition 4.6. Consider fixed point sets 72 =
{z1,20,..., 2k} and Z' = {2}, 2h, ..., 2.} in R%, and sup-
poseY = {y1,y2,...,yx} is chosen according to indepen-
dent d-dimensional normal distributions with variance o2

Ifk > d, then (Y, Z,Z') is e-centerable with probability at
k—d
((d+1)5)
most |~ .

g

Proof. LetV = {v1,vs,...,v;}, Where v; denotes the unit
vector in the direction 2 — z;. Without loss of general-
ity, we may assume that Vo = {v1, va,...,v4} satisfies the
condition given in Lemma 4.5.

We now prove the result by induction on k. When k = d,
it is trivial. Now suppose the result holds for £k — 1. Let
Yo = {y1, %2, yr—1} and Y1 = {y1, 2, ..., ya} U{ys}.
Define Zy, Z1, Z{), and Z; similarly. Note that (Y, Z, Z’)
is e-centerable only if both (Yo, Zo, Z() and (Y1, Z1,Z})
are also e-centerable. By our inductive hypothesis, we
know the former is e-centerable with probability at most

k—1—-d
(@) , and this is independent of ;. We will

show that even if Yy is fixed, then (Y7,Z1,7]) is e-
centerable with probability at most @
then follows from independence.
Towards that end, fix Y. Let X denote the set of transla-
tions x for which y; + x is e-centered between z; and 2} for
all j < d. Given x1,zo € X, it follows from Remark 4.1

that |(z2 — z1) - v;| < e forall j < d. However, we know

. The proposition

from Lemma 4.5 that v, = 2?21 c;v; with |¢j| < 1, so it
follows that | (o — 1) - vk | < de. Therefore, X is contained
in a slab S; with height de in the vy, direction. Furthermore,
the position of this slab is independent of yy.

On the other hand, y; + x is e-centered between z; and
2, only if x is contained in a slab S, centered at @ — Yk
with height € in the vy, direction. Therefore, (Y, Z, Z’) is e-

centerable only if S; and Ss intersect, but this occurs only



if yi, - vy is in a fixed interval of length (d+ 1)e. By Lemma
4.1, we know this happens with probability at most (d%‘l)é,

which completes the proof. O

Corollary 4.7. Consider a fixed point set B in RY,
and suppose A is chosen according to independent
d-dimensional normal distributions with variance o>.

Then, (A,B) is (k,¢€)-centerable with probability at most
k—d
d €
(AYBP) (L)

Proof. The result follows from Proposition 4.6 and a union
bound. O

4.3. 1cP smoothed complexity

Theorem 4.8. Suppose A and B are chosen according to
independent d-dimensional normal distributions with vari-
ance o2, and let D denote the maximum diameter of A and
B. Then 1CP will run on (A, B) in

2
0<AMM&d(f)p2N>

iterations with probability at least 1 — 2p.

1 1
opd opd
Proof. Take k = 2d, §= éﬁ, and € = WDW'

Then, Proposition 4.3 and Corollary 4.7 imply that both
B is (k,d)-sparse and (A, B) is not (k, €)-centerable with
probability at least 1 — 2p. In this case, Propositions 4.2 and
4.4 imply that ¢ decreases by at least (61-5-1;2)\/717;”3\8 during
each ICP iteration after the first.

After the first iteration, however, it is easy to check that
la +x — Ng(a)|| < 2D for all a, and hence, ¢ < 4|A|D?.
Since ¢ is strictly decreasing, it follows that ICP can then

: 2 (d+DIAP|B . ;
continue for at most 1 + 4[.A4|D* - S F/igs iterations,
and the result follows. O

Note that our bound here is in terms of the diameter D
of A and B after perturbation. It is easy to check, how-
ever, that D only far exceeds the original diameter Dy with
vanishingly small probability.

Then, since ICP is known to never take more than
O(|A||B|d)? iterations [7], we can take p = W
to obtain a polynomial bound on the expected number of
iterations. This shows that ICP has polynomial smoothed
complexity, independent of the dimension.

We have made no attempt to optimize constants in The-
orem 4.8, but we believe new techniques would be required
to obtain a substantial improvement.

5. An application to k—-means

Our smoothed analysis techniques for ICP carry over
surprisingly well to at least one other case, which we con-
sider here. The k-means method is a local search algo-
rithm for partitioning points into clusters. Given a point
set X = {x1,22,...,2,}, it seeks to find cluster centers
C ={c1,ca,...,c} that minimize the total error,

_ . 2
ben = ) min|lz — ||,

reX

Although k-means only computes a local optimum, its
simplicity and its observed speed have made it an extremely
popular clustering algorithm in practice [5].

A formal definition of k—-means is presented below.

1. Choose an arbitrary set of k cluster centers.

2. Set the cluster C; to be the set of points in X" that are
closer to ¢; than they are to any c; for j # .

3. Recompute the optimal centers for these clusters by
setting ¢; = ﬁ > v, T-

4. Repeat steps 2 and 3 until the C; partitioning stabilizes.

As with ICP, each step decreases the potential function
¢xm, and there are only finitely many partitions C;. There-
fore, k—means is guaranteed to eventually terminate.

We are interested in the convergence rate of k—-means,
and we show here a smoothed upper bound of n®*) itera-
tions. Smoothed analysis is motivated by a superpolynomial
lower bound for the unsmoothed case [2].

Taken on its own, of course, this n°*) bound is not
as strong as our polynomial upper bound for ICP. On the
other hand, it improves upon the best unsmoothed bound of
O(n*) [11] by an exponent of O(%). This matches exactly
the improvement our ICP smoothed upper bound gains on
the best TCP unsmoothed bound of O(n??) [7].

5.1. Overview

Our proof of the n®®*) smoothed upper bound for
k-means closely mimics our ICP analysis. We focus on
the potential function ¢y, which is strictly decreasing dur-
ing an execution of k—means.

We consider two cases, analogous to the two ICP cases.
First suppose no cluster gains or loses more than 2kd points
within a single iteration. Then, by a sparsity argument, we
show that after at most 2% iterations, some cluster center
will have substantially shifted. Lemma 2.1 then implies a
large potential drop during Step 3 of k—means.

Conversely, suppose some cluster gains or loses at least
2kd points within a single iteration. Then, one of these
points must have been significantly removed from its clus-
ter’s Voronoi boundary. When this point is reassigned to



the nearest cluster during Step 2 of k—-means, a substantial
potential drop occurs.

Either way, we can bound the potential drop over 2* it-
erations, and the smoothed upper bound will follow.

5.2. Case 1: Small cluster changes

We begin with the case where each cluster gains or loses
at most 2kd points in each iteration. This is analogous to
the first case in our ICP analysis. Throughout this section,
we will use ¢(.S) to denote the center of mass of a point set
S.

Definition 5.1. Fix a set of data points X C R® with |X| =
n. A key-value is defined to be any expression of the form,

ni

—_— C S

mo(s)
where S C X has at most 4kd data points, and where n,
and ny are relatively prime positive integers satisfying nq1 <
n? and ny < n.

Note that a key-value is a linear combination of data
points. For any two such expressions x and y, we write
x = y if z and y have identical coefficients for each data
point.

Definition 5.2. We say a point set X is 6-km-sparse if any
key-values (a, b, ¢, d) that satisfy |la + b — ¢ — d|| < § also
satisfy a + b = ¢ + d.

Let C be a constant to be fixed later. We define an
“epoch” to be a sequence of iterations during which the po-
tential decreases by a total of at most C. We first show that
if X is §-km-sparse, then small cluster changes within a sin-
gle epoch can result in at most two different centers for each
cluster, and therefore a total of at most 2% different config-
urations.

Lemma 5.1. Suppose k-means is run on a 2n?y/C-km-
sparse point set X C RY. Let S denote the set of points in a
fixed cluster, and suppose S never gains or loses more than
2kd points during a single iteration. Then S can take on at
most two different centers.

Proof. Suppose by way of contradiction that .S takes on at
least three different point sets, starting with .S7, So and Ss.
We may assume without loss of generality that there is a
transition between S; and Ss (either S goes from S; to So
or vice-versa), and that there is a transition between S5 and
Ss3.
Let A=S5,NSyNSsandlet B; = S;—Afori =1,2,3.
Then,

| B1| [S1 —S1NSe|+ 151 NSy — 51 NS2N Ss

|Sl -5 ﬂSQ| + |SQ — Sy ﬂ53|.

IAIA

Since we assumed S never changes by more than 2kd points
during a single iteration, it follows that | By | < 4kd. Similar
arguments allow us to bound the size of | Bs| and | Bs|.
Now recall that there is a transition between S; and So
within a single epoch. However, Lemma 2.1 implies that if
a cluster center moves a distance of v/C' during one itera-
tion, then ¢y, will drop by at least C' (see [10]). Therefore,
[le(S2) — e(Sh)]| < v/C. On the other hand,
|A|c(A) + |Balc(Bs)
C(SQ) C(Sl) |A| n |Bg‘
|Ale(4) + [Bile(B1)
Al + B

Rearranging, we have |A|(|By| — | Bz|)c(A) is equal to

([A] + [B1[) (| Al + [ B2])(e(S2) — ¢(S1))
+ | B1|(|A] + | Ba|)e(B1) — [B2|(|A] + |B1])c(Bz).

Furthermore, (|A| + |B1[)(|A] +|Ba|) - [[¢(S2) = ¢(S1)l| =
[S1] - 82| - [le(S2) — e(S1)|| < n*V/C.

First suppose |B1| = |Bz|. In this case, two key-values
a = |Bi|(JA| +|Ba|)e(By) and b = [ Bo|(|A] + | B ] )e(By)
are separated by a distance of at most n2v/C. Since X is
2n2\/5—km—sparse, it follows that ¢« = b, and hence that
B1 = Bs,. However, this contradicts the assumption that
Sy # So.

Therefore, we may divide through by |B; | — | Ba|, which
implies that the value,

_ [Bil(|A[ +[B])

r=—"_""7.¢B
By -3, P

_ Bal( A+ [Br])

- c(B
AR AR

is within n?v/C of | A|c(A). By the same reasoning applied
to the transition between Sy and Ss,

_ 1Bs|(1Al + [B2]) _ |B2|(|A[ +|Bs])

Y C( 3) |B3| _ ‘BQ|

. c(B
By~ |Bs] (B2)

is also within n2v/C of |A|c(A). Therefore, the distance
between z and y is at most 2n2+/C. Since z and y are both
differences of two key-values, and since X’ is 212/C-km-
sparse, we have x = y.

Now suppose there exists some point p € B1 N By. The
coefficient of p in x is

B[ +1B2) 1 [Bol(|Al+[Bi) 1

_— _ — =1,
|B1| = [Bz| Bl |B1| = [Bz2| B
but unless p € Bjs, the coefficient of p in y is % #+

—1. Therefore, p € B; N By N B3, which contradicts the
original definitions of B;, B, and Bs.

It remains only to consider the case where B, Bo, and
B3 are pairwise disjoint. Here, the set of data points for
which z has non-zero coefficient is precisely B1 U Ba. A
similar statement holds for y, which implies B; = Bjs, giv-
ing another contradiction. O



Corollary 5.2. Suppose k—-means is run on X, which is
2n2\/C-km-sparse. Then, after 2 iterations, either some
cluster has gained or lost a total of at least 2kd points, or
the potential has decreased by a total of at least C.

Proof. Until one of the given conditions holds, Lemma 5.1
guarantees that each cluster takes on at most two different
centers. This leaves only 2* different choices for the set of
all centers, but k—-means can never repeat configurations.
Therefore, k—-means can proceed for at most 2k — 1 itera-
tions in this case. O

It remains to show that X is likely to be d-km-sparse.

Proposition 5.3. Suppose a set of n points X is chosen ac-
cording to independent d-dimensional normal distributions
with variance o2. Then X is §-km-sparse with probability

d
at least 1 — nl6kd+12. <ﬁ> .
(e

Proof. Fix key-values a, b, ¢, d for which a+b # c+d. We

can write a+b—c—d =), k. for rational constants

k.. with denominator at most n*. Sincea +b—c —d # 0,

there exists some z for which k, # 0. Fixing all points in

X —{z}, we have ||a+b— ¢ —d|| < 6 only if x is in some
s

fixed ball of radius at most i < n*5. Lemma 4.1 then

implies that ||a + b — ¢ — d|| < ¢ with probability at most

d
(@) . The result now follows from a union bound. O

5.3. Case 2: Large cluster changes

We now consider the case where some cluster gains or
loses at least 2kd points within a single iteration. This is
analogous to the second case of our ICP analysis. We show
some point that switches clusters must be relatively far away
from its cluster’s Voronoi boundary. The point then con-
tributes significantly less to ¢y, after switching clusters.

Throughout this section, we use dist(xz, ) to denote the
shortest distance from a point x to a hyperplane H.

Definition 5.3. Let P be a point set in R%. We say P is
e-separated if for any hyperplane 'H, there are at most 2d
points in P within distance € of 'H.

Proposition 5.4. Suppose k-means is run on an e-
separated point set X C Re. If one cluster gains or loses
a total of at least 2kd points within a single iteration, then
the potential drops by at least %.

Proof. Consider a cluster C that gains or loses a total of at
least 2kd points within a single iteration. Then there must
exist some other cluster C’ with which C exchanges at least
2d + 1 points. Let ¢ and ¢’ denote the centers of C and C’ at
the start of the iteration. By assumption, at least one point
2 that switched between C and C’ is at a distance of at least
e from the hyperplane H bisecting ¢ and ¢’.

Assume without loss of generality that x switched from
C to C'. Then, during Step 2 of the iteration, the potential
Gxn decreased by at least ||c — z|* — ||/ — z||? = (22 —
c¢— ) (¢ —¢). Since x is at a distance of at least € from
'H, we know 2x — ¢ — ¢’ has magnitude at least 2¢ in the
¢’ — c direction. On the other hand, since x € C when ¢
was calculated, and since |C| < n, the distance from c to
H is at least <. Therefore, |lc — /|| > 2, and the result
follows. O

It remains only to show that X is likely to be §-separated.
We begin by proving an extension of Lemma 4.5 that may
be of independent interest.

Lemma 5.5. Let P be a set of at least d points in RY, and
let H be an arbitrary hyperplane. Then there exists a hy-
perplane H' passing through d points of P that satisfies,

max (dist(p7 H/)) <2d- max (dist(p, H))

Proof. Let{ = maxpcp (dist (p, H)) , and assume without
loss of generality that 0 € P.

For any p € P, let w(p) denote the projection of p onto
the hyperplane 7, and let V denote the (d — 1)-dimensional
point set {m(p) —7(0) | p € P}. Construct Vy from V using
Lemma 4.5, and let Q denote the points p so that 7(p) —
m(0) € Vy. We then define H’ to be the hyperplane passing
through 0 and the d — 1 points in Q.

For p € P, we have ||p — 7(p)|| < ¢, and consequently,

for g € {0} U Q, we also have dist (ﬂ(q), H’) < {. There-
fore, dist(p, H') is at most,

Ip — =(@)l| + dist (). 7

£+ dist (71’(0), ’H’) + dist (w(p) —7(0), H’)

IN

IN

20 + dist (7r(p) —7(0), 'H’)

= 2(+dist Z Cq - (w(q) - ’/T(O)),H/

qeEQ

Another application of the triangle inequality, along with
the fact that |c,| < 1 implies that dist(p, H') is at most,

20+ 3 dist (w(q),H') +10Q] - dist (w(O),H')
qeQ

< 2042(d-1)e.
The result follows. O

Proposition 5.6. Suppose a set of n points X is chosen ac-
cording to independent d-dimensional normal distributions
with variance 0. Then X is e-separated with probability at
2d (%)d

o

least1 —n



Proof. By Lemma 5.5, it suffices to prove that with the
same probability, there is no hyperplane H that passes
through d points in A" and that is within a distance 2de of d
other points in X'.

Towards that end, fix disjoint sets Py, P, C X, with
|P1| = |P2| = d, and let H denote the hyperplane passing
through each point in P;. Consider the distribution of x €
P> while P is fixed. By Lemma 4.1, we know that x is
within a distance 2de of H with probability at most %‘k.
Therefore, H is within a distance 2de of every point in Py
with probability at most (%)d.

The result now follows from a union bound over all sets
7)1 and 732. ]

5.4. k-means smoothed complexity

Theorem 5.7. Suppose a set of n points X is chosen ac-
cording to independent d-dimensional normal distributions
with variance o2, and let D denote the diameter of the re-
sulting point set. Then k-means will run on X in time
polynomial in n*, p~'/% and % with probability at least
1—2p.

2 2 1
Proof. Take C = 4:32%, 5§ =2n%VC,and e = %.

Then, Propositions 5.3 and 5.6 imply that X" is both §-
km-sparse and e-separated with probability at least 1 — 2p.
In this case, Corollary 5.2 and Proposition 5.4 imply that
the potential drops by at least C every 2 iterations.

As with Theorem 4.8, the result now follows from the
fact that the potential is non-increasing and is at most n.D?
after one iteration. O

Since k—-means is known to never take more than

O(nF?) iterations [11], we can take p = ﬁ to obtain

an O(n"*) bound on the expected number of iterations. This

shows that k—-means has O(n*) smoothed complexity, in-
dependent of the dimension.

6. Discussion and open problems

We have shown smoothed upper bounds for both ICP
and k-means that are independent of dimension and
that are substantial improvements over previous results.
Smoothed analysis in both cases is strongly motivated by
superpolynomial lower bounds, proven here for ICP and in
[2] for k-means.

We are closer to understanding the full complexity of
ICP than we are to understanding k—means, but a number
of open questions remain. First, there is interest in the run-
ning time of ICP in low dimensions [7]. We have resolved
this question in one dimension, but in all other cases, there
is a gap between our lower bound of Q(}é)”“rl and the upper
bound of O(n?d)<.

Moreover, while we have shown that the smoothed com-
plexity of ICP is polynomial, our exponent is quite large.
This is consistent with most other applications of smoothed
analysis, but it could certainly use improvement. We be-
lieve any substantial work in this direction would require
some new techniques that could be of independent interest.

Finally, our result for k—means is not polynomial ex-
cept for K = O(1). Although % tends to be small in practice,
we would very much like to see a proper polynomial bound,
and we suspect that one may exist.

Acknowledgements

We would like to thank Rajeev Motwani for his helpful
comments, and Vladlen Koltun for introducing us to the
ICP algorithm.

References

[1] P. K. Agarwal and N. H. Mustafa. k-means projective
clustering. In PODS ’04: Proceedings of the twenty-third
ACM SIGMOD-SIGACT-SIGART symposium on Principles
of database systems, pages 155-165, New York, NY, USA,
2004. ACM Press.

[2] D. Arthur and S. Vassilvitskii. How slow is the k-means
method? In SCG '06: Proceedings of the twenty-second
annual symposium on computational geometry. ACM Press,
2006.

[3] L. Becchetti, S. Leonardi, A. Marchetti-Spaccamela,
G. Schéer, and T. Vredeveld. Average case and smoothed
competitive analysis of the multi-level feedback algorithm.
In FOCS ’03: Proceedings of the 44th Annual IEEE Sympo-
sium on Foundations of Computer Science, page 462, Wash-
ington, DC, USA, 2003. IEEE Computer Society.

[4] R. Beier and B. Vocking. Random knapsack in expected
polynomial time. In Proceedings of the 35th Annual ACM
Symposium on Theory of Computing (STOC-03), pages 232—
241, San Diego, USA, 2003. Association of Computing Ma-
chinery (ACM), ACM.

[5] P. Berkhin. Survey of clustering data mining techniques.
Technical report, Accrue Software, San Jose, CA, 2002.

[6] P.J.Besland N. D. McKay. A method for registration of 3-D
shapes. IEEE Trans. Pattern Anal. Mach. Intell., 14(2):239—
256, 1992.

[7] E. Ezra, M. Sharir, and A. Efrat. On the ICP algorithm. In
SCG ’06: Proceedings of the twenty-second annual sympo-
sium on computational geometry. ACM Press, 2006.

[8] N.Gelfand, L. Ikemoto, S. Rusinkiewicz, and M. Levoy. Ge-
ometrically stable sampling for the ICP algorithm. In Fourth
International Conference on 3D Digital Imaging and Mod-
eling (3DIM), pages 260-267, 2003.

[9] S. Gupta, K. Sengupta, and A. A. Kassim. Compression
of dynamic 3d geometry data using Iterative Closest Point
algorithm. Comput. Vis. Image Underst., 87(1-3):116-130,
2002.

[10] S. Har-Peled and B. Sadri. How fast is the k-means method?
In SODA °05: Proceedings of the sixteenth annual ACM-
SIAM symposium on Discrete algorithms, pages 877-885,



(1]

[12]

[13]

Philadelphia, PA, USA, 2005. Society for Industrial and Ap-
plied Mathematics.

M. Inaba, N. Katoh, and H. Imai. Applications of weighted
Voronoi diagrams and randomization to variance-based k-
clustering (extended abstract). In Symposium on Computa-
tional Geometry, pages 332-339, 1994.

T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko,
R. Silverman, and A. Y. Wu. A local search approximation
algorithm for k-means clustering. Comput. Geom., 28(2-
3):89-112, 2004.

M. Levoy, K. Pulli, B. Curless, S. Rusinkiewicz, D. Koller,
L. Pereira, M. Ginzton, S. Anderson, J. Davis, J. Ginsberg,
J. Shade, and D. Fulk. The digital Michelangelo project:
3D scanning of large statues. In K. Akeley, editor, Sig-
graph 2000, Computer Graphics Proceedings, pages 131—
144. ACM Press / ACM SIGGRAPH / Addison Wesley
Longman, 2000.

[14]

[15]

[16]

(17]

S. P. Lloyd. Least squares quantization in PCM. IEEE Trans-
actions on Information Theory, 28(2):129—-136, 1982.

S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP
algorithm. In Proceedings of the Third Intl. Conf. on 3D
Digital Imaging and Modeling, pages 145-152, 2001.

G. C. Sharp, S. W. Lee, and D. K. Wehe. ICP registration
using invariant features. IEEE Trans. Pattern Anal. Mach.
Intell., 24(1):90-102, 2002.

D. A. Spielman and S.-H. Teng. Smoothed analysis of al-
gorithms: Why the simplex algorithm usually takes polyno-
mial time. J. ACM, 51(3):385-463, 2004.



