On the General Reconfiguration Problem for Expanding Cube Style
Modular Robots

Serguei Vassilvitskii*
Cornell University
sv39@Qcornell.edu

John Suh
Xerox PARC
jwsuh@parc.xerox.com

Abstract

We discuss the theoretical limitations for reconfigu-
ration of metamorphic robots made up of Telecubes,
six degree of freedom cube shaped modules, that are
currently being developed at Xerox PARC. We show
that by using meta-modules composed of 8 individ-
ual modules as a backbone for building the desired
shape, we can establish completeness for the recon-
figuration as well as time and space bounds for the
process. Finally we present several open problems in
the field of reconfiguration.

1 Introduction

We are developing a versatile modular self-
reconfigurable robotic system consisting of identical
units that are very limited in their actions. How-
ever, as the number of modules increases, the range
of behaviors of the system grows exponentially. The
task of self-reconfiguration is important for develop-
ing self-sufficient systems. The overall system can re-
configure itself to help accomplish certain tasks such
as locomotion, object manipulation and sorting, or
interaction with other systems, especially when there
is a need to adapt to the environment.

Many people have realized that by grouping single
modules into groups or meta-modules each unit in the
system increases its number of degrees of freedom and
the reconfiguration tasks are simplified [3, 4, 6, 9].
However using meta-modules limits the granularity
of the possible configurations. Rus and Vona require
4x4 meta-modules for complete 2D reconfiguration
for expanding cube style modules, while Nguyen et al.
explore the possibility of 36 membered meta-modules

*Supported by Xerox PARC
fSupported by FXPAL

Jeremy Kubical
Carnegie Mellon University
jkubica+@ri.cmu.edu

Eleanor Rieffel

FXPAL
rieffel@pal.xerox.com
Mark Yim
Xerox PARC

yim@parc.xerox.com

for 2D reconfiguration with hexagonal modules. We
explore the use of small meta-modules as the back-
bone for the entire structure, but allow other mod-
ules to be embedded within the meta-module struc-
ture. This approach results in a smaller loss of fine
structure, yet still retains the advantages of the meta-
module method.

We first describe the hardware platform currently
being developed at Xerox PARC that inspires our
work. In section 3 we motivate the need for meta-
modules by demonstrating the existence of structures
that cannot reconfigure into other structures. We
then describe the use of 2x2x2 meta-modules to aid
in reconfiguration, and demonstrate that reconfigu-
ration can be performed in-place in quadratic time.
We deal with the 3D reconfiguration problem explic-
itly, but note that the same proofs carry over to using
2x2 meta-modules for 2D reconfiguration. Finally, we
present several open problems that we are currently
working on.

2 Telecube Modular Robotic
Hardware

We look at the Telecube generation of modular robots
designed and currently being constructed at Xerox
PARC. Similar in design to the Crystalline modules
used by Rus [6, 8], these modules are cube shaped.
The Telecube modules have the ability to indepen-
dently extend out each of the 6 faces. These exten-
sions and retractions provide the modules’ only form
of motion. A picture of a module is shown in Figure
1.

The arms can extend independently up to half of
the body length, giving the robot an overall 2:1 ex-
pansion ratio along each dimension. A latching mech-



Figure 1: One telecube module.

anism on the plates on the end of each arm enables
two aligned modules to connect to each other. For
power routing, communication and alignment rea-
sons, the modules must remain globally connected
to each other at all times. While the modules are
in development, we have built a simulator to develop
and test reconfiguration algorithms.

The modules have the following low-level primi-
tives:

o ExtendArm(Direction): If there is room to ex-
tend the arm in Direction, extend the arm.

e RetractArm(Direction): Retract the arm in Di-
rection, attempting to first disconnect from
neighbor if connected.

o Connect(Direction): If there is a neighboring
module in Direction, latch to that module.

e Disconnect(Direction): If there is a module is
currently latched in Direction, break the connec-
tion with the neighbor.

From these primitives, we can build more compli-
cated actions, such as Mowve(Direction). The explicit
sequence of actions that allows a module to move
along a given direction is illustrated in Figure 2. A
module can pull towards a neighbor by retracting its
arm, push away from a neighbor by expanding its
arm, or simultaneously retract its front arm and ex-
pand its back arm, effectively “sliding along its arms”
in a given direction. Prior to moving, the module:

1. confirms that it has at least one neighbor along
the direction of motion on which it can push or
pull,

2. ascertains that it is moving into free space,

3. disconnects from all neighbors perpendicular to
the direction of movement

| 2

Figure 2: The module in red moves one arm length

At any point during this process, the movement can
fail, in which case the module reverses what has been
done so far and returns to its original state.

Each module is also given simple sensing and com-
munication abilities. Modules can send messages
through their faceplates to their immediate neigh-
bors using a low bandwidth IR link. Each module
can also gauge the extension of each faceplate, read
the contact sensor on each of the faces, and determine
whether it is latched to a neighboring module.

3 Related Work

The problem of reconfiguration for modular self-
reconfigurable robotic systems has received increased
interest. This work includes [2, 3, 5, 6, 7, 10, 11,
12, 13]. Much of the work on the theoretical bounds
of reconfiguration has centered on two dimensional
hexagonal modules that move by rolling over other
modules. In [4] and [5], Pamecha and Chirikjian ex-
amine the theoretic bounds of reconfiguration on such
a system, including the upper and lower bounds on
the minimum number of moves required for recon-
figuration. Further, they propose the use of simu-
lated annealing to attempt to solve the reconfigura-
tion problem. Walter, et. al. describe distributed
algorithms for such a system and prove correctness
and lower bounds for reconfiguration in [12] and [13].
Rus and Vona describe a general reconfiguration al-
gorithm for cube modules in [6]. Their melt-grow
algorithm uses blocks composed of 16 modules in a
4x4 arrangement and is shown to be complete for
structures composed of such blocks. Little has been
done, however, to explicitly tackle the problem for
3D reconfiguration.

Previous work on reconfiguration often encoun-
ters inadmissible configurations [3, 13] or other con-
straints [6]. We further classify different configura-
tions as static or dynamic to give more motivation for
the need of meta- modules. Finally, we address the
problem of bounding the physical space used during
reconfiguration. This bound is of crucial importance
for situations in which the robots need to reconfigure
in tight spaces or in the presence of obstacles.



Ll

Figure 3: Module arranged in a line cannot reconfig-
ure into a different shape

4 Motivation

Ideally, we would like to have a reconfiguration al-
gorithm that allows any arbitrary structure of mod-
ules to reconfigure into any other arbitrary structure.
However, this is not feasible in general because there
exist pairs of structures between which reconfigura-
tion is not possible. For example, modules arranged
in a straight line, as shown in Figure 3, cannot re-
configure into any other structure. This simple fact
demonstrates the inherent difficulty of the reconfig-
uration problem and shows the need to first deter-
mine if reconfiguration is possible between two given
shapes.

Walter et. al. and Nguyen et. al. approach this
problem by defining various inadmissible configura-
tions for the hexagonal modules [3, 13]. This serves as
a useful heuristic, but includes configurations where
reconfiguration is still possible. Using the Telecube
type module it is possible to precisely define a set
of configurations that are rigid in that not only can
they not reconfigure into a different shape, they can-
not even change any of their connections. Thus, we
can partition all possible configurations into two dis-
joint subsets: rigid and dynamic.

4.1 Definitions

We start with the following definitions:

Structure: Any connected set of 2 or more modules.
Connectivity Arrangement: The set of connections
between modules in a structure.

Rigid structure: Any structure that cannot change
its connectivity arrangement while maintaining
global connectivity.

Dynamic Structure: Any structure that can change
its connectivity arrangement while maintaining
global connectivity.

We will use n to refer to the number of modules in
a structure.

4.2 Constructions

Theorem 1: A line of connected modules is a rigid
structure.

Proof: In order to change its connectivity ar-
rangement, a module has to either make a new

connection or break a connection. Since the modules
are connected and arranged in a line, all possible
connections between modules are already made.
Further, breaking any connection in the line would
break the global connectivity constraint.

Theorem 2: If any two rigid structures, s; and
s9, establish one connection, and cannot establish
other connections regardless of further extensions
and/or retractions of their faceplates, then the
resulting structure is rigid.

Proof: Let s be a structure formed by establishing
one connection between two rigid structures, s
and s». As no new connections can be formed
within a rigid structure and one of the assumptions
of the theorem is that no other connections can
be formed between structures s; and s», we need
only show that no existing connections can be
broken. The single connection between s; and
s9 cannot be broken, since no other connections
between the two structures are possible. Therefore,
severing this connection disconnects structures s
and s violating the global connectivity constraint.
Any connection within sy, disconnects s; into
two pieces. As there is only one connection with
s, only one of these pieces will be connected
with s2, so the resulting structure is disconnected.
The argument for any connection within s, is similar.

Theorem 3: If any two rigid structures, s; and
89, establish a connection and can establish further
connections between the two structures, the resulting
structure is dynamic.

Proof: Let p; and ps be two of the connection points.
Note that if there is a connection at p; then the
module(s) at po are free to make or break that con-
nection while maintaining global connectivity. Thus
the resulting structure can change its connectivity
arrangement and is no longer rigid.

Theorem 4: If any dynamic structure establishes a
connection with any other structure, the resulting
structure is dynamic.

Proof: Let M be a module in one of the two struc-
tures that could change the connectivity arrangement
by making or breaking a connection to a neighboring
block, M’', without causing a global disconnect in
the original structure. Thus there exists another
path from M to M’ in the original structure that did
not go through this connection. Since this property
still holds in the resulting structure, the resulting
structure is dynamic.

Note that there exist dynamic structures that can



change their connectivity arrangements, but cannot
change their shape. For example, a 2x2 completely
connected square of modules is dynamic because any
one of its connections can be broken without violating
the global connectivity constraint, but the modules
cannot change their position relative to their neigh-
bors.

The existence of rigid structures shows that recon-
figuration is not always possible. Classifying the dy-
namic structures into disjoint classes of mutually re-
configurable structures is an interesting open ques-
tion. However, if we group the modules into the
smallest symmetrical group - 8 modules arranged in
a 2x2x2 cubic configuration - the question of which
structures can reconfigure into other structures be-
comes easy.

5 The Use of Meta-Modules
with Free Blocks

The technique of combining individual modules into
meta-modules has proven beneficial in simplifying the
problem of reconfiguration, easing the global connec-
tivity concern and eliminating the problems of in-
admissible states [3, 6]. However, the meta-module
technique has several drawbacks:

e The precision of shape approximation is now lim-
ited by the size of the meta-module.

e Reconfiguration using meta-modules may not be
optimal, because the meta-modules need to be
kept intact at the end of each step of the recon-
figuration.

e In cases where the modules are interacting with
other objects, the amount of fine control with
which the modules can interact may again be
limited by the size of the meta-module.

All of the above downsides of the meta-module ap-
proach are strictly related to the size of the meta-
module. Thus, it is useful to find the smallest meta-
modules that can still simplify the reconfiguration
problem.

We extend on the previously explored idea of meta-
modules [3, 6, 4] by allowing free blocks to be part of
the overall structure. By allowing free blocks within
the meta-module structures, we greatly expand the
set of possible shapes and also increase the preci-
sion with which an arbitrary shape can be approx-
imated. This meta-module approach eliminates in-
admissible states and allows for arbitrary reconfigu-
rations within this set of shapes. Further, we show

that this approach to the meta-modules can be used
to make guarantees about the space required by the
structure during the reconfiguration. Specifically, we
show that the space required by the modules for re-
configuration can be bounded by the space required
by the initial and final structures. This guarantee
is important when the robots have to reconfigure in
tight spaces, around obstacles, or if two systems of
modules are reconfiguring in close proximity to each
other.

6 Results

Below we prove that reconfiguration using meta-
modules with free blocks is always possible between
two systems with the same number of modules n and,
furthermore can always be done in place, with no ad-
ditional space, in O(n?) total module movements.

6.1 Definitions

Lattice Node: A meta-module composed of 8 modules
arranged in a 3 dimensional cube with 2 modules
on each side, spaced apart by two full arm lengths.
(Figure 4a).

Node Module: Any module currently part of a lattice
node.

Valid Space: A space between any two node modules
not necessarily of the same node.

Free Block: A module occupying a valid space.
(Figure 4b). Note that at any given time, the set
of modules that are acting as node modules and the
set of free blocks are completely disjoint.

Lattice Structure: Any connected structure of
aligned lattice nodes and free blocks. A lattice node
A is said to be aligned with the neighboring lattice
node B if and only if all of the modules of A facing
B are connected to modules in B and vice versa.

We will take N to be the number of nodes. Note
) = O(n), because n < 20N.

that O(N

Figure 4: a) Modules and (b) A free block in a 2x2
meta-module configuration.



05, e SO Basre. S

Figure 5: Free block moving to an adjacent valid
space (only one layer of the meta- module shown).

We will make frequent use of the homogeneity of
the modules in order to accomplish reconfiguration
tasks. In particular, modules that correspond to free
blocks in the original structure may correspond to
lattice nodes in the final structure, and vice versa.

We first describe two basic moves that will be gen-
erally useful for reconfiguration.

Translation: Any free block can move to an empty
valid space on the opposite side of a neighboring node
module. Further, this can always be done while main-
taining global connectivity.

The exact sequence of moves for one case is demon-
strated in Figure 5. Global connectivity is main-
tained at all times. Note that a module that initially
corresponded to a free block became a node module
and vice versa.

Turn: Any free block can move to any other empty
valid location adjacent to a neighboring node module.
Further, this can always be done while maintaining
global connectivity.

Using translation, a free block can move to the
other side of a node module. The block can also
“turn”: move in the four directions perpendicular to
the direction of the module’s connection. The ex-
act sequence of moves is demonstrated in Figure 6.
Again, the global connectivity constraint is never vi-
olated.

6.2 Constructions

Theorem 5: Any free block can move to any empty
valid space within a lattice structure while maintain-
ing global connectivity. Moreover, this can be done in
O(N) time, where N is the number of lattice nodes.
Proof: Since all of lattice nodes in a lattice structure
are connected, there exists a path from any lattice
node to any other lattice node in the structure. More-
over, there is a path between any two valid spaces

et

Figure 6: Free module moving to an adjacent valid
space (only one layer of the meta- module shown).

b= 44

Figure 7: Two free blocks pushing out to form the ba-
sis of a new node (only one layer of the meta-module
shown).

in the structure consisting of a sequence of adjacent
valid space. Any such path can be broken up into a
series of translations and turns, which a free block can
execute using the primitive motions defined above.
Since it takes at most 3 turns for a free block to move
from any valid space within a lattice node to any
other, and two translations to move between nodes,
the length of this path is at most 5 % N.

Finally we look at the case where the path a free
block must take already contains free blocks. We
examine each of the free blocks encountered, Fy, Fy,
F;, ..., F,,. We move the final free block, F,, to
the final location. We then iterate by moving Fj,_;
to the location previously occupied by F,, F,_2 to
the location previous occupied by F, 1, etc. Note
that since the blocks are moved in the reverse order,
none of them are blocked. The end result is that
the original free block has effectively moved through
the other free blocks, though no single module has
followed the complete path.

Theorem 6: Eight free blocks can be used to
form a new lattice node in any empty location
adjacent to and aligned with the lattice structure.
Further, this can always be done in O(N) time while
maintaining global connectivity.

Proof: By Theorem 5, we let 4 of the free blocks
occupy the valid spaces inside a node adjacent to the
new location. Then, by the sequence of steps shown
in Figure 7, these 4 free blocks can be pushed out to
form half of a lattice node while maintaining global
connectivity.

We can now move the remaining 4 free blocks
to the spaces between the node and the half node,
and repeat the above procedure to push out another
half node. Since the half node is connected to the
lattice structure at four points, global connectivity
is preserved throughout the movement of the free
blocks and the formation of the rest of the node.

Corollary 2: A lattice node can break apart into
8 free blocks while maintaining global connectivity
if there are 8 empty valid spaces in the rest of the
lattice structure and the removal of the lattice node



would not cause a global disconnect.

Proof: The sequence of steps above can be reversed
to break up a lattice node into 8 free blocks occupy-
ing the appropriate valid spaces.

Theorem 7: A lattice node containing no free
blocks can move from any position in a lattice
structure to any other position adjacent to and
aligned with any other node in the lattice structure
while maintaining global connectivity as long as the
global connectivity of the lattice structure would
be maintained without the presence of the node.
Moreover, this movement has a runtime of O(N),
and requires no extra physical space, other than that
occupied by the initial and final structures.

Proof: The overall approach for the proof is that
by following Corollary 2 and Theorems 5 and 6,
a lattice node can break up into 8 free blocks
that can migrate to the final position and build
a new lattice node. There are three cases to consider:

Case 1: The lattice has at least 8 free blocks.
By Theorem 5 and 6, eight of these free blocks can
move and form a new node in the final position of
the moving node. By Corollary 2 and Theorem 5,
the eight modules in the moving node can break
down into eight free blocks and move to the positions
previously occupied by the eight free blocks that
formed the new node.

Case 2: The lattice has fewer than 5 free blocks.
This means that the lattice has at least 8 empty
valid spaces, because a single node has 12 valid
spaces. Using Corollary 2, the node can break up
into 8 free blocks, reducing to Case 1.

Case 3: The lattice has 5 to 7 free blocks. As
the proofs for Theorems 5 and 6 show, four of the
free blocks can move to the new position and form
half of the new lattice node. As shown in case 2,
there are then at least 8 empty valid spaces in the
structure. By Corollary 2, the moving node can
break into 8 blocks, 4 of which can move to move
and complete the new node and four of which can
move into the spaces previously occupied by the 4
free blocks that formed the first half of the new node.

The process of building a node and breaking
up a node as described in Theorem 6, is constant
in time and is independent of the total number of
lattice nodes. The migration of a free block from
one lattice nodes to another has a runtime of O(N)
as demonstrated in Theorem 5. Therefore, this
movement of a lattice node can be accomplished in

linear time. Furthermore, since after breaking up
into free blocks the lattice node “tunnels” through
the initial structure, this process does not require
any additional space.

Theorem 8: Any lattice structure L; can recon-
figure into any other lattice structure L; with an
equal number of modules, where the two overlap by
at least one lattice node, while maintaining global
connectivity. This reconfiguration can be done in
O(N?) time, and requires only the space of the
initial and final configurations.

First, we define S; to be the set of module po-
sitions in the initial structure and Sy to be the set
of module positions in the final structure. Choose
an arbitrary anchor node A such that A € S; and
A € S;. Such a node is guaranteed to exist by
the assumption that the initial and final structures
overlap by at least one node. Any nodes contained in
both S; and Sy that have a path to A that remains
in both S; and Sy do not need to move, so we
define the set of in-place nodes, I, as the maximal
connected subset of nodes such that all nodes in I
have paths to A that are entirely contained in both
S,' and Sf.

In addition, we assign all nodes B in S; a distance
value d(B) from I. The distance value d(B) is the
number of nodes contained in a shortest path from B
to some node in I, where the path must lie completely
inside the lattice structure. Thus, any node in I has
a distance value of zero and any node neighboring a
node in I has distance value one. We also assign dis-
tance values to all node locations (currently empty)
in the final structure using Sy’s connection structure.

Lemma 1: If a node H in S; with the highest
distance value is removed from the initial structure,
the resulting structure will remain connected.

Proof: Assume the shortest path to I for some node
B went through node H. By the definition of path
distance, B’s path distance would then be strictly
greater than H’s, which violates the assumption that
H has the highest distance value. Thus every node
has a path to I that does not go through node H, so
removing H does not disconnect the structure.

Lemma 2: The number of free blocks in the
initial and final structure can only differ by a
multiple of 8.

Proof: The number of free blocks can be described
by the following formula: F' =n — N % 8.

Since the total number of modules is unchanged
between the two structures, and the number of




lattice nodes is an integer, the total number of free
blocks can only differ by a multiple of 8.

Lemma 3: If there is an empty node in Sy,
there is one with distance value 1.

Proof: Let P be an empty node in Sy. Let B be the
final node in the shortest path from P to I. Node B
must have distance value 1.

Proof of Theorem 8&:

Step 1: If all nodes in Sy are filled, skip to Step 2.
Otherwise, by Lemma 3 there is an empty node E
in Sy next to I. If there exist 8 free blocks in the
lattice structure L;, these can be used to fill the
empty node E by Theorem 6. If there are fewer
than 8 free blocks, there must be a node in S; with
distance value greater than 0 since otherwise L;
would have fewer modules than L;. Let H be a
node in S; with highest distance value. If it contains
any free blocks, move them into I using Theorem 5.
Then use Theorem 7 to move the modules in H to
build node E. Let the resulting structure be the new
lattice structure L;, and repeat this step until all of
the nodes in Sy have been filled.

Step 2: If all of the nodes in Sy are filled, we
only need to place the free blocks in the right places.
If the number of nodes in Sy is smaller than the
number of nodes in S;, then the remaining nodes in
S; that are not part of Sy can be broken down into
free modules, always choosing the node with the
highest distance value. By Lemma 1 and Corollary
2 this will not cause a global disconnection. We now
have the same number of free blocks as in the final
configuration. These free blocks can migrate to the
correct locations by Theorem 5.

After one iteration of Step 1, the set I has in-
creased by at least one element. Thus, the complete
construction of S; can be done in at most N itera-
tions of Step 1. Since each iteration of Step 1 also
requires no more than O(N) time by Theorems 5,
6 and 7, the complete construction of Sy can be
achieved in O(N?2) time. The number of free blocks
is also of O(N), and moving any one of them to
the desired position again requires only O(N) time
by Theorem 5, so Step 2 also can be achieved in
O(N?) time. Due to the fact that each movement
does not require additional space, the complete
reconfiguration does not require any additional
space.

7 Discussion

Above we show that meta-modules can be used to
define a class of structures in which reconfiguration
is complete and efficient both in time and space.
The meta-modules themselves present an underlying
structure to the lattice that facilitates the reconfigu-
ration, and free blocks can be added to the structures
at no penalty to the bounds proved above. This lack
of restriction provides significant power over a pure
meta-module approach that has been previously sug-
gested in [3, 6, 9]. For example, the free blocks can
be placed at valid locations along a single edge of the
structures surface to provide a relatively solid wall.
By moving the free blocks within the meta-module
structure, it is possible to manipulate the density at
any particular point. Finally, free blocks can be used
in self-repair by replacing defective node modules.

Based on the proof for Theorem 8, we can imple-
ment a reconfiguration algorithm where one meta-
module would move through the lattice structure
at a time. Similar to the method introduced by
Pamecha and Chirikjian for hexagonal modules [5] we
can prove a worst case lower bound of O(N?) moves
on arbitrary configurations: consider, for example,
a horizontal line of meta-modules reconfiguring into
a vertical line. This, however, may not be a tight
bound for concurrent reconfiguration, in which more
than one module can move simultaneously.

It is important to note that although we can bound
the number of moves required for reconfiguration,
the problem of planning an optimal reconfiguration
is non-trivial. The search space is highly exponential:
0O(4™) for 2-d structures and O(8") for 3-d structures
[1]. To the best of our knowledge there does not
exist an algorithm to solve the planning problem in
polynomial time. The reason for this, as mentioned
by Pamecha and Chirikjian, is its relation with the
shortest path problem on a graph with an exponen-
tial number of nodes.

Though not of great practical interest given the
generality of the classes we defined, it would be
nice to have a complete classification of structures
into reconfigurations classes. Furthermore, there
are related reconfiguration problems of interest. For
instance, if the degrees of freedom of the modules
were reduced, say the opposite arms had to expand
or contract at the same time, or even that all the
arms contract or expand together,what can be said
about reconfiguration under these constraints?



8 Conclusions

The general shape reconfiguration is not possible for
a large class of structures due to their rigidity. How-
ever, we have shown that by grouping single modules
into groups of 8, and allowing additional single mod-
ules within the structures formed by the groups of
eight modules, the problem becomes much more fea-
sible and can be solved in the general case. We fur-
ther note that the reconfiguration done with the use
of meta-modules can be performed in place, and can
thus be carried out in tight spaces. Thus, by defining
this class of structures we are able to make guaran-
tees about the possibility of reconfiguration and the
time and space required to execute it.

References

[1] Finch, Steven. Klarner’s Lattice Animal Con-
stant. 16 Sept. 2001
http://www.mathsoft.com/asolve/
constant /rndprc/anml.html

Kotay, K. Rus, D.: Motion Synthesis for the
Self-reconfiguring Molecule. Proceedings of the
1998 International Conference on Intelligent
Robots and Systems.

Nguyen, A., Guibas, L., Yim, M.: Controlled
Module Density Helps Reconfiguration Plan-
ning. New Directions in Algorithmic and Com-
putational Robotics. A. K. Peters 2001. 23 - 36.
[4] Pamecha, A. and Chirikjian, G.: A Useful Met-
ric for Modular Robot Motion Planning. JHU
Technical Report, RMS-9-95-1.

Pamecha, A. and Chirikjian, G.: A Bounds for
Self- Reconfiguration of Metamorphic Robots.
JHU Technical Report, RMS-9-95-2.

Rus, D., Vona, M.: Crystalline Robots: Self-
reconfiguration with Compressible Unit Mod-
ules. Autonomous Robots. January 2001. 10 (1):
107-124.

Rus, D., Vona, M.: Self-Reconfiguration Plan-
ning with Compressible Unit Modules. Pro-
ceedings of the 1999 IEEE Int. Conference on
Robotics and Automation. 2513-2520.

[8] Rus, D. Vona, M. A Physical Implementation of
the Crystalline Robot. Proceedings of the 2000
IEEE Int. Conference of Robotics and Automa-
tion.

[9]

[10]

[11]

[12]

[13]

McGray, C., Rus, D.: Self-Reconfigurable
Molecule Robots as 3D Metamorphic Robots.
Proceedings of the 1998 Conference on Intelli-
gent Robot Systems.

Unsal, C., Khosla, P.: Solutions for 3-D Self-
reconfiguration in a Modular Robotic System:
Implementation and Motion Planning. Proceed-
ings of SPIE, Sensor Fusion and Decentralized
Control in Robotic Systems III, SPIE, Vol. 4196,
November, 2000.

Unsal, C., Kiliccote, H., Patton, M., Khosla,
P.: Motion Planning for a Modular Self-
Reconfiguring Robotic System. Distributed Au-
tonomous Robotic Systems 4, Springer, Novem-
ber, 2000.

Walter, J., Welch, J. and Amato, N.: Dis-
tributed Reconfiguration of Metamorphic Robot
Chains. Proceedings of the Nineteenth Annual
ACM SIGACT- SIGOPS Symposium on Prin-
ciples of Distributed Computing (PODC 2000),
Portland, Oregon, 2000, pp. 171-180.

Walter, J., Welch, J. and Amato, N.: Dis-
tributed Reconfiguration of Hexagonal Meta-
morphic Robots in Two Dimensions. Sensor
Fusion and Decentralized Control in Robotic
Systems III, Gerard T. McKee and Paul S.
Schenker, eds., Proceedings of SPIE, Vol. 4196,
pp- 441-453, 2000.



