
On Threshold Behavior in Query Incentive Networks

Esteban Arcaute∗∗†

Stanford University
Stanford, CA 94305

arcaute@stanford.edu

Adam Kirsch∗‡

Harvard University
Cambridge, MA 02138

kirsch@eecs.harvard.edu
Ravi Kumar

Yahoo! Research
Sunnyvale, CA 94089

ravikumar@yahoo-inc.com

David Liben-Nowell∗
Carleton College

Northfield, MN 55057
dlibenno@carleton.edu

Sergei Vassilvitskii∗§
Stanford University
Stanford, CA 94305

sergei@cs.stanford.edu

ABSTRACT
Motivated by the role of incentives in large-scale informa-
tion systems, Kleinberg and Raghavan (FOCS 2005) stud-
ied strategic games in decentralized information networks.
Given a branching process that specifies the network, the
rarity of answers to a specific question, and a desired proba-
bility of success, how much reward does the root node need
to offer so that it receives an answer with this probability,
when all of the nodes are playing strategically? For a spe-
cific family of branching processes and a constant failure
probability, they showed that the reward function exhibited
a threshold behavior that depends on the branching param-
eter b.

In this paper we study two factors that can contribute to
this transition behavior, namely, the branching process itself
and the failure probability. On one hand we show that the
threshold behavior is robust with respect to the branching
process: for all branching processes and any constant failure
probability, if b > 2 then the required reward is linear in
the expected depth of the search tree, and if b < 2 then
the required reward is exponential in that depth. On the
other hand we show that the threshold behavior is fragile
with respect to the failure probability σ: if σ is inversely
polynomial in the rarity of the answer, then all branching
processes require rewards exponential in the depth of the
search tree.

Categories and Subject Descriptors
G.2 [Mathematics of Computing]: Discrete Mathemat-
ics; G.3 [Mathematics of Computing]: Probability and

∗Work done in part while visiting Yahoo! Research.
†Supported in part by NSF grant CMMI-0620811.
‡Supported in part by an NSF Graduate Research Fellow-
ship.
§Supported in part by a Microsoft Research Live Labs fel-
lowship and NSF Grant ITR-033164.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’07, June 13–16, 2007, San Diego, California, USA.
Copyright 2007 ACM 978-1-59593-653-0/07/0006 ...$5.00.

Statistics; J.4 [Computer Applications]: Social and Be-
havioral Sciences—Economics

General Terms
Economics, Theory

Keywords
query incentive networks, threshold phenomena, branching
processes

1. INTRODUCTION
In a world where billions of web pages are at one’s finger-

tips, the quest for information is no longer constrained by
a lack of accessible data. Instead, one of the new prevail-
ing limitations is that of reliability. Why would a web-page
author carefully write a thoroughly investigated essay when
there is little recourse if its facts turn out to have been fab-
ricated? Why would a stranger give an honest appraisal of
a product when he might be paid by the manufacturer to
speak highly of it? Why should a user trust the information
that she receives via a web page?

One solution to this issue is to rely on the implicit and
trusted connections between friends to “endorse” the in-
formation, rather than trusting a stranger. Examples of
this approach include word-of-mouth assessment of prod-
ucts, where consumers weigh their friends’ opinions dispro-
portionately heavily in choosing among products, and the
more intentional viral marketing, in which companies en-
courage consumers to convince their friends to purchase the
same products (e.g., [3,4,10,11,13,15]). Seeking information
only from one’s immediate friends vastly limits the pool of
candidate experts, but one might trust one’s friends to an-
swer a query by asking their friends, who might in turn ask
their friends, and so on. The social network serves as an im-
plicit “web of trust” for endorsing acquired information: an
answer to a question comes equipped with a path of trusted
relationships in the social network connecting the querier
to the answer (e.g., [1, 5–8, 14, 16]). In fact, explicit sys-
tems to connect information seekers with domain experts
through a chain of trusted relationships have been intro-
duced both in research (e.g., [9,17,18]) and commercial (e.g.,
LinkedIn, Visible Path) settings. Similarly motivated appli-
cations arise within the peer-to-peer domain, in which par-
ticipants look to find a short chain to a peer with a sought
piece of information, such as a music file.

Of course, unlike one’s direct friends, one’s friends’ friends’
friends have only the mildest of social incentives to answer
one’s questions. In the peer-to-peer domain, for example,
this lack of incentive leads to the “free-rider” problem, which
is potentially debilitating for these systems: if many users
join a peer-to-peer system looking only to acquire informa-
tion, without sharing any of their own knowledge, then there
will be essentially no information to exchange. An explicitly
economic perspective has proven extremely valuable to com-
bat this problem, by directly incentivizing participation. In
our information-seeking context, one can imagine offering a
reward to one’s friends for an answer to a query. For a suf-
ficiently high offered reward, if one’s friends cannot directly
answer the question, they can choose to act as middlemen,
seeking to acquire an answer by offering their friends a cut
of the reward (and saving the rest for themselves).

In such a setting, it becomes useful to think of the agents
involved in the system as buyers and sellers of information,
who act strategically to try to maximize their profit. Sup-
pose that Alice is offered a “finder’s fee” of r dollars for
information that she does not possess. There is a natu-
ral tradeoff in this context: she can choose to offer a small
amount (� r) to her friends, hoping that they will pro-
vide the sought information at this relatively cheap price
(allowing Alice to pocket the large difference between her
receipt and outlay), or she can make a larger offer (≈ r) to
her friends, taking a lower profit margin in exchange for the
presumably increased odds of her friends being willing and
able to produce the sought information.

Query incentive networks.
Motivated by these types of scenarios, Kleinberg and Ra-

ghavan introduced query incentive networks as a model of
information acquisition in a strategic networked environ-
ment [12]. We give a brief overview of that work here,
deferring the technical details until Section 2. Consider a
root node vroot in a large network who wishes to learn an
answer to a particular query (e.g., answer a particular ques-
tion, find a person who can provide a particular service,
etc.), and is willing to pay for such an answer. We seek an
analytically tractable model that captures the tradeoff be-
tween the amount that vroot is willing to pay for an answer
and the likelihood that she obtains an answer.

Kleinberg and Raghavan [12] introduce such a model. For
analytical convenience, they first model the network as an
infinite tree with vroot as the root. To capture the key trade-
off described above, they introduce a natural game-theoretic
foundation, with players in the game representing nodes in
the network. Then they examine the Nash equilibrium be-
havior of this game.

The model is as follows. We assume that every node
has an answer to the query independently with probabil-
ity 1 − p = 1/n, and that the root node vroot would like
to acquire an answer with probability at least σ ∈ (0, 1).
Here n is the rarity of an answer; it is the expected number
of nodes that the root must query to obtain an answer. The
root vroot offers each of its neighbors in the network (that is,
children in the tree) a reward r for an answer. (Note that
the quantities r and σ are fixed in advance, and are not de-
termined by any strategic behavior of the root; in fact, the
root has no strategic behavior and exists only for the pur-
pose of formulating the model.) We assume that rewards
are scaled so that there is a unit cost for sending an answer

to one’s parent. Thus if a child of the root has an answer,
it can simply return the answer to vroot, pocketing the re-
ward r less the unit cost of returning the answer. (For the
purposes of tie breaking, if more than one answer is found
vroot chooses arbitrarily among all received answers. The
cost of participation in the offer process is 0 and thus hav-
ing an answer that is not selected results in zero payoff.)
A child v that does not have an answer can propagate the
query to its children in turn, offering some integral reward
0 ≤ fv(r) ≤ r − 1. If node v receives an answer from one of
its children, then v will propagate that answer to its parent.
If that answer is selected by the root, then v will receive a
payoff of r − fv(r) − 1: node v receives r from its parent,
pays fv(r) to the child that returned an answer, and pays
unit cost to propagate that child’s answer to its parent.

Under this setup, nodes choose fv(·) strategically to max-
imize their expected payoffs. Note that a node that is of-
fered a reward of zero will refuse to participate, for its utility
would decrease by returning an answer. Furthermore, as a
concrete tie-breaking rule, we assume that a node that is
offered a reward of one will always forward an answer to its
parent, even though the one unit of reward it receives would
be spent on passing the answer.

We have now defined the network model and the corre-
sponding game, and so it would appear that we are ready to
move to analyzing the Nash equilibrium properties of this
system. However, as pointed out by Kleinberg and Ragha-
van, the use of a deterministic network model has a major
deficiency. Indeed, a node in a real network is typically
aware only of the local structure of the network (e.g., its
neighbors, and possibly its neighbor’s neighbors). However,
if we are interested in the Nash equilibrium behavior of a
game played by the nodes in a deterministic network, then
there is a hidden assumption that every node is able to ad-
just its strategy with respect to any other node; in effect,
every node knows the entire network.

To deal with this technical issue, Kleinberg and Raghavan
introduce some randomness into the network model. To
specify the network, consider a full d-ary tree where every
node is active independently with some probability q. The
network consists of the subgraph induced by all active nodes
in the root’s connected component. Nodes must form their
strategies before the set of active nodes is revealed. Thus,
the information that any node has about its connectivity to
any other node decreases rapidly with the original distance
between them in the tree, which is a natural property for the
model to have. (Of course, in the Nash equilibrium setting, a
node can still adjust its strategy in response to the strategy
of every other node, but now it must do so under some
uncertainty about which nodes actually participate in the
game.)

Kleinberg and Raghavan show that, under some mild tech-
nical restrictions, there is a unique pure strategy Nash equi-
librium, which is symmetric. Let g(·) = gv(·) denote the
settings of the fv(·)’s that form this Nash equilibrium. The
key tradeoff described above can now be phrased as follows:
for a fixed σ ∈ (0, 1), how large must r be (as a function
of n) in order for vroot to receive an answer to its query with
probability at least σ, assuming that all nodes are playing
according to the Nash equilibrium? That is, if vroot wants
to receive an answer with probability at least σ, how much
must it pay as answers become increasingly rare (n →∞)?

constant σ σ ≥ 1− 1/n

b < 1 dies w.p. 1
b = 1 Ω(n!) if c1 = 1 (Thm. 5);

otherwise dies w.p. 1

1 < b < 2 nΘ(1) (Thm. 4 & 8) nΘ(1)

b > 2 O(log n) (Thm. 4) (Thms. 9 & 10)

Table 1: Statement of results for arbitrary branch-
ing processes.

Recall that every node in the tree is present independently
with probability q. Then the number of active children of
any particular node in the original d-ary tree follows a bino-
mial distribution Bin(d, q)—i.e., the probability that a node
has exactly i children is given by

(
d
i

)
·qi ·(1−q)d−i. Thus, the

network can be thought of as a branching process, starting
with vroot, where each node has a number of offspring nodes
chosen independently from the distribution Bin(d, q). The
expected number of offspring of a node is then b := q · d.
It is a classical result in the theory of branching processes
that there is a phase transition at b = 1: if b < 1, then the
process almost surely dies with only finitely many nodes,
while if b > 1 then infinitely many nodes are produced with
constant (non-zero) probability [2]. Thus for b < 1 there is
no amount that the root can offer to guarantee an answer
with probability ≥ σ, because for sufficiently large n, with
probability exceeding 1−σ there simply will not be any node
connected to vroot that has the answer. But the remarkable
and unexpected result of Kleinberg and Raghavan is that
there is a second phase transition in the reward that the
root has to offer to receive an answer with probability ≥ σ,
for a constant σ not exceeding the extinction probability of
the branching process:

• for q · d < 2, the root must offer a reward r = Ω(nε),
for some constant ε > 0, to receive an answer with
probability ≥ σ.

• for q · d > 2, the root receives an answer with proba-
bility ≥ σ by offering reward r = O(log n).

The unexpected result here is that, for 1 < b < 2, with con-
stant probability the network is an infinite tree, in which
case there is an answer within the first O(log n) levels of the
tree with high probability. But in this range, the root must
offer a reward exponentially larger than the length of the
path from vroot to the nearest answer. The required reward
then decreases drastically for b > 2, and there does not ap-
pear to be a phase transition in the underlying branching
process that can easily explain this threshold. Thus, there
appears to be a fundamental difference between networks
that support efficient answering of queries in principle and
those that support efficient answering of queries in the pres-
ence of incentives.

Our results: Arbitrary branching processes.
The class of network models studied by Kleinberg and

Raghavan is natural but highly restricted. In particular,
their assumption that every node is active independently
is convenient, in that it allows them to think of the net-
work as being generated by a branching process with a spe-
cific offspring distribution (Bin(d, q)). However, since their
main result is ultimately interesting largely because of a con-
trast with the standard theory of branching processes, one

might wonder whether it can be generalized to other types
of branching processes.

We show that this is indeed the case for arbitrary branch-
ing processes. As above, let d denote the (finite) maximum
number of children of a node. Let ci denote the probabil-
ity of a node having exactly i children for 0 ≤ i ≤ d, and
let b :=

∑d
i=0 i · ci denote the expected number of children

of a node. We show that the threshold behavior observed
by Kleinberg and Raghavan—that is, a phase transition at
b = 2 in the required payment that the root must make to
receive an answer with constant probability σ ∈ (0, 1)—is
robust with respect to the branching process. Specifically,
we show that for b > 2, the required reward is linear in the
expected depth of the search tree (and hence O(log n)); and
for b < 2, the required reward is exponential in that depth
and hence nΘ(1). We also show that when b = 1—that is,
right at the cusp of the phase transition in the branching
process—the required payment is superexponential in the
(linear in n) expected depth of the search “tree”: when the
branching process is just a ray (i.e., c1 = 1), the root must
pay [Ω(n)]! to receive an answer with constant probability.

These results are interesting for a variety of reasons. Per-
haps most potently, they tell us that the threshold behav-
ior discovered by Kleinberg and Raghavan is a much more
general phenomenon than it may seem at first glance. In
particular, since the threshold condition is so simple, our
results suggest that these sorts of phenomena may have a
more intuitive probabilistic interpretation. Such an inter-
pretation may well prove crucial to the further development
of the theory of query incentive networks, as more insights
are needed to make quantitative statements for more general
classes of network models.

Our results: Decreased tolerance for failure.
In both the original results of Kleinberg and Raghavan

and in the results described above, it is assumed that the
lower bound σ on the probability that a root receives an
answer is held constant as n → ∞. In this paper we also
consider the case where the σ = 1 − o(1). We show that,
surprisingly, the b = 2 threshold described above completely
vanishes when we demand a success probability σ ≥ 1 −
1/n. In particular, for any branching process, the root must

offer a reward of nΩ(1) in order to acquire an answer with
probability ≥ 1−1/n. We also show that this result is tight:
for any branching process that is guaranteed not to die (i.e.,
c0 = 0) and is not a ray (i.e., b > 1), the root can offer a

reward of nO(1) to achieve success probability ≥ 1 − 1/n.
(The case of a ray, as described above, requires a reward
exponential in n.) Thus, although it is robust to arbitrary
changes to the branching process, the threshold is fragile
with respect to the failure probability: if the desired success
probability σ is inversely polynomial in n, then all branching
processes require rewards exponential in the depth of the
search tree.

Our results are summarized in Table 1.

2. TECHNICAL PRELIMINARIES
In this section we formalize some of the more technical

aspects of query incentive networks in order to define the
main parameters and concepts that we use throughout the
paper.

n rarity ; each node has an answer w.p. 1/n
p probability of not having answer = 1− 1/n
d max # of children of a node
ci prob. that # of children = i 0 ≤ i ≤ d
q in [12], each of d children is active w.p. q
b expected # children of a node

b =
∑d

i=1 i · ci (in [12], b = qd)
σ required probability root receives an answer

σ0, κ0 sufficiently small constants < 1
gv(r) in equilibrium, when v is offered reward r and v

has no answer, v offers gv(r) to its children
g(r) for a symmetric equilibrium, write g(r) for gv(r)
φ̂j prob. no node at level ≤ j of tree has an answer
δ(r) min # of iterations of g(·) to go from r to 0
uj jth “reward breakpoint”: uj = minr{δ(r) ≥ j}
∆′

j point of indifference in expected payoff between
setting g(uj + ∆′

j) = uj−1 and g(uj + ∆′
j) = uj

∆j gap between breakpoints; ∆j = d∆′
je = uj − uj−1

Rσ(n, b) reward necessary to find answer w.p. σ given n, b

T generating function for the branching process
zT prob. that the branching process becomes extinct

Table 2: Various notation used throughout.

2.1 The reward structure in query incentive
networks

Recall that the query incentive network model is charac-
terized by a branching process representing the friendship
or trust network on which the queries are propagated. We
have explained the game in the previous section, and fol-
lowing the proof in [12], we can show that subject to minor
technical conditions, a pure Nash equilibrium always exists
and is unique.

Let φ̂j be the probability that no node in the first j levels
of the tree (excluding the root) has the answer. We show
that the amount of reward the root needs to offer is tightly
connected to the rate of decay of the φ̂j ’s. To understand
this connection, we delve deeper into the Nash equilibrium
conditions for each node.

To understand the strategy space of a node v, fix the
actions of all other nodes. Node v is offered a reward r by
its parent. If v has the answer, it keeps the reward, and
returns the answer to the parent. If v does not have the
answer then it must make some offer gv(r) to its children for
an answer. Since the Nash equilibrium is unique, and the
information set of all nodes is identical, the Nash equilibrium
is symmetric and gv(r) is independent of v; we refer to this
function of r as g(·).

Nodes being rational, g(r) is non-decreasing, and we can
define δ(r) as the minimum number of times we need to
iterate g(·) starting at r to reach 0. Observe that δ(r) is
precisely the maximum number of levels in the search tree
the query will reach if the root offers reward r. We define
uj to be the minimum r such that δ(r) is at least j.

We are now ready to state the Nash condition that occurs
at each node. The node is offered some reward r, and offers
a value s to its children. Remembering the transaction cost
of 1, the expected payoff is:

(r − 1− s) · (1− φ̂δ(s)).

Since every node intends to maximize its payoff, the value
for s should come from the set {u1, u2, . . . , uδ(r)}. If not,
the value for s can be reduced without affecting the success
probability, thereby increasing the total payoff.

We can build up the value of uj inductively. We define
u1 = 1. By the way we have set up the problem, a node
receiving a reward offer of uj will propagate the query j lev-
els into the tree, and achieve a success probability of 1− φ̂j .
Consider what happens to the expected payoff as we in-
crease the reward offered to the node from uj . At uj a node
will offer uj−1 to its children, thereby obtaining an expected
reward of:

(uj − uj−1 − 1)(1− φ̂j−1).

This will assure v that the query is propagated j more levels
into the tree. However, at some point, there will be a value
c such that

(uj + c− uj−1 − 1)(1− φ̂j−1) = (uj + c− uj − 1)(1− φ̂j);

this can be seen by comparing the growth rates of the two
quantities. In other words, it will be more advantageous
for v to keep less money for itself—namely, (c−1) as opposed
to (uj−uj−1+c−1)—because the probability of success has
increased from 1− φ̂j−1 to 1− φ̂j . But this value of uj + dce
(since all money is integral) is by definition uj+1.

Let ∆′
j = c and ∆j = d∆′

je = uj − uj−1. Rewriting, we
have

(uj + c− uj−1 − 1)(1− φ̂j−1) = (c− 1)(1− φ̂j)

(∆′
j+1 + ∆j − 1)(1− φ̂j−1) = (∆′

j+1 − 1)(1− φ̂j)

∆j

∆′
j+1 − 1

+ 1 =
1− φ̂j

1− φ̂j−1

.

This leads us to an important equation on the growth of
rewards:

1 +
∆j

∆j+1 − 1
≤ 1− φ̂j

1− φ̂j−1

≤ 1 +
∆j

∆j+1 − 2
,

implying that (assuming ∆j+1 ≥ 2):

1
1−φ̂j

1−φ̂j+1
− 1

≤ ∆j+1

∆j
≤ 1

1−φ̂j

1−φ̂j+1
− 1

+ 1. (1)

In the rest of the paper, we focus on bounding the reward
needed for the root to achieve success with a certain proba-
bility. Let Rσ(n, b) denote the reward necessary to find the
answer with probability at least σ given that the rarity is n
and that the expected number of children is b. (Recall that
the rarity n = 1/(1 − p) is the expected number of nodes
that the root must query to obtain an answer.) From the
discussion above it is clear that we can write

Rσ(n, b) = min
j:1−φ̂j>σ

uj .

This equation allows us to study the asymptotic growth of
Rσ(n, b) by examining (1), which is our approach in the rest
of the paper.

2.2 The general branching process model
We now focus our attention on the randomness used to

generate the network. In their original model, Kleinberg
and Raghavan begin with an infinite d-ary tree where each
node is present independently with probability q. One can

view this network as a result of a branching process where
the number of children of each node follows a binomial dis-
tribution Bin(d, q)—i.e., the probability ci that a node has
exactly i children is given by

(
d
i

)
·qi ·(1−q)d−i. Note that the

expected branching factor b = d · q is the crucial parameter
for the branching process.

In this work, we begin again with a full d-ary tree, but
instead of deleting nodes independently, we allow for depen-
dencies between nodes lying at the same depth. In our anal-
ysis we assume that d is a constant, with d ≥ 2 to allow the
network to be something other than a ray (that is, a directed
path from the root). We model the network as a result of an
arbitrary branching process [2]. More formally, we assume
that any particular node has exactly i active children with
probability ci, and that the numbers of active children for
different nodes are independent.

The generating function of the branching process is then
given by

T (x) =

d∑
i=0

cix
i.

We let b denote the expected number of (active) children of
a node:

b =

d∑
i=0

ici.

Since a node has a non-zero probability of having no chil-
dren, the overall branching process has a constant proba-
bility of dying out. We denote this probability by zT . Re-
call the classical result that, when b < 1, or b = 1 with
c1 < 1, the branching process dies out almost surely, and
when b > 1 the branching process survives indefinitely with
non-zero probability [2].

Now, each node u in the network possesses an answer
independently with probability 1 − p = 1/n. We seek to
analyze the asymptotics of the reward as a function n, the
rarity of an answer.

Consider a given node u in the tree. We define the func-
tion

t(x) = T (px) =

d∑
i=0

cix
ipi,

so that

1− t(1) = 1− T (p) = 1−
d∑

i=0

cip
i

is the probability of getting an answer by querying a single
layer of the tree. Furthermore, recalling that φ̂j is the prob-
ability that no node in first j levels has an answer, we have
that

φ̂j = t
(
φ̂j−1

)
= t
(
t
(
φ̂j−2

))
= · · · = t(j)(1),

where t(j)(x) is the value obtained by iterating the function t
at value x a total of j times.

3. PERSISTING THRESHOLD: ARBITRARY
BRANCHING PROCESSES

In this section we explore the growth rate of rewards nec-
essary to achieve a constant probability of success in arbi-
trary branching processes. From (1), we know that these
are fully determined by the decay rate of φ̂j ’s.

We show that the threshold observed by Kleinberg and
Raghavan for binomial branching processes is part of a much
more general phenomenon that occurs at b = 2 in all branch-
ing processes. Specifically, when the average degree of a
node is between 1 and 2—that is, when 1 < b < 2—we show
the rewards to be polynomial in n. When b > 2 and thus
the φ̂j ’s decay quickly, the reward will grow logarithmically
in n.

Following the proof approach used in [12], we begin by
bounding the value of t(x) for sufficiently small x close to 1.
Recall the mean value theorem: for any function t, there
exists a value y ∈ [x, 1] such that

1− t(x)

1− x
=

1− t(1)

1− x
+ t′(y).

To get a bound on t(x), and therefore on the rate of decay
of the φ̂j ’s, we first bound t(1) and t′(x) for x sufficiently
close to 1.

Lemma 1. 1− b
n
≤ t(1) ≤ 1− b

4n
.

Proof. We have

t(1)− 1 =

d∑
i=0

ci(p
i − 1)

= (p− 1)

d∑
i=1

ci

i−1∑
j=0

pj

= − 1

n

d∑
i=1

ci

i−1∑
j=0

pj

≥ − 1

n

d∑
i=1

ici

= − b

n
. (since p < 1)

Conversely,

t(1)− 1 = − 1

n

d∑
i=1

ci

i−1∑
j=0

pj

≤ − 1

n

(
d∑

i=1

ici

)
pd

= −pdb

n

≤ b

4n
,

where the last inequality follows if n > d which implies
pd = (1− 1/n)d ≥ 1/4 so long as d ≥ 2.

Lemma 2. Let 1 > ε > b/(4n). Then, we have

t′(x)

pb
∈ [1− 5εd, 1],

when x ∈ [1− ε, 1].

Proof. First, we claim that f(δ) = (1− δ)x ≥ 1− δx for
δ ∈ [0, 1] and x > 1. To see this, note that f(δ) is a convex
function since f ′′(δ) = x(x − 1)(1 − δ)x−2 ≥ 0 for x > 1.
Now, the claim follows from the convexity of f(δ) and the
fact that 1− δx is just the sum of the first two terms of the
Taylor expansion of f(δ).

Using this, we bound (p(1− ε))d: we have

(p(1− ε))d =

(
1− 1

n
− pε

)d

≥ 1− d

(
1

n
+ pε

)
≥ 1− 5dε,

since ε > 1/(4n).

Finally, we have t′(x) = pT
′
(px) and

T
′
(px) =

d∑
i=0

ici(px)i−1 ≤
d∑

i=0

ici = b.

It follows that t′(x) ≤ pb for any x < 1. Since for any
branching process t′(·) is a monotone function, we also have
t′(x) ≥ t′(1− ε), and so it suffices to bound t′(1− ε). Since
(p(1− ε))i is a decreasing function of i,

t′(1− ε) = pT
′
(p(1− ε))

= p

d∑
i=0

ici (p(1− ε)))i−1

≥ p(p(1− ε))d
d∑

i=0

ici

≥ pb(1− 5dε),

from above.

We have placed bounds on the decay rate of t(x) only for x
sufficiently close to 1. When these conditions are met, we
can show a logarithmic bound on the number of iterations of
t(·) necessary to reduce the error probability from 1− κ0/n
to 1 − γ for κ0 and γ sufficiently small. This fact follows
from Lemma 1 and Lemma 2 for the same reasons as in [12].

Lemma 3 ([12]). Suppose p, b, ε are such that pb(1 −
5dε) > 1 and let 0 < γ0 < γ1 ≤ ε. Let N(γ0, γ1) denote the
number of iterations of the function t(·) needed to reduce the
probability of failure from 1 − γ0 to at most 1 − γ1. Then,
N(γ0, γ1) = Θ(log(γ1/γ0)).

We now show that the threshold behavior persists at b = 2
for any branching process.

Theorem 4. Let σ < 1 − zT be a constant. For any
branching process, if b > 2, then the utility required for the
root to find the answer with probability σ is O(log n) and if

b < 2, then this utility is nΩ(1).

Proof sketch. The proof structure mirrors [12]. For
the case when b < 2, the crucial step is to obtain an upper
bound on the decay rate of the φ̂j ’s for sufficiently small
values of j, which we achieve using Lemma 2. Together with
Lemma 3, this shows that we need nΩ(1) reward to achieve
even a small but constant probability of success, σ0.

For the case when b > 2, we can again use Lemma 2 to-
gether with Lemma 3 to show it is sufficient to offer O(log n)
reward to achieve a success probability of σ0. It remains to
show how to boost this success probability to σ with only
constant additional reward. Let i∗ be such that ∀i < i∗, we
have ci = 0 and ci∗ > 0. Then we have t(x) = (px)i∗t0(x)
and T (x) = xi∗T 0(x). From this definition, t0(x) defines a
branching process with non-zero extinction probability and
clearly t0(x) ≥ t(x). Since the process has non-zero ex-
tinction, we require only O(1) steps to improve the success
probability to σ.

Thus, we have shown that the threshold behavior observed
by Kleinberg and Raghavan persists at b = 2, even for the
case of general branching processes.

4. TIGHT UPPER BOUNDS FOR b < 2

In the next section we consider how the rewards required
behave when we increase the probability of success even fur-
ther. To that end we would like to have a tighter character-
ization on the growth structure of rewards when b < 2.

We show that when 1 < b < 2 the rewards grow no faster
than polynomial in n. This is not the case for b = 1, and in
fact a separate threshold exists at b = 1. In the case of the
deterministic ray when every node has exactly one child, the
rewards grow superexponentially in the length of the path:
to push the query h hops into the network the offered reward
must be [Ω(h)]!.

Recall that when b = 1 and c1 < 1, i.e., the branching pro-
cess has a non-zero extinction probability, then it becomes
extinct almost surely [2], and thus for b = 1 the determin-
istic case is the only case where the asymptotic growth rate
of rewards is well defined.

Theorem 5. Consider a query incentive network when
the branching process is a ray (c1 = 1, c6=1 = 0). Then
uj ≥ (j − 3)! and therefore Rσ(n, 1) = [Ω(n)]!.

Proof. For the case of the deterministic ray, we can write
the closed-form solution φ̂j = pj . Then

∆j+1

∆j
≥ 1

1−φ̂j

1−φ̂j+1
− 1

=
1− pj−1

pj−1 − pj

=
(1− p)(1 + p + . . . + pj−2)

pj−1(1− p)

=
1

p
+

1

p2
+ · · ·+ 1

pj−2

≥ j − 2.

By induction, ∆j+1 ≥ (j − 2)∆j = (j − 2)!∆3. Since
uj > ∆j , we have uj > (j−3)!. To conclude that Rσ(n, 1) =
[Ω(n)]!, observe that the query needs to propagate Ω(n)
steps to be successful with constant probability.

However, when b > 1, the reward is polynomial in n, as
we show below. Let κ0 > b/(2 − b) be a small constant.
Then we have:

Lemma 6. Let σ0 < σ be such that pb(1− 6dσ0) > 1 and
x ∈ [1− σ0, 1− κ0/n]. Assume p > 1/2. Then,

1− t(x)

1− x
≥ bdσ0

2
+ 1.

Proof. From Lemma 2, we have that t′(y) ≥ pb(1−5dσ0)
and, by assumption, pb(1 − 6dσ0) > 1. Thus we have that
t′(y) ≥ pb(1− 5dσ0) = pb(1− 6dσ0) + pbdσ0 > 1 + pbdσ0.

Now, from Lemma 1, we have that 1− t(1) ≥ b/(4n) > 0.

By the mean value theorem, we have that

1− t(x)

1− x
=

1− t(1)

1− x
+ t′(y)

≥ b

4n(1− x)
+ pb(1− 5dσ0)

≥ 1 + pbdσ0

≥ 1 +
bdσ0

2
.

We can now place a bound on the growth of rewards.

Lemma 7. Define κ0 and σ0 as above, and let j be such
that φ̂j ∈ [1 − σ0, 1 − κ0/n]. Then there exists a constant
β > 1 such that

∆j+1

∆j
≤ β.

Proof. By (1),

∆j+1

∆j
≤ 1

1−φ̂j

1−φ̂j+1−1

+ 1

≤ 1
bdσ
2

+ 1 (from Lemma 6)

= β.

We are now ready to state and prove the main theorem:

Theorem 8 (Upper bound on the rewards). Let σ0

be as above. Then for any branching process with b > 1, if
the root desires an answer with constant probability σ < σ0,
then the reward necessary is at most nO(1).

Proof. We have that, by definition, rj = rj−1 + ∆j =
rj−2 + ∆j−1 + ∆j . If we let σ0 > σ, we have that for all j’s
as in the lemma above,

rj ≤ rj−2 + ∆j−1(1 + β)

≤ r1 + ∆1 [1 + β [1 + β [· · · [1 + β(1 + β)] · · ·]]]

= r1 + ∆1

[
j∑

i=0

βi

]

= r1 + ∆1
βj+1 − 1

β − 1
.

Lemma 3 tells us that j = O(log n). Therefore:

Rσ(n, b) = O(nc),

for some constant c.

While we have proven the theorem above for any probability
of success less than some small constant σ0, we shall see in
the next section that this is true for all σ < 1− 1/n.

5. VANISHING THRESHOLD: THE HIGH
PROBABILITY CASE

In this section we show that as we decrease the probability
of failure to below a constant, the threshold behavior disap-
pears. We show that in order to achieve an arbitrary failure

probability of 1− σ = 1− σ(n), the reward depends on two
quantities. The first is how much we need to achieve a con-
stant probability of failure. Theorem 4 together with Theo-
rem 8 show that this is O(log n) when b > 2 and nO(1) when
b ≤ 2. The second is, given that the probability of failure
is already a constant, how much more is needed to decrease
the probability to 1−σ; we show the latter is polynomial in
1/(1−σ). Note that the second quantity begins to overtake
the first quantity (for b > 2) as soon as σ > 1− 1/ log n. In
particular, if σ = 1 − 1/n, the threshold behavior vanishes
since the reward for all values of b becomes polynomial in n.
For simplicity, we state and prove the result in terms of this
specific value of σ.

First we show the lower bound on the growth of rewards.
Note that it suffices to consider the case b > 2 since the
reward is at least polynomial in n when b < 2.

Theorem 9. For any branching process, R1−1/n(n, b) ≥
nΩ(1).

Proof. We begin by solving the problem for the full d-
ary tree and then argue that this is the “best” case for the
growth of costs. Thus, our goal is to show that for the full
d-ary tree, the cost of obtaining a solution with probability
1− 1/n is nΩ(1).

As we stated earlier, we assume b > 2. Let d be a constant
with d > 2. Since b > 2, the rewards required to achieve a
probability of failure of 1/2 is O(log n). Hence, from now on
we assume that the probability of failure is below 1/2 and
proceed with the rest of the analysis.

Consider the branching process corresponding to the full
d-ary tree. Every node deterministically has d children. Ef-
fectively, t(px) = pdxd. Recall from (1):

∆j+1

∆j
≥ 1

1−t(px)
1−x

− 1
, (2)

where x is the probability of failure after exploring j levels
into the tree. Now,

1− t(px)

1− x
− 1

=
1− px

1− x
− 1 +

1− px

1− x

d−1∑
i=1

(px)i

≤ x

1− x
· 1

n
+ 2

d−1∑
i=1

(px)i (since (1− px)/(1− x) ≤ 2)

≤ 2x

n
+ 2(d− 1)px (since px ≤ 1)

= 2x((d− 1)p + 1/n)

≤ 2xdp.

Thus from (2) we have

∆j+1

∆j
≥ 1

2xdp
, (3)

i.e., we have bounded the growth ratio in terms of the prob-
ability of failure and showed it to be inversely proportional
to x.

Next, recall that the probability of failure is (1 − 1/n)N ,
where N is the total number of nodes. Since the total
number of nodes in a d-ary tree of height j is dj+1−1

d−1
, to

achieve a success probability of 1− 1/n, we need to explore
k = logd(n log n) + Θ(1) levels of the tree. Let ` denote the
depth necessary to achieve a probability of failure of 1/2;
note that ` = Θ(1) + logd n. From this,

k − ` = logd ln n + Θ(1). (4)

Let xi be the probability of failure after exploring the tree
to depth i. Then

(x`)
(di−`−1) ≤ x`+i ≤ (x`)

(di−`). (5)

Lower bounding ∆k is enough to complete the proof: we
have

R1− 1
n
(n, b)

≥ ∆k

≥ ∆k−1

2xk−1dp
(using (3))

≥ ∆`

k−1∏
i=`

1

2xidp
(inductively)

=

(
1

2dp

)k−`

exp

(
k−1∑
i=`

ln
1

xi

)

≥
(

1

2dp

)k−`

exp

(
−

k−1∑
i=`

di−` ln x`

)
(using (5))

≥
(

1

2dp

)k−`

exp

(
k−1∑
i=`

di−`

)
(since x` = 1/2)

≥
(

1

2dp

)k−`

exp
(
dk−`−1

)
≥
(

1

2dp

)k−`

nΩ(1) (using (4))

≥ nΩ(1),

where the last inequality follows since dk−` = ln n implies
(2dp)k−` ≤ O(ln2 n).

It is easy to see that there is nothing special about the
full d-ary tree, and in fact the same transition occurs for any
branching process that runs for logd n + Ω(logd log n) steps.
Consider any such branching process S with maximum de-
gree d. The function s for S corresponding to the function t
for the full d-ary tree satisfies s(px) ≥ (px)d = t(px). Thus,

1
1−s(px)

1−x
− 1

≤ 1
1−t(px)

1−x
− 1

,

and so the growth rate of rewards for S is only larger than
that for the full d-ary tree.

We now proceed to prove upper bounds on the growth of
rewards. Here we assume that the branching process can
never die out, i.e., c0 = 0.

Theorem 10. For any branching process with c0 = 0 and
b > 1, R1−1/n(n, b) = nO(1).

Proof. It suffices to upper bound ∆k, as we can always
crudely bound R1−1/n(n, b) ≤ k∆k. We have from (1)

∆j+1

∆j
≤ 1

1−t(px)
1−x

− 1
+ 1. (6)

We focus again on the denominator in (6).

1− t(px)

1− x
− 1 =

1−
∑d

i=0 ci(px)i

1− x
− 1

=
x−

∑d
i=0 ci(px)i

1− x
. (7)

By assumption, c0 = 0. Furthermore, since b > 1, it must
be that c1 < 1. Let σ0 be defined as before, and let y0 be
such that

1− t(pσ0)

1− σ0
− 1 =

σ0

y0
.

Observe that because t is a bounded-degree polynomial with
nonnegative coefficients ci < 1, for any x < 1− σ0:

1− t(px))

1− x
− 1 ≥ x

y0
.

We let ` be such that φ̂` ≤ σ0; note that

k − ` = O(logd log n). (8)

Now for k > `,

∆k

≤ ∆`

k−1∏
i=`

y0

xi
+ 1 (using (6))

≤ ∆`(y0 + 1)k−`
k−1∏
i=`

1

xi
(since xi ≤ 1)

≤ ∆`(y0 + 1)k−`
k−∏̀
i=0

x−di

` (using (5))

= ∆`(y0 + 1)k−` exp

(
k−∑̀
i=0

−di log(x`)

)
≤ ∆`(y0 + 1)k−` exp

(
O(dk−`+1)

)
≤ ∆`(y0 + 1)O(logd log n) exp (O(log n)) (using (8))

≤ ∆`n
O(1).

Using this, we obtain the bound on the rewards as follows.

R1−1/n(n, b)

≤ R1/e(n, b) +

k∑
i=`

∆i (using Theorem 8)

≤ nO(1) + (k − `)nO(1)

= nO(1).

6. CONCLUSIONS AND FUTURE WORK
We have taken a closer look at the threshold behavior

in query incentive networks introduced by Kleinberg and
Raghavan [12]. In particular, we have shown that the thresh-
old they observe when the average node degree crosses 2 is
present in the case of arbitrary branching processes. This
result indicates that the basic phenomena behind the thresh-
old may be generalizable even further, to a much wider range
of network models. (Indeed, as a first step along these lines,

we can show that the threshold persists when the network
is a layered graph that can be nicely embedded into a tree.)
Any results along these lines would be extremely interesting,
and would undoubtedly reveal new insights into the prob-
lem.

On the other hand, we have shown that the threshold be-
havior disappears as the failure probability is reduced to be
inversely polynomial with the rarity of the answer. This
result demonstrates another intriguing behavior in query
incentive networks. As the model encodes many practical
scenarios further study is necessary to fully understand the
effect of selfish behavior on information systems.

Acknowledgments
We thank Jon Kleinberg and Prabhakar Raghavan for many
useful discussions.

7. REFERENCES
[1] Z. Abrams, R. McGrew, and S. Plotkin. Keeping peers

honest in eigentrust. In Proc. Workshop on the
Economics of Peer-to-Peer Systems, 2004.

[2] K. B. Athreya and P. E. Ney. Branching Processes.
Dover Publications, Inc., New York, 2004.

[3] J. J. Brown and P. H. Reingen. Social ties and
word-of-mouth referral behavior. J. Consumer
Research, 14:350–362, 1987.

[4] P. Domingos and M. Richardson. Mining the network
value of customers. In Proc. Conference on Knowledge
Discovery and Data Mining (KDD), pages 57–66,
2001.

[5] D. Dutta, A. Goel, R. Govindan, and H. Zhang. The
design of a distributed rating scheme for peer-to-peer
systems. In Proc. Workshop on the Economics of
Peer-to-Peer Systems, 2003.

[6] R. Guha, R. Kumar, P. Raghavan, and A. Tomkins.
Propagation of trust and distrust. In
Proc. International Conference on the World Wide
Web (WWW), pages 403–412, 2004.

[7] Z. Gyöngyi, H. Garcia-Molina, and J. Pedersen.
Combating web spam with trustrank. In
Proc. Conference on Very Large Data Bases (VLDB),
pages 576–587, 2004.

[8] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
The EigenTrust algorithm for reputation management
in P2P networks. In Proc. International Conference on
the World Wide Web (WWW), pages 640–651, 2003.

[9] H. Kautz, B. Selman, and M. Shah. ReferralWeb:
Combining social networks and collaborative filtering.
Commun. ACM, 30(3):63–65, 1997.

[10] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing
the spread of influence through a social network. In
Proc. Conference on Knowledge Discovery and Data
Mining (KDD), pages 137–146, 2003.

[11] D. Kempe, J. Kleinberg, and E. Tardos. Influential
nodes in a diffusion model for social networks. In
Proc. Colloquium on Automata, Languages and
Programming (ICALP), pages 1127–1138, 2005.

[12] J. Kleinberg and P. Raghavan. Query incentive
networks. In Proc. Symposium on Foundations of
Computer Science (FOCS), pages 132–141, 2005.

[13] J. Leskovec, L. A. Adamic, and B. A. Huberman. The
dynamics of viral marketing. In Proc. Conference on
Electronic Commerce (EC), pages 228–237, 2006.

[14] M. Richardson, R. Agrawal, and P. Domingos. Trust
management for the semantic web. In Proc. 2nd
International Semantic Web Conference, pages
351–368, 2003.

[15] M. Richardson and P. Domingos. Mining
knowledge-sharing sites for viral marketing. In
Proc. Conference on Knowledge Discovery and Data
Mining (KDD), pages 61–70, 2002.

[16] B. Yu and M. P. Singh. A social mechanism of
reputation management in electronic communities. In
Proc. Workshop on Cooperative Information Agents,
pages 154–165. Springer-Verlag, 2000.

[17] B. Yu and M. P. Singh. Searching social networks. In
Proc. Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 65–72, 2003.

[18] J. Zhang and M. V. Alstyne. SWIM: fostering social
network based information search. In Proc. Conference
on Human factors in Computing Systems (CHI),
pages 1568–1568, 2004.

