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Abstract. In recent years the online advertising industry has witnessed
a shift from the more traditional pay-per-impression model to the pay-
per-click and more recently to the pay-per-conversion model. Such mod-
els require the ad allocation engine to translate the advertiser’s value
per click/conversion to value per impression. This is often done through
simple models that assume that each impression of the ad stochastically
leads to a click/conversion independent of other impressions of the same
ad, and therefore any click/conversion can be attributed to the last im-
pression of the ad. However, this assumption is unrealistic, especially in
the context of pay-per-conversion advertising, where it is well known in
the marketing literature that the consumer often goes through a pur-
chasing funnel before they make a purchase. Decisions to buy are rarely
spontaneous, and therefore are not likely to be triggered by just the last
ad impression. In this paper, we observe how the current method of at-
tribution leads to inefficiency in the allocation mechanism. We develop
a fairly general model to capture how a sequence of impressions can
lead to a conversion, and solve the optimal ad allocation problem in this
model. We will show that this allocation can be supplemented with a
payment scheme to obtain a mechanism that is incentive compatible for
the advertiser and fair for the publishers.

1 Introduction

In 2009 Internet ad revenues totaled $22.7B, of which sponsored search and
display advertising accounted for 47% and 22%, respectively [14]. Although still
a relatively nascent industry, the mechanism for advertising on the internet has
evolved considerably over the past two decades. Initially, ads were sold on a
purely CPM (cost-per-mille) basis, and it was the number of impressions that
determined the payment made by the advertiser. As the marketplace matured,
publishers allowed advertisers to pay per click (CPC basis), and, more recently
per action [12] or conversions (CPA basis).

Auction mechanisms play a critical role in both of these formats [8] and
the celebrated Generalized Second Price (GSP) mechanism has been extensively
studied and analyzed [7,1]. A crucial assumption behind the analyses is a sim-
plistic model of user behavior, namely that the probability of the user clicking
on the ad is independent of the number of times the user has previously viewed
the ad. This is equivalent to assuming that showing the ad does not result in
changes to future user behavior. The flaw in this reasoning is best illustrated by
the fact that an ad loses its effectiveness over time, and the click probabilities



are not going to be identical for the first and the thousandth view of the same ad
by the same user [11]. If the user has not reacted (via a click or conversion) to an
ad after the first 999 impressions, it is highly unlikely that the thousandth one is
going to change her mind. Conversely, the first few impressions may result in a
superlinear increase in conversion probability (much like having a second friend
in a group increases greatly increases the probability of the user joining [2]).

This notion is known as a purchase funnel [3], and has been at the core of the
marketing literature for almost a century [15]. In online advertising various, this
is recognized as a major issue (see, for example, [6,10,5]), and analytics tools
and ad hoc methods have been developed to reflect the consequences of this type
of user behavior. For example, the practice of frequency capping [4,9], whereby
an advertiser limits the number of exposures of his ad to any user, is a crude way
to optimize for the fact that an ad loses its effectiveness after a certain number
of views. On the other hand, to the best of our knowledge, current mechanisms
do not reward the publisher for displaying an ad that may not result in a click
until its second or third view.

As a concrete example, consider an ad that never results in a click on the
first impression, but always results in a click on the second impression. (We
go through a more elaborate example in the next Section.) In this case, even
with perfect click probability estimation the ad will never be shown, since every
publisher does a myopic optimization, and the ad in question is guaranteed to
have a zero payoff on its first view. In order to create proper incentives to the
publishers, the mechanism designer must recognize that a given click or conver-
sion is not simply result of the actions of the last publisher (as it is attributed
today), but rather a result of the aggregate actions of all of the previous publish-
ers. Therefore, to ensure maximum efficiency, one must attribute the conversion
(and the payoffs that go with it) to all of the publishers along the chain.

In this work we mathematically formulate the multiple attribution problem
and explore the proper method for transforming a bid per conversion to an
effective bid per impression to ensure maximum efficiency. We remark that the
multiple attribution problem is not only relevant to web advertising scenarios.
For example, consider the problem faced by a website designer facing an increase
in user traffic. Is that increase due to the last change made on the site, or is it
due to the continuous work and the multitude of changes done over the past
year. Similarly, suppose a brick and mortar retailer is losing clients to an online
merchant. How much of that loss should be attributed to the recent history, and
how much to an effect accumulated over a longer time horizon.

In addition to the optimal allocation problem in a multiple attribution set-
ting, we explore the associated pricing problem. This problem is complicated by
two constraints: a pay-per-conversion advertiser must pay only when a conver-
sion occurs; and different impressions might be served on different publishers,
and therefore it also matters how the payment of the advertiser is split between
these publishers. While the first constraint can be satisfied easily, we can only
prove that we can simultaneously satisfy both constraints in a special case where
the opportunity cost is a constant. Our proof uses the max-flow min-cut theorem.



The rest of this paper is organized as follows: in the next section, we show
how attributing a conversion to the last impression can lead to inefficiencies in
the market. This motivates a model (defined in Section 3) that assumes that the
user follows a Markovian process. The optimal allocation problem for this model
is formulated in Section 4 as a Markov Decision Process. We solve the Bellman
equations for this process in Section 5, getting a closed-form solution in a special
case and a method to compute the values and the effective bid-per-impression
in general. In Section 6, we prove that the allocation mechanism admits a pay-
per-conversion payment scheme that is incentive compatible for the advertiser
and (in the case that the opportunity cost is a constant) fair for the publishers.
We conclude in Section 7 with a discussion of how our results can be generalized
and applied in practice.

2 Inefficiency of the last- impression attribution scheme

The model that attributes each conversion to the last impression of the ad is built
on the assumption that upon each impression, the user stochastically decides
whether or not to purchase the product, independent of the number of times
she has previously seen the ad. However, this is not an accurate assumption in
practice, and when this assumption is violated, the last-impression attribution
scheme can be inefficient. Here we explain this with a simple scenario: focus on
one pay-per-conversion advertiser that has a value of $1 per conversion. Assume
a user sees the ad of this advertiser four times on average. The probability of
converting after viewing the ad for the first time is 0.02, and after the second
viewing this probability increases to 0.1. The third and the fourth viewing of the
ad will not lead to any conversions. Also, assume that this ad always competes
with a pay-per-impression ad with a bid of 4 cents per impression.

First, consider a system that simply computes the average conversion rate of
the ad and allocates based on that. This method would estimate the conversion
rate of the ad at (0.02 4 0.1 4+ 0+ 0)/4 = 0.03. Therefore, the ad’s effective bid
per impression is 3 cents and the ad will always lose to the competitor. This is
inefficient, since showing the ad twice gives an average expected value of 6 cents
per impression, which is more than the competitor.

If we employ frequency capping and restrict the ad to be shown at most twice
to each user, the above problem would be resolved, but another problem arises.
In this case, the average conversion rate will be (0.02+0.1)/2 = 0.06, and the ad
will win both impressions. This is indeed the efficient outcome, but let us look
at this outcome from the perspective of the publishers. If the two impressions
are on different publishers, the first publisher only gets 2 cents per impression
in expectation, less than what the competitor pays. This is an unfair outcome,
and means that this publisher would have an incentive not to accept this ad,
thereby creating inefficiency.

Finally, note that even if the conversion rate is estimated accurately for each
impression, still the usual mechanism of allocating based on expected value per
impression is inefficient, since it will estimate the expected value per impression
at 2 cents for the first impression. This will lose to the 4 cent competitor, and
never gives the ad a chance to secure the second, more valuable, impression.



3 The Model

In this section we formalize a model that captures the fact that the user goes
through a purchase funnel before buying a product, and therefore the conversion
probability of an ad depends on the number of times the ad is shown. We model
the user’s behavior from the perspective of one pay-per-conversion advertiser A.
We have T opportunities to show an ad to the user, where T is a random variable.
For simplicity, we assume that T is exponentially distributed. This means that
there is a fixed drop-out probability ¢ € (0,1), and every time a user visits a
page on which an ad can be shown, there is a probability ¢ that she will drop out
after that and will not come back to another such page. Every time we have an
opportunity to show an ad to this user, we must decide whether to show A’s ad
or the competitor’s ad. Assume the value per impression of the competitor’s ad is
R. In other words, R is the opportunity cost of showing A’s ad. We assume that
R is a random variable, and is independently and identically distributed each
time. We will present some of our results in the special case that R is a constant
(corresponding to the case that A always faces the same competitor with a fixed
value), since this case simplifies the math and allows for closed-form solutions.

We assume that the probability that the user converts (buys a product from
A) is an arbitrary function of the number of times she has seen A’s ad. We
denote this probability by A;, where j is the number of times the user has seen
A’s ad. Typically, A; is unimodal, i.e., it increases at the beginning to reach a
peak, and then decreases, although we will not make any such assumption.

Advertiser A’s value per conversion is denoted by v. In the next section,
we will discuss the problem of optimal allocation of ad space (to A or to the
competitor). This can be viewed as the auctioneer’s problem when trying to
choose between A and its competitor to maximize social welfare, or A’s problem
when designing a bidding agent to submit a per-impression bid on its behalf
each time. As it turns out, these views are equivalent.

The optimal allocation problem is one side of the multiple attribution prob-
lem. The other side is the problem of distributing A’s payment among the pub-
lisher on which A’s ad is displayed. This is an important problem when each of
these pages is owned by a possibly different publisher, which is a common case in
marketplaces like Google’s DoubleClick Ad Exchange or Yahoo!’s Right Media
Exchange [13]. We will discuss publisher fairness criteria in Section 6.

4 The Ad Allocation Problem

Given the values of the parameters of the model defined in the previous section
(i.e., ¢, A;’s, and the distribution of R), the goal of the ad allocation problem
is to decide when to show A’s ad to maximize the expected social welfare. Here
the social welfare is the sum of the values that A and its competitor derive.
Another way to look at this problem is to assume that at its core, the ad space
is allocated through a second-price pay-per-impression auction!, and conversion-
seeking advertisers like A need to participate in the auction through a bidding

! This is the case in marketplaces such as Yahoo!’s Right Media Exchange.



agent that bids a per-impression value for each auction. The objective of such a
bidding agent is the value to A minus its cost, which is equal to R if A wins. The
difference between this objective and the objective of social-welfare maximizing
auctioneer is an additive term equal to expectation of the sum of the R values.
Therefore, the two optimizations are the same. In this section and the next,
we solve this optimization problem by modeling it as a Markov Decision Process
(MDP) and solving the corresponding Bellman equations [16]. We will also derive
the value that A’s bidding agent should bid to achieve the optimal outcome.

MDP formulation. We can define an MDP as follows: for each j, where
j — 1 represents the number of ad views so far, we have three states a;, b;, and
c¢;j. The state a; represents the probabilistic state right before the next time the
user views a page on which an ad can be displayed. This state has a transition
with probability ¢ to the quit state (which is a terminal state), and another with
probability 1 — ¢ to b;. At b;, the value of R is realized and we need to make
a decision between not showing the ad, which would give a reward of R and
takes us back to the state a;, or to show the ad, which would take us to the
state c;. This is a probabilistic state with probability of transition of (1 — ;) to
a;41 (corresponding to the non-conversion event) and probability of transition
of A to a terminal convert state. The reward of this transition is v (the value of
conversion) plus the value of the infinite sequence of alternative ads starting from
this point. Since the number of page visits follows an exponential distribution,
this value is v + (1 — q)E[R]/q. The state a; is the starting state. Figure 1
illustrates the process.

Fig. 1. Multiple Attribution MDP.

The Bellman Equation. We denote the total social welfare we obtain
from this user starting from the state b; by V;. At this state, we need to choose
between showing the competitor’s ad or showing A’s ad. In the former case, we
immediately get a value of R and with prob. 1— ¢ will be taken back to the state
b;. Therefore, the expected value in this case is R+ (1 —¢)Vj. In the latter case,
with probability A; a conversion happens, which results in a value of v for the
conversion plus (1 — q)E[R]/q for the sequence of competitor ads we can show



afterward. With probability 1 — A;, we get no conversion and will be taken to
the state b; 1 with probability 1 — g. Therefore, the expected value in this case
is \j(v+ (1 —q)r/q) + (1 — X;)(1 — ¢)Vj41, where r = E[R]. To summarize:

Proposition 1. The values V; of the expected total value starting from the state
b; satisfy the following equation:

V, = Enfmax(R + (1— gV}, A (v + “‘f”") LAV )

where r = E[R]. The value Vi indicates the mazimum expected social welfare in
our model.

5 Computing the values

In this section, we show how (1) can be simplified to a recurrence relation that
can be used to compute V;’s. This recurrence has a simple form, but involves a
function that is, in general, non-linear (depending on the distribution of R), and
therefore its solution cannot be written in closed form. However, we can do this
in the case that R is a constant. Also, we derive the values that a bidding agent
that participates in a pay-per-impression auction on behalf of A should bid for
each impression.

5.1 The general recurrence

We start with the Bellman equation (1) and simplify it in each step, eventually
writing it in terms of a particular function that captures the effect of ¢ and
the distribution of R. First, we rewrite the equation in terms of new variables
W; = (1 — q)(V; — r/q). Intuitively, W; is the maximum value starting from
the state aj, minus the value starting from this state without the presence of
advertiser A. By replacing V;’s by W;’s in (1) we obtain

W
1—g¢q

= E[max(R + Wj, )\jU + (1 — Aj)Wj—i-l)] —T. (2)

Before simplifying this equation further, notice that this means that in the
optimal allocation, the advertiser A wins if and only if R+ W; < X\ju + (1 —
)‘j)Wj-l-l' Thus,

Proposition 2. In the optimal allocation, at a point where the user has already
seen A’s ad j — 1 times, the next impression will be allocated to A if and only if
the cost of this impression (R) is at most Ajv + (1 — X)W1 — Wj.

To write (2) in a simpler form, we define h(x) := E[maxz(R, x)]. Clearly, h(.)

is a function that only depends on the distribution of R. After subtracting W;
from both sides of (2), we can write this equation as

aW;

l—q

=h(Ajv+ (1= X))Wjp1 = Wj) —r. 3)



Note that h is by definition a continuous non-decreasing function. For a value
B > 0, consider the following equation in terms of the variable z: qz/(1 — ¢q) =
h(B — x) — r. At © = 0, the right-hand side of this equation is h(8) — r =
h(8) — h(0) > 0 and the left-hand side is zero. At « = 3, the right-hand side is
h(0) —r = 0 and the left-hand side is non-negative. Therefore, since the right-
hand side of the equation is non-increasing in z, the left-hand side is strictly
increasing, and both sides are continuous functions of x, this equation has a
unique solution in [0, §]. We denote the value of this solution by u(5).

Proposition 3. For any value of q and distribution of R, the function u(.) is
well-defined, non-decreasing, and continuous, and satisfies V 3 : u(B) € [0, 5].

Note that u(.) is defined purely in terms of the distribution of R and the value
of ¢, and in fact, it captures all the information about these parameters that is
relevant for the allocation problem. Using this function, (3) can be rewritten as:

Wi =u(Ajo+ (1= A)Wjp). (4)

Obtaining an explicit formula for V; is only possible if u(.) has a simple
form. Unfortunately, this function is often complex and non-linear.? However,
the above equation gives a straightforward way to compute W;’s numerically:
start with a large enough j* so that W, = 0, and then move backward to
compute Wj for j = j* —1,...,1. Such a value of j* exists in most realistic
scenarios; for example, any j* such that for all j > j*, A\jv is less than the
minimum of R (say, the value of the reserve price) suffices. To summarize,

Theorem 1. Let W;’s be the values computed using (4). Then the optimal al-
location can be obtained by submitting a per-impression bid of bid; := \ju+ (1 —
Aj)Wit1 — W; on behalf of A in a state where the user has already seen the ad
Jj — 1 times. The social welfare achieved by this mechanism isr/q+W1/(1—q).

5.2 Closed-form solution for constant R

In the case that R is a constant r, we can significantly simplify the recurrence (4).
First, note that by definition, h(x) = max(r, z). Therefore, u(8) is the solution
of the equation gz /(1 —q) = max (8 —x —r,0). It is easy to see that when § > r,
the solution of the above equation is (1 —¢)(8—r), and when § < r, this solution
is zero. Therefore, u() = (1 — ¢) max(5 — r,0). This gives

W; = (1 —¢)max(A\jv —r+ (1 — X;)W;41,0). (5)
To solve this recurrence, we can expand Wj,, in the above expression, and

iterative. This results in the following explicit expression, which can be easily
verified by induction using the above recurrence (5):

l

W; = (1 —¢q) max AU — T j 6
= ( q) >y Z( s YWs/ Y ¢ (6)
§=7]
2 For the uniform distribution, u(.) is the solution of a quadratic equation; for the
exponential distribution u(.) cannot be written in closed form.



where 1; := ;;1(1 —¢q)(1 — )\y) is the probability that the user visits at least i

times and each time (except possibly the last time) does not convert on A’s ad.
In the above expression an empty sum is defined as zero and an empty prod-
uct is defined as one. So the final solution can be written as follows:

l
Vi=+ max {Z(/\sv - 7“)%} : (7)

q s=1
To summarize:

Theorem 2. Let I* be the value of | that achieves the mazimum in (7). Then
in the optimal allocation, A’s ad is shown until the user converts or she sees the
ad I* times. After a conversion happens or this number of ad views is reached,
the competitors ad is shown.

6 Pricing and Publisher Fairness

In the last section, we showed how we can design a bidding agent that translates
the advertiser A’s values into an effective bid per impression every time there
is an advertising opportunity. If this advertiser could pay per impression (we
will call this the pay-per-impression scenario), this would have been the end of
the story: on each auction, we would use the bidding agent to bid, and if A
wins based on this bid, she will pay the value of the competitor’s bid R. This
value would be disbursed to the publisher responsible for that impression. It is
not hard to see that this scheme is equivalent to the VCG mechanism from A’s
perspective (i.e., it allocates the good optimally and charges A the externality she
imposes on others), and therefore A has incentive to truthfully report her value
per conversion v. Also, the mechanism seems intuitively “fair” for publishers.
However, some advertisers are strict pay-per-conversion advertisers. For these
advertisers the payment scheme should satisfy the following property:

Ex-Post Individual Rationality (Ex-Post IR): At any outcome where a
conversion has not happened, A does not pay anything. At an outcome where a
conversion has happened, A pays at most her value per conversion v.

In addition to the above, we require Efficiency (getting the optimal allocation
characterized in the last section) and Incentive Compatibiltiy (IC). Note that
these two properties imply that in expectation, the amount the advertiser must
be charged is the externality it imposes on the others. This is equal to the sum
of R on impressions where A’s ad is shown. In other words, in expectation,
the mechanism should charge the same amount as in the pay-per-impression
scenario. The challenge is to implement this while respecting Ex-Post IR.

As we will show in the next subsection, this can be achieved with a simple
uniform pricing. This method is simple and works well when there is only one
publisher (so there is no issue of fairness). In Section 6.2, we define and study
a natural notion of fairness when there are multiple publishers. We will show
that there are instances where the uniform pricing method cannot result in a



fair distribution of payments to publishers. On the positive side, in the case of
constant R, we will show that the problem can be formulated as a network flow
problem, and will use the maximum-flow minimum-cut theorem to prove that a
fair, ex-post IR, and incentive compatible payment rule always exists. As this is
a special case of the max-flow min-cut problem, we will also be able to give a
simpler and faster algorithm for computing the payments.

6.1 The uniform pricing method

The idea of the uniform pricing method is to charge the same amount for all
conversions, regardless of how many ad impressions A gets prior to the conver-
sion. This uniform cost is set at a level to get the advertiser to pay the right
amount in expectation. Using the optimality of the allocation, we can show that
this scheme satisfies Ex-Post IR. We first illustrate this in the ase of constant R.

First, note that W; > 0. This can be seen directly from the defintion of W;
and V; as the optimal solution of the MDP, or from Equation (6). Let ¢ be the

value that maximizes (7). Thus we have Zﬁzl(Asv —1r)1hs > 0, or, equivalently:

a1 s )
et Astls
Now consider the expected externality imposed by the advertiser on others.
The probability that the ad is shown exactly ¢ times is . For some s < ¢
the probability that it is shown exactly s times is 1s — 1s+1. Therefore, the
total expected externality imposed on others by the advertiser is r Z§:1 St —
r Y st = 7Y, ¥s. On the other hand, the probability that the user
converts after the i-th view is A;2;. Thus the total probability of conversion

is Zi:l Ass. Therefore if for each conversion, we charge the advertiser r -
Y1 ¥s
A
nality it imposes on others (i.e., the IC payment). Also, by Equation (8), the
payment per conversion is at most v, and hence Ex-Post IR is also satisfied.
This method can be applied in the general case (when R is not a constant):
On any conversion, independent of the history of impressions that lead to this
conversion, we charge the advertiser an amount equal to

v>T-

the expected payment of the advertiser will be equal to the exter-

price := E , 9)
conv

where F is the expected total externality that A imposes on the competitors,
and P,on, is the overall probability of conversion for A. By definition, with
this charging scheme in expectation A pays price X P.ony, = FE, which is the
incentive compatible payment. To show that the above price satisfies Ex-Post
IR, we compare this scenario with the pay-per-impression scenario defined at
the beginning of Section 6. It is easy to see that the outcome in both cases is
the same and A’s payment is also the same in both scenarios in expectation.
Therefore, since A’s utility in the pay-per-impression scenario is non-negative,
it is non-negative here too, implying that price < v.



6.2 Publisher Fairness

There are two main motivations for studying the multiple attribution problem:
the first is to ensure the efficiency of the market outcome, and the second is to
ensure that each ad publisher who has contributed in the purchase funnel that
has lead to a conversion gets a fair share of the conversion price. So far, we have
been concerned with the first aspect: efficiency. In this section we turn to the
second aspect: fairness among publishers.

We first need to define the notion of fairness for publishers. Our definition is
motivated by the hypothetical pay-per-impression scenario defined at the begin-
ning of Section 6. In this scenario, each publisher who displays A’s ad, receives
a payment equal to the opportunity cost of this impression. We define fairness
in our setting by requiring the same payments in ezpectation:

Publisher Fairness. For each i, the expected value the i’th publisher receives
from A is equal to the expected opportunity cost (R) of this publisher condi-
tioned on A winning,.

Note that this is a natural property to require, since it is natural for the
publisher to request to be paid an amount at least equal to the opportunity cost
of the impressions it provides (if this is not satisfied, the publisher could refuse
to accept pay-per-conversion advertisers), and since the advertiser’s payment is
the total externality it imposes on the competitors, no publisher cannot hope to
get more than its expected opportunity cost without hurting another publisher.

As we will show below, Publisher Fairness imposes a non-trivial constraint on
the payments. In fact, for some payment rules like the uniform scheme defined
in Section 6.1, it is not possible to distribute the payment among the publishers
in a way that satisfies Publisher Fairness. To illustrate this and prepare for the
result of the next section (showing that for constant R, there is a payment rule
satisfying Publisher Fairness), we focus on the case of constant R, and introduce
some notations.

We number the publishers in the order the user visits ad-bearing pages. Let
x;; be the payout to publisher j if the conversion occurs after precisely ¢ views.
This quantity is only defined for ¢ > j, since for ¢+ < j, the user will either never
visit publisher j, or visit this publisher after she is already converted. Also, we
only define the variables z;; for 4, j < £ where £ is the index that maximizes the
value in Equation (7), since after this index, A’s ad will not be shown.

We can write our desired properties in terms of the z; ; variables. First, we
formulate the Publisher Fairness property. For every publisher j = 1,...,¢, con-
ditioned the user visiting j, the probability that it visits exactly ¢ publishers
(¢ > j) and then it converts is precisely 1;A;/1;. Thus, the total expected pay-
ment to 7, conditioned on the user visiting j can be written as Zizj T ViNi [1)).
Therefore the Publisher Fairness property can be written as follows:

Vj : sz]wz)\z/wj =T (10)

>
This property also implies that the payments are incentive compatible: since
for each publisher the total payment of A is equal to the externality A imposes



on its competitors on this publisher, the total expected payment of A is also
equal to the total expected externality it imposes on the competitors. Therefore,
all that remains is to formulate the Ex-Post IR property. The total payment of A
in case a conversion happens after precisely ¢ impressions is > j<iTij- Therefore,
Ex-Post IR is equivalent to the following.

Vi : inj <w. (11)
Jj<i
We leave the proof of the following theorem to the full version of the paper.
Theorem 3. Consider the optimal allocation with the uniform pricing rule de-
fined in the last section. There are instances in this mechanism where there is
no way to distribute the advertiser’s payment among the publishers in a way that
satisfies Publisher Fairness.

6.3 Fair payments via max-flow min-cut

The main result of this section is the existence of a fair payment rule when R is
constant. The proof (omitted due to lack of space) is based on formulating the
constraints as flow constrains and using the max-flow min-cut theorem.

Theorem 4. When R is a constant, the optimal allocation rule can be supple-
mented with a payment scheme that satisfies Incentive Compatibility, FEx-Post
Individual Rationality, and Publisher Fairness.

7 Conclusion

In this work we showed how myopic optimization by the publishers can lead to
inefficient allocations in the case when displaying an impression for an advertiser
changes the user’s conversion probability on subsequent visits. We formulated
the optimal allocation problem in this setting as a Markov Decision Process
and derived the optimal allocation and a way to translate the advertiser’s per-
conversion value to bids for each impression. We then studied how the advertiser
should be charged in the case of a conversion, and how this charge should be split
between publishers in order to achieve incentive compatibility and individula
rationality for the advertiser and fairness for the publishers.

Our model is fairly general, yet simple enough to be practical. Perhaps the
most important assumption in the model, which is sometimes inaccurate, is that
we assumed that the conversion probability depends only on the number of views,
and not on the identity of the publishers that display the ad to the user. One
can imagine generalizing this notion, in a manner similar to the separable click-
through rate model of sponsored search — that the probability of conversion is a
separable function of the number of user visits and the identity of the publisher.
Another way to relax this assumption is to assume each publisher has a weight,
and the conversion probability of the user at each point is a function of the total
weight of the publishers that have shown the ad to the user. When all weights
are 1, this model reduces to our identical publisher model. We leave this as an
interesting open problem.
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