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Abstract

The median problem in the weighted Jaccard metric was

analyzed for the first time by Späth in 1981. Up until

now, only an exponential-time exact algorithm was known.

We (a) show that the problem does not admit a FPTAS

(assuming P 6= NP), even when restricted to binary vectors

and (b) give a PTAS. The PTAS leverages of a number of

different algorithmic ideas and our hardness result makes use

of an especially interesting gadget.

1 Introduction

A widely used set similarity measure is the Jaccard
coefficient, introduced more than a century ago [14].
For two sets X,Y , it is defined to be J(X,Y ) =
|X ∩ Y |/|X ∪ Y |. The Jaccard distance between the
sets, defined as D(X,Y ) = 1 − J(X,Y ), is known
to be a metric. A natural generalization of Jaccard
similarity, independently proposed several times over
many years [7, 11, 12, 15, 16, 19, 25, 26], is to consider
n-dimensional non-negative vectors X,Y and define
J(X,Y ) =

Pn
i=1 min(Xi,Yi)Pn
i=1 max(Xi,Yi)

; the weighted Jaccard dis-
tance, D(X,Y ) = 1 − J(X,Y ), still remains a metric.
In this paper we study the computational complexity
of the median problem in the Jaccard distance metric,
namely, given a family S of input sets (or vectors), find
a set (vector) M∗ that minimizes

∑
X∈S D(M∗, X).

The use of the Jaccard metric and Jaccard median is
common in many scientific fields: biology [17], botany
[13], cognitive sciences [21], ecology [24], geology [25],
natural language processing [7, 11, 15, 16], paleontology
[23, 25], psychology [12, 27], web sciences [3, 22], and
so on. In the field of computer science, Broder et al.
[3, 4] introduced “shingles” and min-wise independent
permutations for sketching the Jaccard distance; the
sets in their case were the web documents, viewed as
a bag of words. Charikar [5] gave a way of sketching
arbitrary non-negative vectors in a way that preserves
their weighted Jaccard distance.
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The Jaccard median problem itself was studied
more than two decades ago. Späth [26] showed a
“canonical” structural property of the optimal Jaccard
median: for each coordinate, its value has to agree with
that of some input. This makes the search space finite,
albeit exponential (|S|n). Watson [28] gave a vertex-
descent algorithm for Jaccard median and showed that
his algorithm terminates and always returns an optimal
median. Unfortunately, he did not show any bounds on
its running time. Nothing substantial, other than these
two pieces of work, is known about the complexity of
finding or approximating the Jaccard median.

Our results. In this paper we fully study the com-
putational complexity of the weighted Jaccard median
problem. We begin by showing that the problem is NP-
hard. Interestingly, our proof shows that the Jaccard
median problem remains NP-hard even in the follow-
ing two special cases: (a) when the input sets are not
allowed to be repeated (i.e., S cannot be a multi-set)
and (b) when all the input sets consists of exactly two
elements (i.e., |X| = 2,∀X ∈ S) but the sets themselves
are allowed to be repeated (i.e., S can be a multi-set).
Our proofs in fact show that unless P = NP, there can
be no FPTAS for finding the Jaccard median.

We then consider the problem of approximating
the Jaccard median. Our main result is a PTAS for
the weighted Jaccard median problem. While it is
trivial to obtain a 2-approximation for the problem (the
best of the input vectors achieves this approximation
and this bound is tight, see Appendix A), obtaining a
(1+ ε)-approximation turns out to require new ideas, in
particular, understanding the structure of the optimal
solution.

We first show how to find a (1 + ε)-approximate
median for the binary (i.e., set) version of the Jaccard
metric. This is done by combining two algorithms. The
first algorithm uses random projections on a carefully
selected subspace and outputs an additive approxima-
tion; the quality translates to a multiplicative approxi-
mation provided the optimum is a large set. The second
algorithm focuses on the case when the optimum is a
small set and obtains a multiplicative approximation —
this algorithm leverages certain structural properties of
an optimal solution.



To obtain a PTAS for the weighted Jaccard median
problem, we consider three different cases. If the value
of the optimum is very small (O(ε)), then we show how
the Jaccard median problem can be “linearized” and
give a PTAS based on linear programming. If the value
of the optimum is Ω(ε), then there are two sub-cases.
If the ratio between the maximum and the minimum
coordinate values is polynomial, then we map the input
instance to a polynomially-sized binary instance, solve
it using the PTAS for the binary case, and show how
this approximate solution can be mapped back to an
approximate solution to the original instance. If the
ratio of the maximum and the minimum coordinate
values is super-polynomial, then we show how one can
modify the instance so as to guarantee that the ratio
becomes polynomial and show that each approximate
solution to the modified instance is also an approximate
solution to the original instance.

Related work. The median problem has been actively
studied for many different metric spaces. The hardness
of finding the best median for a set of points out of a
(typically exponentially) large set of candidates strictly
depends on the metric in consideration. For instance,
the median problem has been shown to be hard for edit
distance on strings [8, 20], for the Kendall τ metric on
permutations [2, 9], but can be solved in polynomial
time for the Hamming distance on sets (and more
generally, for the `1 distance on real vectors), and for
the Spearman footrule metric on permutations [9]. The
general metric k-median problem has also been studied
in the literature; see, for example, [1, 6].

2 Preliminaries

Let U = {x1, . . . , xn} be the ground set.

Definition 2.1. (Binary Jaccard measures)
Given X,Y ⊆ U , the Jaccard similarity is defined as

J(X,Y ) =

{
|X∩Y |
|X∪Y | if X ∪ Y 6= ∅,

1 if X ∪ Y = ∅,

and the Jaccard distance is defined as D(X,Y ) = 1 −
J(X,Y ).

It is known that D(X,Y ) is a metric; see, for in-
stance, [5]. Let S1, . . . , Sm be (not necessarily distinct)
subsets of U , and let S = {S1, . . . , Sm}; let X ⊆ U . We
define the Jaccard similarity between X and S to be
J(X,S) =

∑
Y ∈S J(X,Y ). If X 6= ∅, we have

J(X,S) =
∑
Y ∈S

|X ∩ Y |
|X ∪ Y |

=
∑
x∈X

∑
Y 3x

1
|Y ∪X|

.

The Jaccard distance of X to S is defined to be
D(X,S) =

∑
Y ∈S D(X,Y ) = |S| − J(X,S).

Definition 2.2. (Jaccard distance median) For
a given S, M∗ ⊆ U is said to be an optimal Jaccard
distance (1-)median if D(M∗,S) = minX⊆U D(X,S).
For α ≥ 1, M ⊆ U is said to be an α-
approximate Jaccard distance (1-)median, if
D(M∗,S) ≤ D(M,S) ≤ αD(M∗,S).

Likewise, a median problem with respect to maxi-
mizing the Jaccard similarity can be defined (observe,
though, that an approximation to the Jaccard distance
median need not be an approximation to the Jaccard
similarity median, and vice versa). Unless otherwise
specified, we use Jaccard median to denote the Jaccard
distance median problem. We assume throughout the
paper that ∅ 6∈ S. The case ∅ ∈ S is easy — just check
the value of ∅ as a candidate Jaccard median, remove
∅ from S, solve for the remaining sets, and then return
the best solution.

For an element x ∈ U , we will refer to the number
of sets in which it is present in S as its degree. Thus,
degS(x) = |{S ∈ S : x ∈ S}|. When it is clear from the
context, we will simply write deg(x).

The Jaccard measures can be generalized to non-
negative real vectors (sets being binary vectors); the
corresponding Jaccard distance is also known to be a
metric [5].

Definition 2.3. (Weighted Jaccard measures)
Given two non-negative n-dimensional real vectors
X,Y , their Jaccard similarity is defined as

J(X,Y ) =

{ Pn
i=1 min(Xi,Yi)Pn
i=1 max(Xi,Yi)

if
∑n
i=1 max(Xi, Yi) > 0,

1 if
∑n
i=1 max(Xi, Yi) = 0,

and the Jaccard distance is defined as D(X,Y ) = 1 −
J(X,Y ).

The weighted Jaccard median problems can be
defined as before.

3 A PTAS for the binary Jaccard median

First, we consider the binary Jaccard median prob-
lem. Here, we split the analysis based on the qual-
ity of the (yet) unknown optimal median. First, sup-
pose the optimal median is large, say, Ω(εm). In this
case we obtain an algorithm (Section 3.1) that returns
an additive O(ε2m)-approximation to the optimal me-
dian; clearly, this additive approximation translates to
a (1+O(ε))-multiplicative approximation. Next, we ob-
tain an algorithm (Section 3.2) that returns a (1+O(ε))-
multiplicative approximation, assuming the optimal me-
dian has value O(ε2m). Thus, by running the two algo-
rithms in tandem, and returning the better solution, we
are guaranteed to have a PTAS.



3.1 A PTAS when the optimal median is large
In this section we show how to obtain an additive
O(εm)-approximation in time (nm)

1
εO(1) . As stated be-

fore, when the optimal median is Ω(εm), this immedi-
ately gives a PTAS.

This algorithm first guesses the number of elements
in the optimal median, and then proceeds to “densify”
the instance by removing the sets whose sizes are too far
away from the size of the optimal median and removing
those elements that are not present in too many sets.
Intuitively, these steps will be justified since the sets
whose sizes are too far away from the optimal will always
be far, regardless of the actual choice of median and
removing elements that appear in a small number of
sets will not affect the solution too much.

If the dense instance has too many elements, we
sub-sample further in order to reduce the total number
of elements to at most O(log(nm)/ε6). At this point we
can afford to try all of the possible subsets, to find a
solution Mc, which we call the seed median, which will
be optimal on this restricted space. Finally, we show
how to generalize the seed median to the full space of
dense elements by solving a linear program and then
rounding it randomly.

The flow of the algorithm is presented below.

1. Guess t, the size of the optimal median M∗.

2. Densify the instance by considering only the set
family: St = {Sj ∈ S | εt ≤ |Sj | ≤ t

ε}. Keep only
the elements Ut present in at least εm sets in St.

3. If |Ut| ≤ 9ε−6 ln(nm), then try all subsets of Ut,
and return its subset M minimizing D(M,S).

4. Otherwise (a) sub-sample elements Pt ⊆ Ut by
selecting each element with probability 9 ln(nm)

ε6|Ut| and
(b) for every subset Mc of Pt, generalize this seed
median Mc from a solution on Pt to a solution M
on Ut. Finally return M that minimizes D(M,S).

Note that the median returned by the algorithm
consists of only the elements in Ut. We first show that
restricting only to sets in St adds at most an εm to the
cost of the solution (Lemma 3.1); then we show that by
restricting only to the elements in Ut increases the cost
by at most an additional εm (Lemma 3.2).

Lemma 3.1. Fix t and St as above. Let M∗ be the
optimal median for S, M∗t be the optimal median for
St, and M be such that D(M,St) ≤ D(M∗t ,St) + α.
Then D(M,S) ≤ D(M∗,S) + α+ εm.

Proof. We can write D(M,S) = D(M,St) + D(M,S \
St). Consider any set S ∈ S \ St. Suppose |S| ≤ εt (the

other case is similar). We have

D(M∗, S) = 1−|S ∩M
∗|

|S ∪M∗|
≥ 1−εt

t
= 1−ε ≥ D(M,S)−ε.

Therefore,

D(M,S) = D(M,St) +D(M,S \ St)
≤ D(M∗,St) + α+D(M∗,S \ St) + ε|S \ St|
≤ D(M∗,S) + α+ εm. �

Lemma 3.2. Fix an arbitrary integer k, and let M be
any subset of U . If T ⊆ U is the set of elements of
degree ≤ k then D(M \ T,S) ≤ D(M,S) + k.

Proof. Consider the total similarity of M ,

J(M,S) =
∑
x∈M

∑
Sj3x
Sj∈S

1
|Sj ∪M |

=
∑

x∈M∩T

∑
Sj3x
Sj∈S

1
|Sj ∪M |

+
∑

x∈M\T

∑
Sj3x
Sj∈S

1
|Sj ∪M |

.

The first sum can be bounded as∑
x∈M∩T

∑
Sj3x
Sj∈S

1
|Sj ∪M |

≤
∑

x∈M∩T

∑
Sj3x
Sj∈S

1
|M |

≤
∑

x∈M∩T

k

|M |
≤ k.

To bound the total similarity of M \ T ,

J(M \ T,S) =
∑

x∈M\T

∑
Sj3x
Sj∈S

1
|Sj ∪ (M \ T )|

≥
∑

x∈M\T

∑
Sj3x
Sj∈S

1
|Sj ∪M |

.

Thus, if J(M,S) ≤ k + J(M \ T,S), then D(M \
T,S) ≤ D(M,S) + k. �

So far we have shown that the optimal median on
the instance consisting of St with the elements in Ut is
an O(εm)-approximate median to the original instance.
Now, if |Ut| is sufficiently small, i.e., |Ut| = O( lnnm

ε6 ),
then we can just enumerate all of the subsets of Ut to
find the optimal median.

Otherwise (i.e., Ut is relatively large), we proceed
to sub-sample elements from Ut with probability p =
9 ln(nm)
ε6|Ut| . Let P ⊆ Ut be the set of sampled elements.

An easy application of Chernoff bound shows that |P | =



O(ln(nm)/ε6) with high probability. Furthermore, as
the following shows, the size of the intersection between
any two sets A,B ⊆ Ut is either small, or is well-
preserved.

Lemma 3.3. For any A,B ⊆ Ut, and let C = A ∩ B.
Then, with probability ≥ 1 − O(nm)−3, if |C| ≥ ε4|Ut|,
then (1 − ε)p|C| ≤ |C ∩ P | ≤ (1 + ε)p|C| and if
|C| < ε4|Ut|, then |C ∩ P | ≤ 6ε4p|Ut|.

Proof. By the Chernoff bound, if X is the sum of k inde-
pendent binary random variables, each with expectation
q, it holds that

Pr [|X − kq| > εkq] ≤ 2 exp
(
−ε

2

3
kq

)
,

and if u > 2ekq, then

Pr [X > u] ≤ 2−u.

In our case |C ∩ P | is the sum of |C| independent
binary random variables each with expectation p. When
|C| ≥ ε4|Ut|, we have Pr[||C ∩ P | − p|C|| >

εp|C|] ≤ 2 exp
(
−ε

2

3
p|C|

)
≤ 2 exp

(
−ε

2

3
·
(
ε4|Ut|

)
·
(
9ε−6|Ut|−1 ln(nm)

))
= 2 exp (−3 ln(nm)) ≤ O

(
1
nm

)3

.

If |C| < ε4|Ut|, we have 2ep|C| < 6ε4p|Ut| = u, so
the second bound from above can be applied. Observe
that u = 54ε−2 ln(nm) ≥ 3 lg(nm) and thus

Pr[|C ∩ P | > 6ε4p|Ut|] ≤
(

1
nm

)3

. �

At this point the algorithm proceeds to look at all
possible subsets of P as the seed medians, Mc. We now
show how to generalize the seed to a median on the full
set Ut. Let M∗t be the optimal median on Ut and let
Mc = M∗P = M∗t ∩ P . The condition we require is that
the generalization of M∗P to the ground set Ut happens
to be an εm (additive) approximate median on St.

For a candidate median Mc, let St(Mc) ⊆ St be the
sets that have a “large-enough” intersection with Mc.
Formally, let St(Mc) = {S ∈ St | |Mc ∩ S| > 54 ln(nm)

ε2 }.
To generalize Mc, we solve the following system L of
linear inequalities on (x1, . . . ,x|Ut|). We note that
while the inequalities contain an irrational number p−1,
we can replace it with a sufficiently precise rational
approximation without materially affecting the overall
answer.

L =



0 ≤ xi ≤ 1, ∀i, 1 ≤ i ≤ |Ut|∑
xi∈S∩Ut xi ≤ (1− ε)−1 · |S ∩Mc| · p−1,
∀S ∈ St(Mc)∑

xi∈S∩Ut xi ≥ (1 + ε)−1 · |S ∩Mc| · p−1,
∀S ∈ St(Mc)∑

xi∈Ut xi ≤ (1− ε)−1 · |Mc| · p−1∑
xi∈Ut xi ≥ (1 + ε)−1 · |Mc| · p−1

If there exists a solution (x̂1, . . . , x̂|Ut|), compute
M by select each element xi ∈ Ut with probability x̂i
independently.

We begin by showing that unless the optimum
solution M∗ has a very small intersection with Ut, there
will be some solution to the set L of linear inequalities.
We say that some subset Y ⊆ Ut, we defined its L-
assignment as {yi}|Ut|i=1 , where yi = 1 if xi ∈ Y and
yi = 0 otherwise.

Lemma 3.4. Let M∗ be the optimal median with
|M∗| = t. Fix Ut, and let M∗t = M∗ ∩ Ut. Select
P ⊆ Ut as above, and let M∗P = M∗ ∩ P . Then, either
|M∗t | < ε2t or with high probability, the L-assignment of
M∗t satisfies L.

Proof. With high probability, the conditions in Lemma
3.3 hold for every intersection C = M∗t ∩S, with S ∈ S.
Let {yi}|Ut|i=1 be the L-assignment of M∗t . Fix a set
S ∈ St(M∗P ). The first constraint of L,∑

xi∈S∩Ut

yi ≤
|S ∩M∗P |
(1− ε)p

,

is equivalent to

|M∗t ∩ S| ≤
|M∗P ∩ S|
(1− ε)p

=
|(M∗t ∩ S) ∩ P |

(1− ε)p
.

In other words, it states that the intersection M∗t ∩S
is well preserved under the sample P . This is exactly
the condition guaranteed by Lemma 3.3, provided that
|M∗t ∩ S| ≥ ε4|Ut|. Assume to the contrary that
|M∗t ∩ S| < ε4|Ut|. Then, the size of |M∗t ∩ S ∩ P | ≤
6ε4|UT |p = 54 ln(nm)

ε2 ; therefore S 6∈ St(MP ).
The second constraint is similar. Finally, the

remaining constraints say that |M∗t | ≤
|M∗t ∩P |
(1−ε)p . We

first derive a bound on |Ut|. Since each set in St has
at most t/ε elements, the multiset of elements present
in some set S ∈ St is at most |St|t/ε. Furthermore,
since the elements in Ut have degree at least ε|St|, the
total number of such elements can be at most |St|t/εε|St| .
Therefore |Ut| ≤ tε−2.

We know by assumption that |M∗t | ≥ ε2t ≥ ε4|Ut|.
Therefore |M∗t | satisfies the conditions of Lemma 3.3,
and |M∗t | ≤

|M∗t ∩P |
(1−ε)p , as we needed to show. �



Theorem 3.1. Let M∗ be the optimal median, and M
be the best median produced by the algorithm above.
Then, with high probability D(M∗,S) ≤ D(M,S) +
O(εm).

Proof. As before, let t = |M∗|, and use Ut and P as
above. For ease of notation, denote by M∗t = M∗ ∩ Ut
and M∗P = M∗ ∩ P . And suppose the conditions of
Lemma 3.4 hold. Let M be the solution reconstructed
by the algorithm when Mc = M∗P , or M = ∅ if
|M∗t | < ε2t.

Let SN = {S ∈ St | |S ∩M∗t | ≥ 6ε2t
(1−ε)}. Observe

that for every set S ∈ St \ SN ,

D(M∗t , S) ≥ 1−
6ε2t
1−ε
εt

= 1− 6ε
(1− ε)

= 1−O(ε).

Therefore for such sets S any median M , D(M,S) ≤
D(M∗, S) +O(ε).

To bound D(M,S), observe that:

D(M,S) = D(M,SN ) +D(M,St−SN ) +D(M,S \St).

Lemmas 3.1 and 3.2 imply that D(M,S \ St) ≤
D(M∗,S \ St) +O(εm). Therefore what remains to be
shown is that the median M is such that D(M,SN ) ≤
D(M∗t , SN ) +O(εm).

Suppose that |M∗t | < ε2t, then SN = ∅ and the
proof is complete. Otherwise, for each set S ∈ SN ,
notice that |S ∩M∗t | ≥ 6ε2t(1− ε)−1 ≥ 6ε4|Ut|(1− ε)−1,
and therefore |S ∩ M∗t ∩ P | ≥ 6ε4|Ut|p = 54 ln(nm)

ε2 .
Therefore SN ⊆ St(Mc).

Let y = {y1, . . . ,y|Ut|} be any solution to the
system L when Mc = M∗P . Then for every S ∈ SN
we have that ∑

xi∈S∩Ut

yi ≥
|S ∩M∗P |
(1 + ε)p

.

Since |S ∩ (M∗t ∩ P )| = |S ∩ M∗P | ≥ ε−254 ln(nm),
an easy application of the Chernoff bound shows that
with high probability, a randomized rounding of y
will approximate |S ∩ M∗t | to within a (1 ± ε) factor.
This combined with the fact that

∑
i yi is also con-

centrated with high probability, implies that for any
S ∈ SN , J(M,S) ≥ J(M∗t , S)−O(ε); thus D(M,SN ) ≤
D(M∗t , SN ) +O(εm). The proof is complete. �

In the next sections we show a polynomial-time
algorithm that produces a (1 + O(

√
ε))-approximate

median if the optimal median has value ≤ εm. The
two algorithms together form a PTAS.

3.2 A PTAS when the optimal median is small
In this section we provide an algorithm that works
when the optimal median is very good, and the average
distance from a set to the median is ε.

Definition 3.1. (ε-good instance) An instance S
on m sets is ε-good if the cost of the optimal median
is less than εm.

We show an algorithm that achieves a (1 +O(
√
ε))

approximate median to ε-good instances in time O(nm).
We begin by proving several structural properties

of any ε-good instance. First, for the instance S =
{S1, . . . , Sm}, denote by µ the median of the input sizes,
{|S1| , . . . , |Sm|}.

Any ε-good instance has the following properties:

• The size of the best median set, M∗, is (1±O(ε))µ.
(Lemma 3.5).

• There are many – (1 − O(
√
ε))µ high-degree ele-

ments (elements present in at least (1 − O(
√
ε))m

sets), and all of them are part of each near optimal
median. (Lemma 3.6 and Lemma 3.8).

This set of properties suggests the following natural
linear-time algorithm:

1. Find the set of all high-degree elements, and add
them to the optimal median; this adds at least
(1−O(

√
ε))µ elements.

2. Greedily select another O(
√
ε + ε)µ elements to

add to the median. Since we are only adding a
small number of extra elements to the set, the
denominator does not change by much, but the size
of respective intersections is maximized.

We now proceed to formalize these properties.

Lemma 3.5. Fix 0 < ε1 ≤ 1
6 . If a set M ⊆ X is such

that D(M,S) ≤ ε1m then

(1− 3ε1)µ ≤ |M | ≤ (1 + 3ε1)µ.

Intuitively, consider a median M with |M | > (1 + ε)µ.
Then on at least half of the sets (those whose sizes are
less than µ), the distance between M and Si will be at
least 1

1+ε , leading to a contradiction of goodness of M .

Proof. Let ε̃1 = 3ε1 and consider an arbitrary set
M ⊆ X such that (1 + ε̃1)−1µ ≥ (1 − ε̃1)µ ≥ |M | ≥
(1 + 3ε1) = (1 + ε̃1)µ. Let S ′ ⊆ S be such that Si ∈ S ′
iff |Si| ≤ µ (resp., |Si| ≥ µ). Note that |S ′| ≥ m/2.

Note that for each Si ∈ S ′, it holds that |Si∩M ||Si∪M | <
µ

(1+ε̃1)µ
= 1

1+ε̃1
because |Si ∩M | ≤ |Si| ≤ µ and

|Si ∪M | ≥ |M | > (1 + ε̃1)µ (resp., |Si ∩M | ≤ |M | <
(1 + ε̃1)−1µ and |Si ∪M | ≥ |Si| ≥ µ).



Thus,

J(M,S) =
∑
Si∈S

|Si ∩M |
|Si ∪M |

=
∑
Si∈S′

|Si ∩M |
|Si ∪M |

+
∑

Si∈S\S′

|Si ∩M |
|Si ∪M |

<
∑
Si∈S′

1
1 + ε̃1

+
∑

Si∈S\S′
1

= |S ′| 1
1 + ε̃1

+ (m− |S ′|)

≤ m

2
1

1 + ε̃1
+
m

2

= m

(
1− ε̃1

2 + 2ε̃1

)
.

Thus, the total distance is at least ε̃1
2+2ε̃1

m ≥ 1
3 ε̃1, for

ε̃1 ≤ 1
2 , i.e., ε1 ≤ 1

6 . �

We next lower bound the number of high-degree
elements. Let M∗ be the optimal median, and let
D = d(M∗,S).

Lemma 3.6. Fix some 0 < ε2 ≤ 2−
√

3
3 . We say

that an element j ∈ X has high degree if deg(j) =
|{Si | j ∈ Si ∈ S}| ≥ (1 −

√
2ε2)m. If D(M,S) ≤

ε2m, then there exist at least (1 −
√

2ε2)µ high-degree
elements.

We need one more technical lemma before proving
Lemma 3.6. We begin by showing that almost all of the
sets have their size in (1±O(

√
ε))µ. Intuitively, if there

are many sets whose size is far from the size of the near
optimal median (as bounded in Lemma 3.5), then each
of those sets contributes at least an O(

√
ε) to the overall

distance, leading to a contradiction.

Lemma 3.7. Fix 0 < ε3 <
1
6 . Let S ′ ⊆ S be the class

of sets Si of sizes (1− 4
√
ε3)µ ≤ |Si| ≤ (1 + 4

√
ε3)µ. If

S is an ε3-good instance, then |S ′| ≥
(
1−√ε3

)
m.

Proof. Suppose |S \ S ′| > √
ε3m, i.e., suppose that

more than
√
ε3m sets have size at most

(
1− 4

√
ε3
)
µ

or at least
(
1 + 4

√
ε3
)
µ. Since ε3 ≤ 1

6 and by Lemma
3.5, the best median M∗ will have size (1 − 3ε3)µ ≤
|M∗| ≤ (1 + 3ε3)µ.

If |Si| ≤
(
1−√ε3

)
µ, then

J(M∗, Si) ≤
|M∗ ∩ Si|
|M∗ ∪ Si|

≤ |Si|
|M∗|

≤
1− 4

√
ε3

1− 3ε3
.

On the other hand, if |Si| ≥
(
1 + 4

√
ε3
)
µ, then we

have

J(M∗, Si) ≤
|M∗ ∩ Si|
|M∗ ∪ Si|

≤ |M
∗|

|Si|
≤ 1 + 3ε3

1 + 4
√
ε3
.

In both cases, J(M∗, Si) ≤ 1 − √ε3, since ε3 ≤ 1
6 .

Thus,

J(M∗,S) =
∑
Si∈S

J(M∗, Si)

=
∑
Si∈S′

J(M∗, Si) +
∑

Si∈S\S′
J(M∗, Si)

≤
∑
Si∈S′

1 +
∑

Si∈S\S′
(1−

√
ε3)

= |S ′|+ |S \ S ′| (1−
√
ε3)

< (1−
√
ε3)m+

√
ε3m (1−

√
ε3)

= m− ε3m.

Thus, the total distance will be more than ε3m, a
contradiction. �

We are now ready to prove Lemma 3.6.

Proof. Let X ′ ⊆ X be the set of high-degree elements.
Let M∗ be the optimal median. By Lemma 3.5,
(1 − 3ε2)µ ≤ |M∗| ≤ (1 + 3ε2)µ. Note that the total
Jaccard similarity J(M∗,S) can be written as:

J(M∗,S) =
∑
Si∈S

|Si ∩M∗|
|Si ∪M∗|

=
∑
Si∈S

∑
x∈Si∩M∗

1
|Si ∪M∗|

=
∑
x∈M∗

∑
Si3x

1
|Si ∪M∗|

≤
∑
x∈M∗

∑
Si3x

1
|M∗|

≤ 1
|M∗|

∑
x∈X′∩M∗

(∑
Si3x

1

)
+

+
1
|M∗|

∑
x∈(X−X′)∩M∗

(∑
Si3x

1

)

≤ 1
|M∗|

∑
x∈X′∩M∗

m+

+
1
|M∗|

∑
x∈(X−X′)∩M∗

((
1−
√

2ε2
)
·m
)
.



Now, suppose by contradiction that |X ′| <(
1−
√

2ε2
)
µ = T . The overall number of terms in the

two sums of the previous expression is at most |M∗|;
also the higher the number of terms of the first sum,
the higher is the value of the expression. Thus,

J(M∗,S)

<
1
|M∗|

Tm+
1
|M∗|

(|M∗| − T )
((

1−
√

2ε2
)
m
)

=
(
1−
√

2ε2
)
m+

T

|M∗|
√

2ε2m

=
(
1−
√

2ε2
)
m+

T

(1− 3ε2)µ
√

2ε2m

=
(
1−
√

2ε2
)
m+

(
1−
√

2ε2
)
µ

(1− 3ε2)µ
√

2ε2m

=
(
1−
√

2ε2
)
m+

(
1−
√

2ε2 − 3ε2
1− 3ε2

)√
2ε2m

= m−
√

2ε2 − 3ε2
1− 3ε2

√
2ε2m

=

(
1− 2ε2 − 3

√
2ε32

1− 3ε2

)
m.

This implies D(M∗,S) > 2−3
√

2ε2
1−3ε2

ε2m ≥ ε2m (where

the last inequality is implied by ε2 ≤ 2−
√

3
3 ). This is a

contradiction and hence |X ′| ≥
(
1−
√

2ε2
)
µ. �

Finally, the next lemma states that each high-
degree element is part of any near optimal median.

Lemma 3.8. Fix 0 < ε4 <
3

100 . Let X∗ ⊆ X be the set
of the elements having degree ≥

(
1−√ε4

)
m. Take any

M ⊆ X such that d(M,S) ≤ ε4m. If X∗ \M 6= ∅, it
holds that d(M ∪X∗,S) < d(M,S).

Proof. Fix an arbitrary x∗ ∈ X∗\M . We will show that
D(M ∪{x∗},S) < D(M,S), so that the main statement
will be proved.

Note that for any Y ⊆ X, it holds that J(Y,S) =∑
y∈Y

∑
Si3y

1
|Si∪Y | .

By Lemma 3.7, there exist at least (1−√ε4)m sets
of size ≤

(
1 + 4

√
ε4
)
µ. The element x∗ has degree

≥
(
1−√ε4

)
m so it will be part of at least (1−2

√
ε4)m

sets of size ≤
(
1 + 4

√
ε4
)
µ. Let S ′x∗ be the class of these

sets.
By Lemma 3.5, the set M will have size (1−3ε4)µ ≤

|M | ≤ (1 + 3ε4)µ. So, for Si ∈ S ′x∗ we can lower bound
the term 1

|Si∪M | (which will be used in the following

chain of inequalities) by

1
|Si ∪M |

≥ 1
|Si|+ |M |

≥ 1(
1 + 4

√
ε4
)
µ+ (1 + 3ε4)µ

≥ 1(
2 + 7

√
ε4
)
µ
.

Also, we will use the inequality |M | ≥ (1− 3ε4)µ.

J(M ∪ {x∗},S)− J(M,S) =

=
∑

x∈M∪{x∗}

∑
Si

x∈Si∈S

1
|Si ∪M ∪ {x∗}|

−
∑
x∈M

∑
Si

x∈Si∈S

1
|Si ∪M |

=
∑
Si

x∗∈Si∈S

1
|Si ∪M ∪ {x∗}|

+
∑
x∈M

∑
Si

x∈Si∈S

(
1

|Si ∪M ∪ {x∗}|
− 1
|Si ∪M |

)

=
∑
Si

x∗∈Si∈S

1
|Si ∪M |

−
∑
x∈M

∑
Si

x∈Si∈S
x∗ 6∈Si

1
|Si ∪M | (|Si ∪M |+ 1)

>
∑

Si∈S′x∗

1
|Si ∪M |

−
∑
x∈M

∑
Si

x∈Si∈S
x∗ 6∈Si

1
|M |2

≥
∑

Si∈S′x∗

1(
2 + 7

√
ε4
)
µ
−
∑
x∈M

√
ε4m

|M |2

≥
(
1− 2

√
ε4
)
m(

2 + 7
√
ε4
)
µ
−
√
ε4m

|M |

≥
(
1− 2

√
ε4
)
m(

2 + 7
√
ε4
)
µ
−

√
ε4m

(1− 3ε4)µ

=
m

µ

(
1− 2

√
ε4

2 + 7
√
ε4
−
√
ε4

1− 3ε4

)
.

Note that the latter is positive for ε4 ≤ c, for some pos-
itive constant c (in particular for some c ≥ 0.0319 . . .).
Thus if ε4 ≤ c then J(M ∪ {x∗},S) − J(M,S) > 0, or
equivalently, D(M ∪ {x∗},S) < D(M,S). �

At this point we know that every near optimal
median contains no more than (1 + O(ε))µ elements,
out of which at least (1 − O(

√
ε)) are the easily found

dense elements. Thus, we need to chose at most O(
√
εµ)

extra elements to include in the solution. The difficulty
of finding the optimal median stems from the fact that
as we add extra elements to a candidate median set,
the total contribution of each set to the overall distance



changes due to changes both in the numerator and in the
denominator. However, since we have an approximation
to the bound on the size of the optimal median, we
can effectively freeze the denominators, knowing that
we are making at most an 1 +

√
ε approximation to the

final solution. Once the denominators are frozen, the
problem is simpler and the greedy algorithm is optimal.

Formally, let M be the set of at least (1−O(
√
ε))µ

dense elements guaranteed by Lemma 3.8. For an
element xi 6∈M , let the weight of x be

∑
Sj3xi

1
|Sj∪M |−∑

Sj 63xi
1

|Sj∪M | . Set N∗ to be the set found by by
greedily selecting elements in order of decreasing weight,
stopping when either (a) the size of N∗ is O(

√
ε) or

(b) the weight of the element in consideration is non-
positive.

Theorem 3.2. Let M and N∗ as above. Then
D(M∗,S) ≥ 1

1+O(
√
ε)
·D(M ∪N∗,S).

Proof. For any solution M ∪N , we have

D(S,M ∪N) =
∑
Sj∈S

(
1− |Sj ∩ (M ∪N)|
|Sj ∪ (M ∪N)|

)

=
∑
Sj∈S

|Sj ∪ (M ∪N)| − |Sj ∩ (M ∪N)|
|Sj ∪ (M ∪N)|

.

If we restrict the size of N to be |N | < O(
√
εµ), then

for each set Sj ,

|Sj ∪M | ≤ |Sj ∪ (M ∪N)| ≤ |Sj ∪M |(1 +O(
√
ε)),

where the last inequality follows from the lower bound
on the size of M . For any set T , let DT as the distance
with each denominator fixed to be |Sj ∪ T |.

DT (S, A) =
∑
Sj∈S

|Sj ∪A| − |Sj ∩A|
|Sj ∪ T |

=
∑
Sj∈S

∑
xi∈Sj4A

1
|Sj ∪ T |

,

where for two sets U and V , U4V denotes their
symmetric difference. Then we have
(3.1)

DM (S,M ∪N) ≥ D(S,M ∪N) ≥ DM (S,M ∪N)
1 +O(

√
ε)

.

Let N be such that N ∩M = ∅. It is easy to check that

DM can be rewritten as

DM (S,M ∪N) =
∑
Sj∈S

∑
xi∈Sj4(M∪N)

1
|Sj ∪M |

=

=

 ∑
xi∈M

∑
Sj 63xi

1
|Sj ∪M |

+
∑
xi 6∈M

∑
Sj3xi

1
|Sj ∪M |

−
−
∑
xi∈N

 ∑
Sj3xi

1
|Sj ∪M |

−
∑
Sj 63xi

1
|Sj ∪M |

 .

Let N∗ be the set that minimizes DM (S,M∪N∗) under
the constraints M ∩ N∗ = ∅ and |N∗| < O(

√
εµ).

If we define the weight of an element xi 6∈ M to be∑
Sj3xi

1
|Sj∪M | −

∑
Sj 63xi

1
|Sj∪M | , then N∗ can be found

by greedily selecting elements in order of decreasing
weight, stopping when either (a) the size of N∗ has
reached its limit, or (b) the weight of the element in
consideration is non-positive.

Let M∗ = M ∪M ′, M ′ ∩M = ∅, be the optimal
solution. Recall that |M ′| ≤ O(

√
ε) |M |. Then:

D(S,M∗) ≥ 1
1 +O(

√
ε)
DM (S,M∗)

≥ 1
1 +O(

√
ε)
DM (S,M ∪N∗)

≥ 1
1 +O(

√
ε)
D(S,M ∪N∗),

where the first and the last inequalities follow from (3.1)
and the second from the optimality of N∗. �

Therefore, the solution M ∪ N∗ found by the
algorithm is an (1 + O(

√
ε)) approximation to the

optimal median.

4 A PTAS for the weighted Jaccard median

In the weighted Jaccard median problem, we are given
a (multi-)set of vectors V = {V1, . . . , Vm}, where the
generic Vi is a non-negative real vector on n coordinates,
Vi ∈ Rn

≥0. In this section we give an algorithm for
the weighted Jaccard median problem. We defer the
technical details to Appendix C and give a high-level
description here.

First, the algorithm of Appendix C.1 returns a
(1 + O(ε))-multiplicative approximate median M if
the value of the optimal median M∗ is O(ε), i.e., if
the total distance between the median and the input
vectors is bounded away from 1. The two algorithms
in Appendix C.2.1 and Appendix C.2.2 are guaranteed
to return a median M of total distance D(M,V) ≤
(1 + O(ε2))D(M∗,V) + O(ε2), i.e., they incur both a
multiplicative error of (1 +O(ε2)) and an additive error



of O(ε2). Then, if we return the best solution of the
three algorithms, we are guaranteeed a (1 + O(ε))-
approximate median. We comment on the latter two
algorithms.

The algorithm of Appendix C.2.1 transforms a
weighted input instance having “polynomial spread”
(i.e., the ratios between the maximum and the minimum
non-zero value of each coordinate are at most polyno-
mial) into a set instance such that an approximate solu-
tion for the set instance can be mapped to the original
instance. The algorithm of Appendix C.2.2 transforms
an arbitrary weighted instance into one with polynomial
spread such that the solution to the new instance can
be mapped to the original instance while preserving the
approximation guarantee.

The weighted Jaccard algorithms might return me-
dians that are not “canonical”, i.e., the medians might
contain coordinate values that are not part of any of
the input vectors. However, as shown by [26], each op-
timal median is in fact canonical. Therefore, limiting
the search space to contain only canonical vectors does
not affect the optimum. Therefore one might want to
define the Jaccard median problem as one having a fi-
nite search space (of size at most mn, spanned by the
coordinate values of its input vectors). In Appendix D
we show how the “canonical” and the “not-necessarily
canonical” problems are essentially the same. We give a
polynomial algorithm that transforms a non-canonical
median into a canonical one of smaller total distance.
This let us give a PTAS for the canonical version of the
problem, as well. Further, Appendix D shows that even
if we do not require a canonical output, there is still
no FPTAS for the Jaccard median problem, unless P =
NP.

5 Hardness of the Jaccard median

In this section we study the hardness of the Jaccard
median problems. Since our focus will be on finding the
optimum, both Jaccard distance median and Jaccard
similarity median can be treated interchangeably, i.e.,
the optimal Jaccard distance median is the optimal
Jaccard similarity median.

First, we describe a gadget that will be central
in our reductions; this gadget appears to be “unique”
in many aspects. For t ∈ Z+, let Bt = K3t,3t−2 be
the complete bipartite graph; let L denote the set of
nodes on the left side, R denote the set of nodes on the
right side, and C denote the set of edges in Bt. Let
U = L ∪R and each edge e = (u, v) ∈ C represents the
set Se = {u, v} and let SB = ∪e∈C{Se} be an instance
of the Jaccard median problem.

LetM∗B denote the set of all subsets of U such that
for each M∗ ∈M∗B , we have |L∩M∗| = t and R ⊆M∗,

i.e., each M∗ ∈ M∗B consists of exactly t nodes from L
and all nodes fromR. We show that the optimal Jaccard
median1 must come from the set M∗B and quantify the
gap between any near-optimal solution.

Lemma 5.1. For the instance SB, every M∗ ∈ M∗B is
an optimal median and J(M∗,SB) > 3t − 2. Further-
more, J(M∗,SB) − J(M,SB) ≥ t−2/32 for M∗ ∈ M∗B
and M /∈M∗B.

Proof. Consider any M ⊆ U with |M ∩ L| = a and
|M ∩ R| = b. We derive the conditions under which
M is an optimal Jaccard median. Specifically, we show
that for M to be an optimal Jaccard median, a = t and
b = 3t− 2. First note that we can explicitly write

J(M,SB) = ab
2

(a+ b)
+ a(3t− 2− b) 1

(a+ b+ 1)

+ b(3t− a)
1

(a+ b+ 1)

=
3t(a+ b)2 − 2a2

(a+ b)(a+ b+ 1)
.

From this,

∂J(M,SB)
∂b

=
4a3 + (4b+ 3t+ 2)a2 + 6abt+ 3b2t

((a+ b)(a+ b+ 1))2
.

Since ∂J(M,SB)
∂b > 0 for all a, b, we have that J(M,SB)

is monotonically increasing in b and is hence maximized
at b = 3t − 2, i.e., if M is an optimal Jaccard median,
then R ⊆M .

Likewise, we obtain

∂J(M,SB)
∂a

=
a2(3t− 2− 4b)− 2ab(2b− 3t+ 2) + 3b2t

((a+ b)(a+ b+ 1))2
,

and using the optimality condition b = 3t − 2, we
calculate ∂J(M,SB)

∂a |b=3t−2=

(5.2) (3t− 2) · 3t(3t− 2)− 2a(3t− 2)− 3a2

((a+ 3t− 2)(a+ 3t− 1))2
.

Since t ≥ 1, setting (5.2) to zero gives us a quadratic
equation in a. It is easy to see that the quadratic
equation has a positive root at

ar =
(
t− 2

3

)
·

(
2

√
1 +

3
6t− 4

− 1

)
.

1We remark that, in this regard, K3t,3t−2 seems crucial —

choosing Kat,at−b, for a not a multiple of 3 or b 6= 2, does not
seem to give equal or similar guarantees.



We now show that ar ∈ (t− 1, t). Since 6t− 4 ≥ 0, we
have ar > t− 2

3 > t− 1. Moreover,

ar =
(
t− 2

3

)
·

(
2

√
1 +

3
6t− 4

− 1

)

≤
(
t− 2

3

)
·
(

2 +
3

6t− 4
− 1
)

by Taylor series

=
(
t− 2

3

)
+

1
2

< t.

We then note that ∂J(M,SB)
∂a |a=t−1,b=3t−2 > 0

since (5.2) evaluates to (3t−2)(10t−7)
((a+3t−2)(a+3t−1))2 at a = t− 1,

and ∂J(M,SB)
∂a |a=t,b=3t−2 < 0 since (5.2) evaluates

to (−2t)(3t−2)
((a+3t−2)(a+3t−1))2 at a = t. Moreover, since a ∈ Z

in our case, this implies that (5.2) attains its maximum
value at either a = t− 1 or a = t. It is easy to see that
the maximum indeed occurs at a = t:

J(M,SB) |a=t,b=3t−2 −J(M,SB) |a=t−1,b=3t−2

=
3t(4t− 3) + 4t2 − 2(2t− 1)(4t− 1)

(4t− 1)(4t− 2)(4t− 3)

≥ 3t− 2
(4t− 1)(4t− 2)(4t− 3)

≥ t−2

32
.

Hence, M is optimal if and only if M ∈ M∗B , and
for each M ∈ M∗B , J(M,SB) = 2t(3t−2)

4t−2 + 2t(3t−2)
4t−1 >

(3t−2). And, the second best solution occurs at a = t−1
and b = 3t− 2 and is lower than the optimum value by
t−2/32. �

Corollary 5.1. For an instance SB where each edge
has multiplicity `, every M∗ ∈ M∗B is an optimal
median. Furthermore, J(M∗,SB) − J(M,SB) ≥ ` ·
t−2/32 for M∗ ∈M∗B and M /∈M∗B.

In our reductions we will overlay a graph on L,
bijectively mapping nodes to G to nodes in L. There
are two competing forces in play for selecting the best
Jaccard median. On the one hand, the gadget ensures
that we want to select exactly t nodes from L; on the
other we would like to pick the densest subset in G. We
make sure the gain from selecting exactly t nodes from
L is a stronger force, either by duplicating every edge
in SB as in Section 5.1, or diluting the contribution of
edges in G, as in Section 5.2. Given that the optimum
median selects exactly t nodes from G, we show that it
must select those forming the t-densest subgraph.

5.1 The multi-set, edge case We show that the
Jaccard median problem restricted to the case when
each set S in the instance S has exactly two elements

from the universe (i.e., each set can be thought of as an
“edge” in a graph whose nodes are the elements of the
universe) is NP-hard. However, we need to allow S to
be a multi-set.

Our reduction will use the following custom-defined
problem called 1

3 -Quasi-Regular-Clique: given a
graph G(V,E) with maximum degree ∆ ≥ |V |/3, and
with no node v ∈ V such that 5|V |/18 < deg(v) < ∆,
does G contain a clique of size at least |V |/3? In
Appendix B, we will show that 1

3 -Quasi-Regular-
Clique is NP-hard.

Theorem 5.1. The Jaccard median problem, where
each set in the instance has two elements, is NP-hard.

Proof. We prove the NP-hardness by reducing from 1
3 -

Quasi-Regular-Clique. Without loss of generality,
assume |V | = 3t, where t ∈ Z+. We consider the
bipartite gadget Bt = (L,R,C) described earlier and for
each edge in C, replicate it 320t5 times in order to obtain
the bipartite multi-graph B = (L,R,C ′). Next we
overlay the graph G(V,E) onto L, bijectively mapping
nodes in V to nodes in L and adding appropriate
edges among the nodes in L according to E; let B′ =
(L,R,C ′ ∪ E) be the resulting multi-graph.

Each edge e = (u, v) in B′ is interpreted as the
set Se = {u, v}. Let SB = ∪e∈C′Se be the family
corresponding to the edges in B and let SG = ∪e∈ESe
be the family corresponding to the edges in G. Observe
that each set M ∈ M∗B (i.e., each set M = R ∪ L′,
with L′ ⊆ L and |L′| = t), has the same Jaccard
similarity c1 = J(M,SB) to SB . Define c2 =

(
t
2

)
2

4t−2 +
t (∆− (t− 1)) 1

4t−1 , where ∆ is the maximum degree
in the 1

3 -Quasi-Regular-Clique instance. We ask:
does there exist a Jaccard median M∗ of total Jaccard
similarity J(M∗,S) ≥ c1 + c2?

First of all, observe that each clique of size t in the
original graph contains only nodes of degree ∆. Further,
if such a clique H exists then the median M∗ = H ∪R
is such that J(M∗,S) = c1 + c2. Indeed,

J(M∗,S) = J(M∗,SB) + J(M∗,SG)

= c1 +
∑
Se∈SG
|Se∩H|=2

2
t+ |R|

+
∑
Se∈SG
|Se∩H|=1

1
t+ |R|+ 1

= c1 +
(
t

2

)
2

4t− 2
+ t · (∆− (t− 1)) · 1

4t− 1
= c1 + c2.

Conversely, let S = SG ∪ SB be the instance of
the Jaccard median problem and let M∗ be one of its
Jaccard medians of value at least c1 + c2.

Let L∗ = M∗ ∩ L. We claim that M∗ ∈ M∗B and
that the subgraph in G induced by the nodes in L∗ is



a clique. Supposing the claim is true, it is easy to see
that the reduction from 1

3 -Quasi-Regular-Clique is
complete.

We now prove the claim. In particular, first
we show that M∗ ∈ M∗B . We have J(M∗,S) =
J(M∗,SG) + J(M∗,SB). From Corollary 5.1 we know
that J(M∗,SB) is maximized when M∗ ∈ M∗B (with
J(M∗,SB) = c1 in that case), and for any M∗ ∈ M∗B
and M /∈ M∗B , J(M∗,SB) − J(M,SB) ≥ 320 · t5 ·
t−2/32 = 10t3. Further, we know that J(M,SG) =∑
Se∈SG J(M,Se) ≤ |SG| ≤ 9t2 for any M . Thus, for

any M /∈M∗B we have that

J(M,S) = J(M,SG) + J(M,SB)
≤ 9t2 + J(M∗,SB)− 10t3 ≤ c1 − t3,

a contradiction. Hence, M∗ ∈M∗B .
Given this, we next claim J(M∗,SG) has value c2

if L∗ is a clique, and value at most c2 − 2
(4t−2)(4t−1)

otherwise. Suppose k ≤
(
t
2

)
edges of G are completely

inside L∗. Then at most ∆t−2k edges will have a single
endpoint in L∗, since the maximum degree is ∆, and

J(M∗,SG) =
∑
Se∈SG
|Se∩L∗|=2

2
t+ |R|+

∑
Se∈SG
|Se∩L∗|=1

1
t+|R|+1

≤ k · 2
4t− 2

+ (∆t− 2k) · 1
4t− 1

= k · 2
(4t− 2)(4t− 1)

+
∆t

4t− 1
.

The latter equals c2 if k =
(
t
2

)
. Also, if L∗ is not a

clique, then k <
(
t
2

)
and J(M∗,SG) ≤ c2 − 2

(4t−2)(4t−1) .
Thus J(M∗,S) ≤ c1 + c2− 2

(4t−2)(4t−1) , a contradiction.
�

Corollary 5.2. The Jaccard median problem, where
each set in the instance has two elements, does not
admit an FPTAS if P 6= NP.

Proof. In the proof of Theorem 5.1, we have shown it is
NP-hard to approximate the Jaccard median problem to
within an additive factor 2

(4t−2)(4t−1) . In our instances,
m = Θ(t7) and n = Θ(t). Note that the number
of sets m is an upper bound on the total Jaccard
distance of any median. It follows that it is NP-hard
to approximate the Jaccard median problem to within
a multiplicative factor of 1 + o

(
m−9/7

)
or 1 + o

(
n−9

)
.

It follows that no FPTAS exists for the problem if P 6=
NP. �

5.2 The set, hyperedge case We show that the
Jaccard median problem restricted to the case when S

is not a multi-set, is NP-hard. However, we need that
the sets in the instances have cardinalities more than
two, i.e., they are like “hyperedges”.

Theorem 5.2. The Jaccard median problem, where the
instance does not contain duplicate sets, is NP-hard.

Proof. As before, we prove the NP-hardness by reducing
from 1

3 -Quasi-Regular-Clique. The steps of the
reduction are similar to the earlier case. Let |V | = 3t
and we consider B = Bt = (L,R,C). Next we overlay
the graph G onto L, bijectively mapping nodes in V
to nodes in L and adding appropriate edges among the
nodes in L according to E and let B′ = (L ∪R,C ∪E)
be the resulting graph.

From B′, we construct an instance of the Jaccard
median problem, whereby for each edge e = (u, v) in B′

that came from B, we create the set Se = {u, v} and for
each edge e = (u, v) in B′ that came from G, we create
the set Se = {u, v, α1

e, . . . , α
k
e} where k = t7. Since

each edge has unique αie’s, these α nodes have degree
one and we refer to them as fake nodes as they belong
neither to G nor to B. Let SB = ∪e∈CSe be the family
corresponding to the edges in B and let SG = ∪e∈ESe
be the family corresponding to the edges in G. Let
S = SG ∪ SB be the instance of the Jaccard median
problem and let M∗ be its optimal Jaccard median.
Lemma 5.4 will complete the reduction from 1

3 -Quasi-
Regular-Clique. �

First we prove two simple facts about fake nodes.
Let fake(M) denote the set of fake nodes in M .

Lemma 5.2. For t ≥ 3, if |fake(M)| = O(t2), then
J(M,SG) < 0.03 and otherwise, J(M,SG) < 3/2.

Proof. For each e = (u, v) ∈ E, let Te = M ∩{u, v} and
let Fe = (M ∩ Se) \ {u, v}, i.e., Te corresponds to the
non-fake nodes and Fe corresponds to the fake nodes
from set Se that are present in M . Let T = ∪e∈ETe
and F = fake(M) = ∪e∈GFe. Then,

J(M,SG) =
∑
e∈E

J(M,Se)

=
∑
e∈E

(
|Te ∩ Se|
|T ∪ F ∪ Se|

+
|Fe ∩ Se|
|T ∪ F ∪ Se|

)
≤

∑
e∈E

(
2

|T ∪ F ∪ Se|
+

|Fe|
|T ∪ F ∪ Se|

)
≤ 2|E|

k
+
∑
e∈E

|Fe|
|F ∪ Se|

≤ 18t2

k
+

|F |
max{|F |, k}

.



If |F | = O(t2), then since k = t7 and t ≥ 3, we have
J(M,SG) = O(t−5) < 0.03. Otherwise, J(M,SG) <
18t−5 + 1 < 3/2 for t ≥ 3. �

Lemma 5.3. Let M ⊆ L∪R, such that J(M,SG) ≥ 2t.
Let F be any non-empty set of fake nodes. If |F | ≤ 40t,
then J(M,SB)−J(M∪F,SB) ≥ 0.035 and if |F | > 40t,
then J(M∗,SB)− J(M∗ ∪ F,SB) ≥ 1.55.

Proof. Let f be the number of edges in B with both
endpoints in M and h be the number of edges in B with
one endpoint in M . Then, J(M∗,SB) = f

4t−2 + h
4t−1 ,

and the condition on M implies that f + h ≥ 7t2.
Since the nodes in F do not have any edges in B, we

know that J(M ∪ F,SB) = f
4t−2+|F | + h

4t−1+|F | . Hence,

J(M,SB)− J(M ∪ F,SB)

=
f |F |

(4t− 2)(4t− 2 + |F |)
+

h|F |
(4t− 1)(4t− 1 + |F |)

≥ f |F |
(4t)(4t+ |F |)

+
h|F |

(4t)(4t+ |F |)

=
|F | (f+h)

t

4(4t+ |F |)
≥ 7t|F |

4(4t+ |F |)
.

The proof is complete by simple calculations. �

Lemma 5.4. Given M∗ as above, M∗ ∈ M∗B and the
subgraph in G induced by the nodes in L∗ = M∗ ∩ L is
a clique.

Proof. First, we show that fake(M∗) = ∅. We do this
by arguing that any M∗ must have a high Jaccard
similarity score on SB . Let M∗B = M∗ ∩ (L∪R) denote
the non-fake nodes in M∗. Suppose J(M∗B ,SB) <
2t. Then, using Lemma 5.2, we can conclude that
J(M∗,S) = J(M∗,SB) + J(M∗,SG) < J(M∗B ,SB) +
1.5 ≤ 2t + 1.5, where J(M∗,SB) < J(M∗B ,SB) since
SB does not contain any fake nodes. However, any
solution M ′ ∈M∗B has J(M ′,SB) > 2.1t for t > 5 (from
Lemma 5.1), therefore M∗ cannot be the optimum. On
the other hand, if J(M∗B ,SB) ≥ 2t, then J(M∗B ,S) −
J(M∗,S) = (J(M∗B ,SB)− J(M∗,SB)) + (J(M∗B ,SG)−
J(M∗,SG)). Lemmas 5.2 and 5.3 together show that
(J(M∗B ,S) − J(M∗,S)) > 0, which is a contradiction.
Hence, M∗ does not contain any fake nodes.

Next we show that M∗ ∈ M∗B . From Lemma
5.1 we know that J(M∗,SB) is maximized when
M∗ ∈ M∗B and for any M∗ ∈ M∗B and M /∈
M∗B , J(M∗,SB) − J(M,SB) ≥ t−2/32. Also, from
Lemma 5.2, J(M∗,SG) ≤ 2|E|/k for any set M∗ with
fake(M∗) = ∅. Hence, for any M∗ ∈ M∗B and M /∈
M∗B , J(M∗,S)−J(M,S) = (J(M∗,SB)−J(M,SB))+
(J(M∗,SG) − J(M,SG)) ≥ t−2

32 −
2|E|
k > 0, since t ≥ 3

and k = t7. In other words, our choice of parameters
guarantees that M∗ ∈M∗B , thus, |L∗| = t.

Given this, we next claim J(M∗,SG) (and therefore
J(M∗,S)) is maximized when L∗ induces a clique in
G. In particular, let the induced graph contain f full-
edges (i.e., edges with both end points in L∗) and h
half-edges (i.e., edges with exactly one end point in L∗

and the other end point in L \ L∗.) Since the degree of
each node in G is bounded by ∆, it is easy to see that
h ≤ (|L∗| ·∆)− 2f = t∆− 2f . By definition,

J(M∗,SG) =
2f

4t− 2 + k
+

h

4t− 1 + k

≤ 2f
4t− 2 + k

+
t∆− 2f

4t− 1 + k

=
2f

(4t− 1 + k)(4t− 2 + k)
+

t∆
4t− 1 + k

= c.

Since c is increasing in f , it is maximized when f =
(
t
2

)
.

Observe that J(M∗,SG) actually equals this maximum
value if L∗ induces a clique since in that case f =

(
t
2

)
and each of the nodes of L∗ will have degree ∆ and
h = t∆ − 2f . Hence, L∗ is a clique iff J(M∗,SG) is
maximized. �

We note that the no-FPTAS claim also holds here.

6 Conclusions

In this paper we have studied the median problem for
the weighted Jaccard metric. We gave a PTAS that
returns a (1+ ε)-approximate median in time (nm)

1
εO(1)

and showed that the problem does not admit a FPTAS,
unless P = NP. Two interesting future directions include
studying the complexity of the k-median problem for
k > 1 and obtaining a PTAS for the similarity version
of the Jaccard median. For the latter, we can (a) show
that the trivial 2-approximation for the distance version
is an Ω(

√
m) approximation for the similarity version

and (b) obtain a different 2-approximation algorithm.
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Appendix

A Tightness of the two-approximation

Given a set of points in an arbitrary metric, one of
the input points in the set is a

(
2− 2

n

)
-approximation

to the optimal median. Here, we show that this
bound is tight for the Jaccard metric. Consider an
instance of n sets, S = {S1, . . . , Sn}, such that Si =
{x1, . . . , xi−1, xi+1, . . . , xn} for i = 1, . . . n. Then, the
distance between any two sets in the instance will be
1− n−2

n = 2
n . Therefore, the optimal point (and in fact,

any point) in the instance will act as a median with
total distance (n − 1) 2

n = 2 − 2
n . Now consider the set

M = {x1, . . . , xn}. The distance of M to an arbitrary
Si ∈ S will be 1− n−1

n = 1
n . Its total distance will thus

be 1. The claim follows.

B Hardness of 1
3 -Quasi-Regular-Clique

We prove the NP-hardness by reducing from 2
3 -Clique

[10]: given a graph G = (V,E), does G contain a clique
of size at least 2 |V | /3?

We let n = |V |. Observe that if G has fewer than
2n/3 nodes of degree at least 2n/3, then we can conclude
(in polynomial time) that the answer to the problem is
no. Therefore, we assume the contrary: there exist at
least 2n/3 nodes of degree at least 2n/3. Then, the sum
of degrees of the nodes in V (denoted vol(V )) is at least
4n2/9. If we let ∆ denote the maximum degree of G,
we have that 2n/3 ≤ ∆ < n. Also, vol(V ) ≤ ∆n < n2.

We create a new graph G′ = (V ′, E′) that contains
G as a node subgraph (that is, V ⊆ V ′ and E ⊆ E′).
V ′ will also contain n new nodes and hence |V ′| = 2n.
E′ will contain all the edges in E, and possibly some
new edges going from the nodes in V to the ones
in V ′ \ V ; these new edges will be added as follows.
As long as there exists some node v ∈ V such that
degG′(v) < ∆, we choose an arbitrary node v′ ∈ V ′ \ V
such that degG′(v′) ≤ 5n/9 and add the edge {v, v′} to



E′. Observe that such a node v′ always exists: each
time we add an edge, we increase the total degree of V
and since 4n2/9 ≤ vol(V ) ≤ n2, we have that no more
than 5n2/9 edges will need to be added. Further, since
all n nodes in V ′ \ V had degree 0 in the beginning, it
is possible to add at most 5n2/9 edges, with each edge
having a single endpoint in V ′ \ V , in such a way that
the maximum degree in V ′ \ V remains upper bounded
by 5n/9.

In the end, for each v ∈ V , we will have degG′(v) =
∆ ≥ 2n/3 = |V ′| /3 and for each v′ ∈ V ′ \ V , we have
degG′(v′) ≤ 5n/9 = 5 |V ′| /18.

We claim that G has a clique of size at least 2n/3 if
and only if G′ has a clique of size at least 2n/3 = |V ′| /3.

Indeed, if G had such a clique C, then C ⊆ V will
also be a clique in G′. On the other hand, suppose there
exists a clique C ′ ⊆ V ′ in G′ of size at least 2n/3. Then,
by the upper bound on the degree of the nodes in V ′\V ,
C ′ must be composed only of nodes in V . But then, by
construction, C ′ will also be a clique in G.

C Algorithms for the weighted Jaccard metric

C.1 A PTAS when the optimal median is small
We present an algorithm that returns a 1 + O(ε)

approximate median if the optimal median has total
distance at most ε.

Lemma C.1. Let M∗ be the optimal median and sup-
pose that D(M∗,V) ≤ ε. Then, there exists a
polynomial-time algorithm for finding a median M such
that D(M,V) ≤ (1 + ε

1−ε ) ·D(M∗,V).

Proof. If two generic A,B vectors have Jaccard distance
at most δ, it must be that∑

i

min (A(i), B(i)) ≥ (1− δ)
∑
i

max (A(i), B(i)) ,

so that

(C.1)
∑
i

A(i) ≥ (1− δ) ·
∑
i

max(A(i), B(i)).

Now, consider two vectors A′, B′ and suppose

D(A′, B′) =
∑
i |A′(i)−B′(i)|∑

i max(A′(i), B′(i))
≤ ε.

Then, from (C.1), we have

1
1− ε

∑
i

A′(i) ≥
∑
i

max(A′(i), B′(i)),

and ∑
i |A′(i)−B′(i)|
1

1−ε ·
∑
iA
′(i)

≤
∑
i |A′(i)−B′(i)|∑

i max(A′(i), B′(i))
≤ ε,

Thus,

(C.2)
∑
i

|A′(i)−B′(i)| ≤ ε

1− ε
∑
i

A′(i).

Further, observe that if we have two vectors A′′, B′′

such that
∑
i |A′′(i)−B′′(i)| ≤

ε
1−ε

∑
iA
′′(i) then,

D(A′′, B′′) =
∑
i |A′′(i)−B′′(i)|∑

i max(A′′(i), B′′(i))

≤
∑
i |A′′(i)−B′′(i)|∑

iA
′′(i)

≤
ε

1−ε
∑
iA
′′(i)∑

iA
′′(i)

=
ε

1− ε
.

Now consider the following linear program:
mi ≥ 0 ∀ coordinate i
tji ≥ |mi − Vj(i)| ∀Vj ∈ V,∀ coordinate i∑
i t

j
i ≤

ε
1−ε

∑
i Vj(i) ∀Vj ∈ V

min
∑
j

1P
i Vj(i)

∑
i t

j
i.

(The inequality tji ≥ |mi − Vj(i)| can be replaced by
two inequalities tji ≥mi − Vj(i) and tji ≥ Vj(i)−mi.)

We claim that if an optimal median M∗ for V
has total distance D(M∗,V) ≤ ε, then the linear
program is feasible and each of its optimal solutions
are (1 + ε

1−ε ) approximations to D(M∗,V), i.e., if
M∗ = (m∗1, . . . ,m

∗
n) is an optimal solution to the linear

program, then D(M∗,V) ≤ (1 + ε
1−ε )D(M∗,V).

To show that the linear program is feasible, take
mi = M∗(i) for each i, and tji = |M∗(i)− Vj(i)| for
each i, j. Since D(M∗,V) ≤ ε it must be that, for each
Vj ∈ V, D(M∗, Vj) ≤ ε. Then, setting A′ := Vj and
B′ := M∗ in (C.2), we obtain∑

i

tji =
∑
i

|M∗(i)− Vj(i)| ≤
ε

1− ε
∑
i

Vj(i),

so all of the constraints are satisfied. The value of the
objective function is:

f∗ =
∑
j

∑
i |mi − Vj(i)|∑

i Vj(i)
=
∑
j

∑
i |M∗(i)− Vj(i)|∑

i Vj(i)
.

For each j we apply (C.1) with A := Vj , B :=
M∗, and δ = ε, obtaining

∑
i Vj(i) ≥ (1 −

ε)
∑
i max(Vj(i),M∗(i)). Then,

f∗ ≤ 1
1− ε

∑
j

∑
i |M∗(i)− Vj(i)|∑

i max(Vj(i),M∗(i))
=

1
1− ε

D(M∗,V).



Now take any optimal solution to the linear pro-
gram: M∗ = (m∗1,m

∗
2, . . . ,m

∗
n). Consider the function

that the linear program is minimizing,

f =
∑
j

∑
i t

j
i∑

i Vj(i)
.

Since M∗ is optimal we have tji = |m∗i − Vj(i)|, for each
i, j, and

f =
∑
j

∑
i |m∗i − Vj(i)|∑

i Vj(i)
.

Observe that if we were to use the vector M∗ as a
median, we would have total distance

D(M∗,V) =
∑
j

∑
i |m∗i − Vj(i)|∑

i max(m∗i , Vj(i))

≤
∑
j

∑
i |m∗i − Vj(i)|∑

i Vj(i)
= f.

Further, since f is optimal, and f∗ is feasible, we will
have f ≤ f∗, and

D(M∗,V) ≤ f ≤ f∗ ≤ 1
1− ε

D(M∗,V),

so M∗ is an 1
1−ε -approximate median. �

C.2 A PTAS when the optimal median is large
When the optimal median is large, we consider two
different approaches, depending on the spread of the
instance.

Given an input set V, not all null, let α be the
minimum non-zero coordinate value,

α = αV = min
V ∈V

1≤i≤n
V (i)>0

V (i),

and let β be their maximum coordinate value,

β = βV = max
V ∈V

1≤i≤n

V (i).

Observe that if all the input vectors are all-zero
vectors, then the input is a set instance, and then
the optimal median is trivially the all-zero vector.
Otherwise both α and β are well-defined, and we define
the spread of V as σ = β/α.

C.2.1 Instances with polynomial spread Sup-
pose that the spread is polynomial, σ ≤ (nm)O(1).

Scale the vectors by α−1 and obtain the multi-set of
vectors Vα =

{
α−1 · V | V ∈ V

}
. Then, the minimum

non-zero coordinate in Vα is 1, and the maximum is

σ. Let ξ > 0 be sufficiently small and define k =⌈
ξ−1
⌉
. Observe that k−1 ≤ ξ. Given a vector V on n

coordinates, with each coordinate value ≤ σ, we define
its expansion ek,σ(V ) = e(V ) as a binary vector on
nkdσe coordinates, as follows:

e(V ) = (1, 1, . . . , 1︸ ︷︷ ︸
t1=dkV (1)e

times

, 0, 0, . . . , 0︸ ︷︷ ︸
dkσe−t1

times

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
tn=dkV (n)e

times

, 0, 0, . . . , 0︸ ︷︷ ︸
dkσe−tn

times

).

We then use the PTAS for binary instances (Section
3) to obtain a (1 + ε)-approximation of the following
binary instance:

VS = {ek,σ(V ) | V ∈ Vα} = {ek,σ(α−1V ) | V ∈ V}.

We show that distances are well-preserved by this
expansion.

Lemma C.2. Let V,W be any two non-negative real
vectors, having minimum coordinate value ≥ α and
maximum coordinate value ≤ β. Let ξ > 0 be suffi-
ciently small. Let σ = β/α, and k =

⌈
ξ−1
⌉
. Then,

D(V,W )− ξ ≤ D(ek,σ(α−1V ), ek,σ(α−1W ))
≤ D(V,W ) + ξ.

Proof. If V = W , then the claim is trivial as they
will both be mapped to the same vector. Otherwise,
D(V,W ) > 0, and

D(V,W ) = 1−
∑n
i=1 min {V (i),W (i)}∑n
i=1 max {V (i),W (i)}

= 1−
∑n
i=1 min

{
α−1V (i), α−1W (i)

}∑n
i=1 max {α−1V (i), α−1W (i)}

= D(α−1V, α−1W ).

Now, let V ′ = ek,σ(α−1V ). For any i = 1, . . . , n,
consider

V ′i =
idkσe∑

j=(i−1)dkσe+1

V ′(j).

Then, 1
kV
′
i = 1

k

⌈
kα−1V (i)

⌉
≤ α−1V (i) + k−1 ≤

α−1V (i) + ξ, and 1
kV
′
i ≥ α−1V (i). As α ≤ V (i) by

definition, we have that ξ
α−1V (i) ≤ ξ. Thus,

α−1V (i) ≤ V ′i ≤ (1 + ξ)α−1V (i).

Analogously, if W ′ = ek,σ(α−1W ), then we have

α−1W (i) ≤W ′i ≤ (1 + ξ)α−1W (i).



Then, D(V ′,W ′) =

= 1−
∑n
i=1 min {V ′(i),W ′(i)}∑n
i=1 max {V ′(i),W ′(i)}

≤ 1−
∑n
i=1 min

{
α−1V (i), α−1W (i)

}∑n
i=1 max {(1 + ξ)α−1V (i), (1 + ξ)α−1W (i)}

= 1− 1
1 + ξ

∑n
i=1 min {V (i),W (i)}∑n
i=1 max {V (i),W (i)}

= 1− 1
1 + ξ

(1−D(V,W ))

=
1

1 + ξ
D(V,W ) +

ξ

1 + ξ

≤ D(V,W ) + ξ.

And,

D(V ′,W ′) = 1−
∑n
i=1 min {V ′(i),W ′(i)}∑n
i=1 max {V ′(i),W ′(i)}

≥ 1− (1 + ξ)
∑n
i=1 min {V (i),W (i)}∑n
i=1 max {V (i),W (i)}

= −ξ + (1 + ξ)D(V,W ) ≥ D(V,W )− ξ.

�

To complete the proof, fix ξ = ε2/m. Then the
approximate median M of the binary instance returned
by the algorithm in Section 3 will be a binary vector
with (n

⌈
ξ−1
⌉
dσe) coordinates. Lemma C.3 shows how

one can round M to find a a (1 + ε)-approximation in
polynomial time.

Lemma C.3. Fix V, and let M be an (1 + ε) approx-
imate median for VS. A real vector M ′ such that
D(M ′,V) ≤ D(M,VS) + ξm can be found in time
(nmξ−1σ)O(1).

Proof. Let wi =
∑idkσe
j=(i−1)dkσe+1M(j), be the number

of 1’s in the block of coordinates of M corresponding to
the i-th coordinate of the original real vector space. Set
w′i = max (wi, k).

We create a binary vector A from M , by pushing all
the 1’s of M on the left side of their respective blocks:

A = (1, 1, . . . , 1︸ ︷︷ ︸
w′1

times

, 0, 0, . . . , 0︸ ︷︷ ︸
dkσe−w′1

times

, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
w′n

times

, 0, 0, . . . , 0︸ ︷︷ ︸
dkσe−w′n

times

).

Observe that for each VS ∈ VS , we will have D(A, VS) ≤
D(M,VS). This follows from the fact that each such VS
has all of its 1 coordinates on the left sides of its blocks,
and that each VS has at least k many 1’s in each block.

Further, observe that A is the ek,σ expansion of the
vector 1

k (w′1, . . . , w
′
n). Let M ′ = α 1

k (w′1, . . . , w
′
n). By

Lemma C.2, we have that, for each real vector V ∈ V,

D(M ′, V )− ξ ≤ D(A, ek,σ(α−1V )),

or, equivalently,

D(M ′, V ) ≤ D(A, ek,σ(α−1V )) + ξ.

Thus,

D(M ′,V) =
∑
V ∈V

D(M ′, V )

≤
∑
V ∈V

(
D(A, ek,σ(α−1V )) + ξ

)
=

∑
VS∈VS

(D(A, VS) + ξ)

≤
∑

VS∈VS

(D(M,VS) + ξ)

= D(M,VS) + ξm.

�

C.2.2 Instances with arbitrary spread Let V be
an arbitrary Jaccard median instance. To compute the
median of V, we start by guessing the largest coordinate
value of one of its optimal medians (observe that by [26],
and Lemma D.1, this coordinate value will be shared
with the median by at least one input vector). First, we
remove all the sets that would be too far to a median
having such a (large) coordinate value (these would be
the sets having too small coordinate values). Next,
we set to zero those coordinate values that were much
smaller than our guess (by doing this, we do not distort
distances by much). This way, we obtain an instance
having polynomial spread and apply the algorithm from
Section C.2.1.

More precisely, for each input coordinate value α
(there are at most nm such values), we

• remove all sets having a coordinate value larger
than αnε , or having total weight less than εα
obtaining the class Vα,

Vα =
{
Vj | Vj ∈ V ∧max

i
Vj(i) ≤ α

n

ε

∧
∑
i

Vj(i) ≥ εα
}
.

• For each vector Vj ∈ Vα, set to zero all of its
coordinates having value at most α ε2

nm , obtaining a
vector V ′j ,

V ′j (i) =
{

0 if Vj(i) ≤ αε2

nm
Vj(i) otherwise

• Finally, let V ′α be the resulting instance,

V ′α =
{
V ′j | Vj ∈ Vα

}
.



The spread of V ′α will be at most n2m2

ε3 . We then
apply the polynomial spread algorithm (Section C.2.1)
to obtain a (1 + O(ε))-approximate median M for Vα.
We now show that, given the appropriate choice of α,
M will be an approximately optimal median for V.

Lemma C.4. Let M∗ be an optimal median for V, and
let α = maxiM∗(i). If M is a (1 + O(ε))-approximate
median for V ′α, then

D(M,V) ≤ (1 +O(ε))D(M∗,V) +O(ε).

Proof. We start by showing that M is an approximate
median for Vα. The observation that M∗ is at distance
at least 1− ε to each vector in V −Vα will complete the
proof, since any median is at distance at most 1 from
each vector in V − Vα.

Let W be any non-negative vector on n coordinates.
First of all, observe that, for each V ′j ∈ V ′α, we have

∑
i

max(Vj(i),W (i)) ≥
∑
i

max(V ′j (i),W (i))

≥
∑
i

max(Vj(i),W (i))− αε2

m
,

and
∑
i max(Vj(i),W (i)) ≥

∑
i Vj(i) ≥ εα. Therefore,

∑
i

max(Vj(i),W (i)) ≥
∑
i

max(V ′j (i),W (i))

≥
(

1− ε

m

)∑
i

max(Vj(i),W (i)).

Further,

∑
i

|Vj(i)−W (i)|+ αε2

m
≥
∑
i

∣∣V ′j (i)−W (i)
∣∣

≥
∑
i

|Vj(i)−W (i)| − αε2

m
.

We now show that the values of a median M ′ for
Vα and V ′α are very close to each other. We start with
an upper bound. D(M ′,V ′α) =

=
∑
V ′j∈V′α

D(M ′, V ′j )

=
∑
V ′j∈V′α

∑
i

∣∣V ′j (i)−M ′(i)
∣∣∑

i max(V ′j (i),M ′(i))

≤ 1
1− ε

m

∑
V ′j∈V′α

∑
i |Vj(i)−M ′(i)|+

αε2

m∑
i max(Vj(i),M ′(i))

=
1

1− ε
m

∑
V ′j∈V′α

(
D(M ′, Vj) +

αε2

m∑
i max(Vj(i),M ′(i))

)

≤ 1
1− ε

m

∑
V ′j∈V′α

(
D(M ′, Vj) +

αε2

m

εα

)

≤ 1
1− ε

m

∑
V ′j∈V′α

D(M ′, Vj) +
ε

1− ε
m

≤ 1
1− ε

D(M ′,Vα) +
ε

1− ε
.

For the lower bound, D(M ′,V ′α) =

=
∑
V ′j∈V′α

∑
i

∣∣V ′j (i)−M ′(i)
∣∣∑

i max(V ′j (i),M ′(i))

≥
∑
V ′j∈V′α

∑
i |Vj(i)−M ′(i)| −

αε2

m∑
i max(Vj(i),M ′(i))

≥ D(M ′,Vα)−
∑
V ′j∈V′α

αε2

m∑
i max(Vj(i),M ′(i))

≥ D(M ′,Vα)− ε.

Now, consider an optimal median M∗ for V. Using
the upper bound with M ′ := M∗, we obtain

D(M∗,V ′α) ≤ (1 +O(ε))D(M∗,Vα) +O(ε).

Since M is an (1+O(ε))-approximate median for V ′α, we
will also have D(M,V ′α) ≤ (1 +O(ε))D(M∗,V ′α). Thus,

D(M,V ′α) ≤ (1 +O(ε))D(M∗,Vα) +O(ε).

Finally, since D(M,V ′α) ≥ D(M,Vα)−ε, we obtain that

D(M,Vα) ≤ (1 +O(ε))D(M∗,Vα) +O(ε).

Now consider the vectors in V − Vα. Let Vj ∈ V − Vα.
If maxi Vj(i) ≥ αnε , then∑
i

max(M∗(i), Vj(i)) ≥
∑
i

Vj(i) ≥ max
i
Vj(i) ≥ αnε−1.



Further,∑
i

min(M∗(i), Vj(i)) ≤
∑
i

M∗(i) ≤
∑
i

α = nα.

Then,

D(M∗, Vj) = 1−
∑
i min(M∗(i), Vj(i))∑
i max(M∗(i), Vj(i))

≥ 1− ε.

If we have
∑
i Vj(i) < εα, then∑

i

max(M∗(i), Vj(i)) ≥
∑
i

M∗(i) ≥ max
i
M∗(i) = α.

On the other hand,∑
i

min(M∗(i), Vj(i)) ≤
∑
i

Vj(i) ≤ εα.

Again, these imply D(M∗,V − Vα) ≥ 1− ε.
The maximum Jaccard distance is 1. Therefore,

D(X,V − Vα) ≤ (1 + O(ε))D(M∗,V − Vα) for each
vector X, in particular for X = M . Putting everything
together, we get

D(M,V) = D(M,Vα) +D(M,V − Vα)
≤ ((1 +O(ε))D(M∗,Vα) +O(ε))+

+ ((1 +O(ε))D(M∗,V − Vα))
= (1 +O(ε))D(M∗,V) +O(ε). �

D Canonical medians

As first observed by Späth [26] every value in the
optimal median is present in one of the input vectors.
We call such medians canonical, and in this Section
we give a simple polynomial rounding technique that
transforms non-canonical medians to canonical ones
without decreasing their value.

Formally, we say that a median M for V is canonical
if, for each i, M(i) is equal to V (i) for some V ∈ V.

In previous sections, (a) we showed how no FPTAS’
exist for the problem of finding canonical medians for
Jaccard (assuming P 6= NP), and (b) we gave a PTAS
for finding approximate medians, which may not be
canonical.

Since every non-canonical median can be trans-
formed into a canonical one of smaller or equal total
distance, we can conclude that the value of the optimal
medians is the same, whether or not we require the out-
put to be canonical. The algorithm of this section, if
given a non-canonical median, returns a canonical me-
dian of smaller value in polynomial time. Thus, if P 6=
NP, no FPTAS’ exist for the not-necessarily canonical
median problem, either.

The main argument here is quite similar to that
of Späth [26], who shows how each optimal Jaccard
median is canonical. We present this argument for
completeness.

Lemma D.1. Let M be a median for V. Suppose there
exists a coordinate j, such that M(j) 6∈ {V (j) | V ∈ V}.
Then,

i. if M(j) > maxV ∈V V (j), then

M−j =
(
M(1), . . . ,M(j − 1), max

V ∈V
V (j)<M(j)

V (j),

M(j + 1), . . . ,M(n)
)

is a better median than M ;

ii. if M(j) < minV ∈V V (j), then

M+
j =

(
M(1), . . . ,M(j − 1), min

V ∈V
V (j)>M(j)

V (j),

M(j + 1), . . . ,M(n)
)

is a better median than M ;

iii. otherwise, either M−j or M+
j is a better median

than M .

Proof. The first two cases are easy. If M(j) >
maxV ∈V V (j), then for each V ∈ V, it holds
that max(V (j),M(j)) = M(j) > M−j (j) =
max(V (j),M−j (j)) and min(V (j),M(j)) = V (j) =
min(V (j),M−j (j)). That is,

D(M,V ) = 1−
∑
j min(V (j),M(j))∑
j max(V (j),M(j))

≥ 1−
∑
j min(V (j),M−j (j))∑
j max(V (j),M−j (j))

= D(M−j , V ).

For the second case observe that if M(j) <
minV ∈V V (j), then for each V ∈ V, it holds
that max(V (j),M(j)) = V (j) = max(V (j),M+

j (j))
and min(V (j),M(j)) ≤ M(j) ≤ M+

j (j) =
min(V (j),M+

j (j)). Again, we obtain D(M,V ) ≥
D(M+

i , V ).
Consider the third case. Let M ′i be such

that M ′i(j) = M(j), for each j 6= i. We
define sV,i =

∑
j 6=i min(V (j),M(j)) and SV,i =∑

j 6=i max(V (j),M(j)). Then,

D(V,M) = 1− min(V (i),M(i)) + sV,i
max(V (i),M(i)) + SV,i

,



and

D(V,M ′i) = 1− min(V (i),M ′i(i)) + sV,i
max(V (i),M ′i(i)) + SV,i

.

Further let V< = {V | V ∈ V ∧ V (i) < M(i)} and
V> = {V | V ∈ V ∧ V (i) > M(i)}. Observe that V< ∪
V> = V. Define δ = D(M,V)−D(M ′i ,V). Then,

δ = D(M,V)−D(M ′i ,V)

=
∑
V ∈V

(
min(V (i),M ′i(i)) + sV,i
max(V (i),M ′i(i)) + SV,i

−

min(V (i),M(i)) + sV,i
max(V (i),M(i)) + SV,i

)
=
∑
V ∈V<

(
min(V (i),M ′i(i)) + sV,i
max(V (i),M ′i(i)) + SV,i

−

min(V (i),M(i)) + sV,i
max(V (i),M(i)) + SV,i

)
+

+
∑
V ∈V>

(
min(V (i),M ′i(i)) + sV,i
max(V (i),M ′i(i)) + SV,i

−

min(V (i),M(i)) + sV,i
max(V (i),M(i)) + SV,i

)
=
∑
V ∈V<

(
V (i) + sV,i
M ′i(i) + SV,i

− V (i) + sV,i
M(i) + SV,i

)
+

+
∑
V ∈V>

(
M ′i(i) + sV,i
V (i) + SV,i

− M(i) + sV,i
V (i) + SV,i

)

=
∑
V ∈V<

(
(V (i) + sV,i)

(
1

M ′i(i) + SV,i
− 1
M(i) + SV,i

))
+

+
∑
V ∈V>

M ′i(i)−M(i)
V (i) + SV,i

=
∑
V ∈V<

(
(V (i) + sV,i)

M(i)−M ′i(i)
(M ′i(i) + SV,i) (M(i) + SV,i)

)
+

+
∑
V ∈V>

M ′i(i)−M(i)
V (i) + SV,i

= (M ′i(i)−M(i))
( ∑
V ∈V>

1
V (i) + SV,i

−

+
∑
V ∈V<

V (i) + sV,i
(M ′i(i) + SV,i) (M(i) + SV,i)

)
.

Let A =
∑
V ∈V>

1
V (i)+SV,i

and B(x) =∑
V ∈V<

V (i)+sV,i
(x+SV,i)(M(i)+SV,i)

. Observe that 0 < x1 < x2

implies B(x1) > B(x2). Then,

δ = (M ′i(i)−M(i))
(
A−BM ′i(i)

)
.

We will either choose M ′i = M+
i or M ′i = M−i .

Suppose that A−BM+
i
> 0. Then, choosing M ′i = M+

i

will guarantee that δ > 0 (as M+
i (i) −M(i) > 0) and

therefore D(M,V) > D(M+
i ,V).

On the other hand, if A − BM+
i
< 0, then we will

also have A − BM−i < 0, by BM−(i) ≥ BM+(i). Thus,
choosing M ′i = M−i will give D(M,V) > D(M−i ,V) (as
δ > 0, by M−i (i)−M(i) < 0). �

The proof gives an easy rounding algorithm to
transform non-canonical medians into canonical ones.
Suppose M is non-canonical on some coordinate j.
Then either M+

j or M−j are better medians than M ,
in which case update M to be the optimal between
M+
j and M−j . After iterating over all non-canonical

coordinates completes the proof we obtain a canonical
median no worse than the original median M .


