
Filtering: A Method for Solving Graph Problems in
MapReduce

Silvio Lattanzi∗
Google, Inc.

New York, NY, USA
silviolat@gmail.com

Benjamin Moseley†

University of Illinois
Urbana, IL, USA

bmosele2@illinois.edu

Siddharth Suri
Yahoo! Research

New York, NY, USA
ssuri@yahoo-inc.com

Sergei Vassilvitskii
Yahoo! Research

New York, NY, USA
sergei@yahoo-inc.com

ABSTRACT
The MapReduce framework is currently the de facto standard used
throughout both industry and academia for petabyte scale data anal-
ysis. As the input to a typical MapReduce computation is large, one
of the key requirements of the framework is that the input cannot
be stored on a single machine and must be processed in parallel.
In this paper we describe a general algorithmic design technique in
the MapReduce framework called filtering. The main idea behind
filtering is to reduce the size of the input in a distributed fashion
so that the resulting, much smaller, problem instance can be solved
on a single machine. Using this approach we give new algorithms
in the MapReduce framework for a variety of fundamental graph
problems for sufficiently dense graphs. Specifically, we present
algorithms for minimum spanning trees, maximal matchings, ap-
proximate weighted matchings, approximate vertex and edge cov-
ers and minimum cuts. In all of these cases, we parameterize our
algorithms by the amount of memory available on the machines al-
lowing us to show tradeoffs between the memory available and the
number of MapReduce rounds. For each setting we will show that
even if the machines are only given substantially sublinear memory,
our algorithms run in a constant number of MapReduce rounds. To
demonstrate the practical viability of our algorithms we implement
the maximal matching algorithm that lies at the core of our analysis
and show that it achieves a significant speedup over the sequential
version.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-
numerical Algorithms and Problems
∗Work done while visiting Yahoo! Labs.
†Work done while visiting Yahoo! Labs. Partially supported by NSF grants
CCF-0728782 and CCF-1016684.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’11, June 4–6, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0743-7/11/06 ...$10.00.

General Terms
Algorithms, Theory

Keywords
MapReduce, Graph Algorithms, Matchings

1. INTRODUCTION
The amount of data available and requiring analysis has grown

at an astonishing rate in recent years. For example, Yahoo! pro-
cesses over 100 billion events, amounting to over 120 terabytes,
daily [7]. Similarly, Facebook processes over 80 terabytes of data
per day [17]. Although the amount of memory in commercially
available servers has also grown at a remarkable pace in the past
decade, and now exceeds a once unthinkable amount of 100 GB, it
remains woefully inadequate to process such huge amounts of data.
To cope with this deluge of information people have (again) turned
to parallel algorithms for data processing. In recent years MapRe-
duce [3], and its open source implementation, Hadoop [20], have
emerged as the standard platform for large scale distributed com-
putation. About 5 years ago, Google reported that it processes over
3 petabytes of data using MapReduce in one month [3]. Yahoo!
and Facebook use Hadoop as their primary method for analyzing
massive data sets [7, 17]. Moreover, over 100 companies and 10
universities are using Hadoop [6, 21] for large scale data analysis.

Many different types of data have contributed to this growth.
One particularly rich datatype that has captured the interest of both
industry and academia is massive graphs. Graphs such as the World
Wide Web can easily consist of billions of nodes and trillions of
edges [16]. Citation graphs, affiliation graphs, instant messenger
graphs, and phone call graphs have recently been studied as part of
social network analysis. Although it was previously thought that
graphs of this nature are sparse, the work of Leskovec, Kleinberg
and Faloutsos [14] dispelled this notion. The authors analyzed the
growth over time of 9 different massive graphs from 4 different do-
mains and showed that graphs grow dense over time. Specifically,
if n(t) and e(t) denote the number of nodes and edges at time t,
respectively, they show that e(t) ∝ n(t)1+c, where 1 ≥ c > 0.
They lowest value of c they find is 0.08, but they observe three
graphs with c > 0.5. The algorithms we present are efficient for
such dense graphs, as well as their sparser counterparts.

Previous approaches to graph algorithms on MapReduce attempt
to shoehorn message passing style algorithms into the framework

[9, 15]. These algorithms often require O(d) rounds, where d is the
diameter of the input graph, even for such simple tasks as comput-
ing connected components, minimum spanning trees, etc. A round
in a MapReduce computation can be very expensive time-wise, be-
cause it often requires a massive amount of data (on the order of
terabytes) to be transmitted from one set of machines to another.
This is usually the dominant cost in a MapReduce computation.
Therefore minimizing the number of rounds is essential for effi-
cient MapReduce computations. In this work we show how many
fundamental graph algorithms can be computed in a constant num-
ber of rounds. We use the previously defined model of computation
for MapReduce [13] to perform our analysis.

1.1 Contributions
All of our algorithms take the same general approach, which we

call filtering. They proceed in two stages. They begin by using the
parallelization of MapReduce to selectively drop, or filter, parts of
the input with the goal of reducing the problem size so that the re-
sult is small enough to fit into a single machine’s memory. In the
second stage the algorithms compute the final answer on this re-
duced input. The technical challenge is to choose enough edges to
drop but still be able to compute either an optimal or provably near
optimal solution. The filtering step differs in complexity depending
on the problem and takes a few slightly different forms. We exhibit
the flexibility of this approach by showing how it can be used to
solve a variety of graph problems.

In Section 2.4 we apply the filtering technique to computing
the connected components and minimum spanning trees of dense
graphs. The algorithm, which is much simpler, and more efficient
algorithm than the the one that appeared in [13], partitions the orig-
inal input and solves a subproblem on each partition. The algorithm
recurses until the data set is small enough to fit into the memory of
a single machine.

In Section 3, we turn to the problem of matchings, and show
how to compute a maximal matching in three MapReduce rounds
in the model of [13]. The algorithm works by solving a subproblem
on a small sample of the original input. We then use this interim
solution to prune out the vast majority of edges of the original input,
thus dramatically reducing the size of the remaining problem, and
recursing if it is not small enough to fit onto a single machine. The
algorithm allows for a tradeoff between the number of rounds and
the available memory. Specifically, for graphs with at most n1+c

edges and machines with memory at least n1+� our algorithm will
require O(c/�) rounds. If the machines have memory O(n) then
our algorithm requires O(log n) rounds.

We then use this algorithm as a building block, and show
algorithms for computing an 8-approximation for maximum
weighted matching, a 2-approximation to Vertex Cover and a 3/2-
approximation to Edge Cover. For all of these algorithms, the num-
ber of machines used will be at most O(N/η) where N is the size
of the input and η is the memory available on each machine. That
is, these algorithms require just enough machines to fit the entire
input on all of the machines. Finally, in Section 4 we adapt the
seminal work of Karger [10] to the MapReduce setting. Here the
filtering succeeds with a limited probability; however, we argue that
we can replicate the algorithm enough times in parallel so that one
of the runs succeeds without destroying the minimum cut.

1.2 Related Work
The authors of [13] give a formal model of computation of

MapReduce called MRC which we will briefly summarize in the
next section. There are two models of computation that are simi-
lar to MRC. We describe these models and their relationship to

MRC in turn. We also discuss how known algorithms in those
models relate to the algorithms presented in this work.

The algorithms presented in this paper run in a constant number
of rounds when the memory per machine is superlinear in the num-
ber of vertices (n1+� for some � > 0). Although this requirement
is reminiscent of the semi-streaming model [4], the similarities end
there, as the two models are very different. One problem that is
hard to solve in semi-streaming but can be solved inMRC is graph
connectivity. As shown in [4], in the semi-streaming model, with-
out a superlinear amount of memory it is impossible to answer con-
nectivity queries. In MRC, however, previous work [13] shows
how to answer connectivity queries when the memory per machine
is limited to n1−�, albeit at the cost of a logarithmic number of
rounds. Conversely, a problem that is trivial in the semi-streaming
model but more complicated in MRC is finding a maximal match-
ing. In the semi-streaming model one simply streams through the
edges, and adds the edge to the current matching if it is feasible.
As we show in Section 3, finding a maximal matching in MRC is
a computable, but non-trivial endeavor. The technical challenge for
this algorithm stems from the fact that no single machine can see
all of the edges of the input graph, rather the model requires the
algorithm designer to parallelize the processing1.

Although parallel algorithms are gaining a resurgence, this is an
area that was widely studied previously under different models of
parallel computation. The most popular model is the PRAM model,
which allows for a polynomial number of processors with shared
memory. There are hundreds of papers for solving problems in this
model and previous work [5, 13] shows how to simulate certain
types of PRAM algorithms in MRC. Most of these results yield
MRC algorithms that require Ω(log n) rounds, whereas in this
work we focus on algorithms that use O(1) rounds. Nonetheless, to
compare with previous work, we next describe PRAM algorithms
that either can be simulated in MRC, or could be directly imple-
mented in MRC. Israel and Itai [8] give an O(log n) round algo-
rithm for computing maximal matchings on a PRAM. It could be
implemented in MRC, but would require O(log n) rounds. Simi-
larly, [19] gives a distributed algorithm which yields constant fac-
tor approximation to the weighted matching problem. This algo-
rithm, which could also be implemented inMRC, takes O(log2 n)
rounds. Finally, Karger’s algorithm is in RNC but also requires
O(log2 n) rounds. We show how to implement it in MapReduce in
a constant number of rounds in Section 4.

2. PRELIMINARIES

2.1 MapReduce Overview
We remind the reader about the salient features of the MapRe-

duce computing paradigm (see [13] for more details). The input,
and all intermediate data, is stored in �key; value� pairs and the
computation proceeds in rounds. Each round is split into three con-
secutive phases: map, shuffle and reduce. In the map phase the
input is processed one tuple at a time. All �key; value� pairs emit-
ted by the map phase which have the same key are then aggregated
by the MapReduce system during the shuffle phase and sent to the
same machine. Finally each key, along with all the values associ-
ated with it, are processed together during the reduce phase.

Since all the values with the same key end up on the same ma-
chine, one can view the map phase as a kind of routing step that
determines which values end up together. The key acts as a (logi-

1In practice this requirement stems from the fact that even stream-
ing through a terabyte of data requires a non-trivial amount of time
as the machine remains IO bound.

cal) address of the machine, and the system makes sure all of the
�key; value� pairs with the same key are collected on the same ma-
chine. To simplify our reasoning about the model, we can combine
the reduce and the subsequent map phase. Looking at the computa-
tion through this lens, every round each machine performs some
computation on the set of �key; value� pairs assigned to it (re-
duce phase), and then designates which machine each output value
should be sent to in the next round (map phase). The shuffle en-
sures that the data is moved to the right machine, after which the
next round of computation can begin. In this simpler model, we
shall only use the term machines as opposed to mappers and reduc-
ers.

More formally, let ρj denote the reduce function for round j,
and let µj+1 denote the map function for the following round
of an MRC algorithm [13] where j ≥ 1. Now let φj(x) =
µj+1 ⊙ ρj(x). Here ρj takes as input some set of �key; value�
pairs denoted by x and outputs another set of �key; value� pairs.
We define the ⊙ operator to feed the output of ρj(x) to µj+1 one
�key; value� pair at a time. Thus φj denotes the operation of first
executing the reducer function, ρj , on the set of values in x and then
executing the map function, µj+1, on each �key; value� pair out-
put by ρj(x) individually. This syntactic change allows the algo-
rithm designer to avoid defining mappers and reducers and instead
define what each machine does during each round of computation
and specify which machine each output �key; value� pair should
go to.

We can now translate the restrictions on ρj and µj from the
MRC model of [13] to restrictions on φj . Since we are joining the
reduce and the subsequent map phase, we combine the restrictions
imposed on both of these computations. There are three sets of re-
strictions: those on the number of machines, the memory available
on each machine and the total number of rounds taken by the com-
putation. For an input of size N , and a sufficiently small � > 0,
there are N1−� machines, each with N1−� memory available for
computation. As a result, the total amount of memory available
to the entire system is O(N2−2�). See [13] for a discussion and
justification. An algorithm in MRC belongs to MRCi if it runs
in worst case O(logi N) rounds. Thus, when designing a MRC0

algorithm there are three properties that need to be checked:

• Machine Memory: In each round the total memory used by
a single machine is at most O(N1−�) bits.

• Total Memory: The total amount of data shuffled in any
round is O(N2−2�) bits2.

• Rounds: The number of rounds is a constant.

2.2 Total Work and Work Efficiency
Next we define the amount of work done by an MRC algorithm

by taking the standard definition of work efficiency from the PRAM
setting and adapting it to the MapReduce setting. Let w(N) denote
the amount of work done by an r-round, MRC algorithm on an
input of size N . This is simply the sum of the amount of work
done during each round of computation. The amount of work done
during round i of a computation is the product of the number of
machines used in that round, denoted pi(N), and the worst case
running time of each machine, denoted ti(N). More specifically,

w(N) =
rX

i=1

wi(N) =
rX

i=1

pi(N)ti(N). (1)

If the amount of work done by an MRC algorithm matches the

2In other words, the total amount of data shuffled in any round must
be less than the total amount of memory in the system.

Algorithm: MST(V,E)
1: if |E| < η then
2: Compute T ∗ = MST (E)
3: return T ∗

4: end if
5: � ← Θ(|E|/η)
6: Partition E into E1, E2, . . . , E� where |Ei| < η using a

universal hash function h : E → {1, 2, . . . , �}.
7: In parallel: Compute Ti, the minimum spanning tree on

G(V, Ei).
8: return MST(V,∪iTi)

Figure 1: Minimum spanning tree algorithm

running time of the best known sequential algorithm, we say the
MRC algorithm is work efficient.

2.3 Notation
Let G = (V, E) be an undirected graph, and denote by n = |V |

and m = |E|. We will call G, c-dense, if m = n1+c where
0 < c ≤ 1. In what follows we assume that the machines have
some limited memory η. We will assume that the number of avail-
able machines is O(m/η). Notice that the number of machines is
just the number required to fit the input on all of the machines si-
multaneously. All of our algorithms will consider the case where
η = n1+� for some � > 0. For a constant �, the algorithms we de-
fine will take a constant number of rounds and lie in MRC0 [13],
beating the Ω(log n) running time provided by the PRAM simula-
tion constructions (see Theorem 7.1 in [13]). However, even when
η = O(n) our algorithms will run in O(log n) rounds. This ex-
poses the memory vs. rounds tradeoff since most of the algorithms
presented take fewer rounds as the memory per machine increases.
We now proceed to describe the individual algorithms, in order of
progressively more complex filtering techniques.

2.4 Warm Up: Connected Components and
Minimum Spanning Trees

We present the formal algorithm for computing minimum span-
ning trees (the connected components algorithm is identical). The
algorithm works by partitioning the edges of the input graph into
subsets of size η and sending each subgraph to its own machine.
Then, each machine throws out any edge that is guaranteed not to
be a part of any MST because it is the heaviest edge on some cycle
in that machine’s subgraph. If the resulting graph fits into memory
of a single machine, the algorithm terminates. Otherwise, the algo-
rithm recurses on the smaller instance. We give the pseudocode in
Figure 1.

We assume the algorithm is given a c-dense graph; each machine
has memory η = O(n1+�), and that the number of machines � =
Θ(nc−�). Thus the algorithm only uses enough memory, across
the entire system, to store the input. We show that every iteration
reduces the input size by nc/�, and thus after �c/�� iterations the
algorithm terminates.

LEMMA 2.1. Algorithm MST(V,E) terminates after �c/�� itera-
tions and returns the Minimum Spanning Tree.

PROOF. To show correctness, note that any edge that is not part
of the MST on a subgraph of G is also not part of the MST of G by
the cycle property of minimum spanning trees.

It remains to show that (1) the memory constraints of each ma-
chine are never violated and (2) the total number of rounds is lim-
ited. Since the partition is done randomly, an easy Chernoff ar-
gument shows that no machine gets assigned more than η edges

with high probability. Finally, note that |
S

i
Ti| ≤ �(n − 1) =

O(n1+c−�). Therefore after �c/�� − 1 iterations the input is small
enough to fit onto a single machine, and the overall algorithm ter-
minates after �c/�� rounds.

LEMMA 2.2. The MST(V,E) algorithm does O(cm

�
α(m, n))

total work.

PROOF. During a specific iteration, randomly partitioning E
into E1, E2, . . . , E� requires a linear scan over the edges which
is O(m) work. Computing the minimum spanning tree Mi

of each part of the partition using the algorithm of [2] takes
O(�m

�
α(m, n)) work. Computing the MST of Gsparse on one

machine using the same algorithm requires �(n − 1)α(m, n) =
O(mα(m, n)) work.

For constant � the MRC algorithm uses O(mα(m, n)) work.
Since the best known sequential algorithm [11] runs in time O(m)
in expectation, the MRC algorithm is work efficient up to a factor
of α(m, n).

3. MATCHINGS AND COVERS
The maximum matching problem and its variants play a central

role in theoretical computer science, so it is natural to determine if
is possible to efficiently compute a maximum matching, or, more
simply, a maximal matching, in the MapReduce framework. The
question is not trivial. Indeed, due to the constraints of the model,
it is not possible to store (or even stream through) all of the edges
of a graph on a single machine. Furthermore, it is easy to come up
with examples where the partitioning technique similar to that used
for MSTs (Section 2.4) yields an arbitrarily bad matching. Simply
sampling the edges uniformly, or even using one of the sparsifica-
tion approaches [18] appears unfruitful because good sparsifiers do
not necessarily preserve maximal matchings.

Despite these difficulties, we are able to show that by combin-
ing a simple sampling technique and a post-processing strategy it is
possible to compute an unweighted maximal matching and thus a 2-
approximation to the unweighted maximum matching problem us-
ing only machines with memory of size O(n) and O(log n) rounds.
More generally, we show that we can find a maximal matching
on c-dense graphs in O(c/�) rounds using machines with Ω(n1+�)
memory; only three rounds are necessary if � = 2c/3. We extend
this technique to obtain an 8-approximation algorithm for maxi-
mum weighted matching and use similar approaches to approxi-
mate the vertex and edge cover problems. This section is organized
as follows: first we present the algorithm to solve the unweighted
maximal matching, and then we explain how to use this algorithm
to solve the weighted maximum matching problem. Finally, we
show how the techniques can be adapted to solve the minimum
vertex and the minimum edge cover problems.

3.1 Unweighted Maximal Matchings
The algorithm works by first sampling O(η) edges and finding

a maximal matching M1 on the resulting subgraph. Given this
matching, we can now safely remove edges that are in conflict (i.e.
those incident on nodes in M1) from the original graph G. If the
resulting filtered graph, H is small enough to fit onto a single ma-
chine, the algorithm augments M1 with a matching found on H .
Otherwise, we augment M1 with the matching found by recursing
on H . Note that since the size of the graph reduces from round to
round, the effective sampling probability increases, resulting in a
larger sample of the remaining graph.

Formally, let G(V, E) be a simple graph where n = |V | and
|E| ≤ n1+c for some c > 0. We begin by assuming that each of

the machines has at least η memory. We fix the exact value of η
later, but require that η ≥ 40n. We give the pseudocode for the
algorithm below:

1. Set M = ∅ and S = E.
2. Sample every edge (u, v) ∈ S uniformly at random with

probability p = η

10|S| . Let E� be the set of sampled edges.
3. If |E�| > η the algorithm fails. Otherwise give the graph

G(V, E�) as input to a single machine and compute a maxi-
mal matching M � on it. Set M = M ∪M �.

4. Let I be the set of unmatched vertices in G. Compute the
subgraph of G induced by I , G[I], and let E[I] be the set of
edges in G[I]. If |Ei| > η, set S = E[I] and return to step
2. Otherwise continue to step 5.

5. Compute a maximal matching M �� on G[I] and output M =
M ∪M ��

To proceed we need the following technical lemma, which shows
that with high probability every induced subgraph with sufficiently
many edges, has at least one edge in the sample.

LEMMA 3.1. Let E� ⊆ E be a set of edges chosen indepen-
dently with probability p. Then with probability at least 1 − e−n,
for all I ⊆ V either |E[I]| < 2n/p or E[I] ∩ E� �= ∅.

PROOF. Fix one such subgraph, G[I] = (I, E[I]) with
|E[I]| ≥ 2n/p. The probability that none of the edges in E[I]
were chosen to be in E� is (1 − p)|E[I]| ≤ (1 − p)2n/p ≤ e−2n.
Since there are at most 2n total possible induced subgraphs G[I],
the probability that there exists one that does not have an edge in
E� is at most 2ne−2n ≤ e−n.

Next we bound the number of iterations the algorithm takes.
Note that, the term iteration refers to the number of times the al-
gorithm is repeated. This does not refer to a MapReduce round.

LEMMA 3.2. If η ≥ 40n then the algorithm runs for at most
O(log n) iterations with high probability. Furthermore, if η =
n1+�, where 0 < � < c is a fixed constant, then the algorithm runs
in at most �c/�� iterations with high probability.

PROOF. Fix an iteration i of the algorithm and let p be the sam-
pling probability for this iteration. Let Ei be the set of edges at the
beginning of this iteration, and denote by I be the set of unmatched
vertices after this iteration. From Lemma 3.1, if |E[I]| ≥ 2n/p
then an edge of E[I] will be sampled with high probability. Note
that no edge in E[I] is incident on any edge in M �. Thus, if an
edge from E[I] is sampled then our algorithm would have chosen
this edge to be in the matching. This contradicts the fact that no
vertex in I is matched. Hence, |E[I]| ≤ 2n/p ≤ 20n|Ei|

η
with

high probability.
Now consider the first iteration of the algorithm, let G1(V1, E1)

be the induced graph on the unmatched nodes after the first step of
the algorithm. The above argument implies that |E1| ≤ 20n|E0|

η
≤

20n|E|
η

≤ |E|
2 . Similarly |E2| ≤ 20n|E1|

η
≤ (20n)2|E0|

η2 ≤ |E|
22 . So

after i iterations |Ei| ≤ |E|
2i . The first part of the claim follows.

To conclude the proof note that if η = n1+�, we have that |Ei| ≤
|E|
ni� , and thus the algorithm terminates after �c/�� iterations.

We continue by showing the correctness of the algorithm.

THEOREM 3.1. The algorithm finds a maximal matching of
G = (V, E) with high probability.

PROOF. First consider the case that the algorithm does not fail.
Assume, for the sake of contradiction, that there exists an edge

(u, v) ∈ E such that neither u nor v are matched in the final match-
ing M that is output. Consider the last iteration of the algorithm.
Since (u, v) ∈ E and u and v are not matched, (u, v) ∈ E[I].
Since this is the last run of the algorithm, a maximal matching M ��

of G[I] is computed on one machine. Since M �� is maximal, either
u or v or both must be matched in it. All of the edges of M �� get
added to M in the last step, which gives our contradiction.

Next, consider the case that the algorithm failed. This occurs
due to the set of edges E� having size larger than η in some iter-
ation of the algorithm. Note that E[|E�|] = |S| · p = η/10 in a
given iteration. By the Chernoff Bound it follows that |E�| ≥ η
with probability smaller than 2−η ≤ 2−40n (since η ≥ 40n). By
Lemma 3.2 the algorithm completes in at most O(log n) rounds,
thus the total failure probability is bounded by O(log n2−40n) us-
ing the union bound.

Finally we show how to implement this algorithm in MapRe-
duce.

COROLLARY 3.1. The Maximal Matching algorithm can be
implemented in three MapReduce rounds when η = n1+2c/3. Fur-
thermore, when η = n1+� then the algorithm runs for 3�c/��
rounds and O(log n) rounds when η ≥ 40n.

PROOF. By Lemma 3.2 the algorithm runs for one iteration with
high probability when η = n1+2c/3, �c/�� iterations when η =
n1+�. Therefore it only remains to describe how to compute the
graph G[I]. For this we appeal to Lemma 6.1 in [13], where the set
Si are the edges incident on node i, and the function fi drops the
edge i if it is matched and keeps it otherwise. Hence, each iteration
of the algorithm requires 3 MapReduce rounds.

LEMMA 3.3. The maximal matching algorithm presented
above is work efficient when η = n1+� where 0 < � < c is a
fixed constant.

PROOF. By Lemma 3.2 when η = n1+� there are at most a
constant number of iterations of the algorithm. Thus it suffices to
show that O(m) work is done in a single iteration. Sampling each
edge with probability p requires a linear scan over the edges, which
is O(m) work. Computing a maximal matching on one machine
can be done using a straightforward, greedy semi-streaming algo-
rithm requiring |E�| ≤ η ≤ m work. Computing G[I] can be done
as follows. Load M � onto m� machines where 0 < � < c and
partition E among those machines. Then, if an edge in E is inci-
dent on an edge in M � the machines drop that edge, otherwise that
edge is in G[I]. This results in O(m) work to load all of the data
onto the machines and O(m) work to compute G[I]. Since G[I]
has at most m edges, computing M �� on one machine using the
best known greedy semi-streaming algorithm also requires O(m)
work.

Since the vertices in a maximal matching provide a 2-
approximation to the vertex cover problem, we get the following
corollary.

COROLLARY 3.2. A 2-approximation to the optimal vertex
cover can be computed in three MapReduce rounds when η =
n1+2c/3. Further, when η = n1+� then the algorithm runs for
3�c/�� rounds and O(log n) rounds when η ≥ 40n. This algo-
rithm does O(m) total work when η = n1+� for a constant � > 0.

3.1.1 Experimental Validation
In this Section we experimentally validate the above algorithm

and demonstrate that it leads to significant runtime improvements

!"

#!"

$!!"

$#!"

%!!"

%#!"

!&!!$" !&!!#" !&!$" !&!%" !&!#" !&$" $"

!"
#$

%
&'
(%

)#
"*
&+
,'

-.%/0&'1234.4)0)*5'(/,'

'()(**+*",*-.)/012"

30)+(2/4-""

Figure 2: The running time of the MapReduce matching algo-
rithm for different values of p, as well as the baseline provided
by the streaming implementation.

in practice. Our data set consists of a sample of a graph of the
twitter follower network, previously used in [1]. The graph has
50,767,223 nodes, 2,669,502,959 edges, and takes about 44GB
when stored on disk. We implemented the greedy streaming al-
gorithm for maximum matching as well as the three phase MapRe-
duce algorithm described above. The streaming algorithm remains
I/O bounded and completes in 81 minutes. The total running times
for the MapReduce algorithm with different values for the sampling
probability p are given in Figure 2.

The MapReduce algorithm achieves a significant speedup (over
10x) over a large number of values for p. The speed up is the result
of the fact that a single machine never scans the whole input. Both
the sampling in stage 1 and the filtering in stage 2 are performed in
parallel. Note that the parallelization does not come for free, and
the MapReduce system has non-trivial overhead over the straight-
forward streaming implementation. For example, when p = 1, the
MapReduce algorithm essentially implements the streaming algo-
rithm (since all of the edges are mapped onto a single machine),
however the running time is almost 2.5 times slower. Overall these
results show that the algorithms proposed are not only interesting
from a theoretical viewpoint, but are viable and useful in practice.

3.2 Maximum Weighted Matching
We present an algorithm that computes an approximation to the

maximum weighted matching problem using a constant number of
MapReduce rounds. Our algorithm takes advantage of both the se-
quential and parallel power of MapReduce. Indeed, it will compute
several matchings in parallel and then combine them on a single
machine to compute the final result. We assume that the maxi-
mum weight on an edge is polynomial in |E| and we prove an 8-
approximation algorithm. Our analysis is motivated by the work of
Feigenbaum et al. [4], but is technically different since no single
machines sees all of the edges.

The input of the algorithm is a simple graph G(V, E) and a
weight function w : E → R. We assume that |V | = n and |E| =
n1+c for a constant c > 0. Without loss of generality, assume that
min{w(e) : e ∈ E} = 1 and W = max{w(e) : e ∈ E}. The
algorithm works as follows:

1. Split the graph G into G1, G2, · · · , G�log W�, where Gi is

the graph on the set V of vertices and contains edges with
weights in (2i−1, 2i].

2. For 1 ≤ i ≤ �log W � run the maximal matching algorithm
on Gi. Let Mi be the maximal matching for the graph Gi.

3. Set M = ∅. Consider the edge sets sequentially, in de-
scending order, M�log W�, . . . , M2, M1. When considering
an edge e ∈ Mi, we add it to the matching if and only if
M ∪ {e} is a valid matching. After all edges are considered,
output M .

LEMMA 3.4. The above algorithm outputs an 8-approximation
to the weighted maximum matching problem.

PROOF. Let OPT be the maximum weighted matching in G and
denote by V (Mi) the set of vertices incident on the edges in Mi.
Consider an edge (u, v) = e ∈ OPT, such that e ∈ Gj for some
j. Let i∗ be the maximum i such that {u, v} ∩ V (Mi∗) �= ∅. Note
that i∗ must exist, and i∗ ≥ j else we could have added e to Mj .
Therefore, w(e) ≤ 2i

∗
.

Now for every such edge (u, v) ∈ OPT we select one vertex
from {u, v}∩V (Mi∗). Without loss of generality, let that v be the
selected vertex. We say that v is a blocking vertex for e. For each
blocking vertex v, we associate its incident edge in Mi∗ and call it
the blocking edge for e. Let Vb(i) be the set of blocking vertices in
V (Mi), we have that

�log W�X

i=1

2i |Vb(i)| ≥
X

e∈OPT

w(e).

This follows from the fact that every vertex can “block” at most
one e ∈ OPT and that OPT is a valid matching. Note also that
from the definition of blocking vertex if (u, v) ∈ M ∩ Mj then
u, v /∈ ∪k<jVb(k).

Now suppose that an edge (x, y) ∈ Mk is discarded by step 3
of the algorithm. This can happen if and only if there is an edge
already present in the matching with a higher weight adjacent to x
or y. Formally, there is a (u, v) ∈ M , (u, v) ∈ Mj with j > k
and {u, v} ∩ {x, y} �= ∅. Without loss of generality assume that
{u, v}∩ {x, y} = x and consider such an edge (x, v). We say that
(x, v) killed the edge (x, y) and the vertex y. Notice that an edge
(u, v) ∈ M and (u, v) ∈ Mj kills at most two edges for every
Mk with k < j and kills at most two nodes in Vb(k). Finally we
also define (u, v)b as the set of blocking vertices associated with
the blocking edge (u, v).

Now consider Vb(k), each blocking vertex was either killed by
one of the edges in the matching M , or is adjacent to one of the
edges in Mk. Furthermore, the total weight of the edges in OPT
with that were blocked by a blocking vertex killed by (u, v) is at
most
j−1X

i=1

2i
˛̨
{Vb(i) killed by (u, v)}

˛̨
≤

j−1X

i=1

2i+1 ≤ 2j+1 ≤ 4w((u, v)).

(2)
To conclude, note that each edge in OPT that is not in M was

either blocked directly by an edge in M , or was blocked by a vertex
that was killed by an edge in M . To bound the former, consider an
edge (u, v) ∈ Mj ∩ M . Note that this edge can be incident on at
most 2 edges in OPT, each of weight 2j ≤ 2w((u, v)), and thus
the weight in OPT incident on an edge (u, v) is 4w((u, v)).

Putting this together with Equation 2 we conclude:

8
X

(u,v)∈M

w((u, v)) ≥
X

e∈OPT

w(e).

Furthermore we can show that the analysis of our algorithm is
essentially tight. Indeed there exists a family of graphs where our
algorithm finds a solution with weight w(OPT)

8−o(1) with high probabil-
ity. We prove the following lemma in Appendix A.

LEMMA 3.5. There is a graph where our algorithm computes a
solution that has value w(OPT)

8−o(1) with high probability.

Finally, suppose that the weight function w : E → R is such that
∀e ∈ E, w(e) ∈ O(poly(|E|)) and that each machine has memory
at least η ≥ max{2n log2 n, |V |�log2 W �} . Then we can run the
above algorithm in MapReduce using only one more round than
the maximal matching algorithm. In the first round we split G into
G1, . . . , G�log W�; then we run the maximal matching algorithm
of the previous subsection in parallel on �log W � machines. In the
last round, we run the last step on a single machine. The last step is
always possible because we have at most |V |�log W � edges each
with weights of size log W .

THEOREM 3.2. There is an algorithm that finds a 8-
approximation to the maximum weighted matching problem on a c
dense graph using machines with memory η = n1+� in 3�c/��+ 1
rounds with high probability.

COROLLARY 3.3. There is an algorithm that, with high proba-
bility, finds a 8-approximation to the maximum weighted matching
problem that runs in four MapReduce rounds when η = n1+2/3c.

To conclude the analysis of the algorithm we now study the work
amount of the maximum matching algorithm.

LEMMA 3.6. The amount of work performed by the maximum
matching algorithm presented above is O(m) when η = n1+�

where 0 < � < c is a fixed constant.

PROOF. The first step of the algorithm requires O(m) work as
it can be done using a linear scan over the edges. In the second
step, by Lemma 3.3 each machine performs work that is linear in
the number of edges that are assigned to the machine. Since the
edges are partitioned across the machines, the total work done in
the second step is O(m). Finally we can perform the third step by
a semi-streaming algorithm that greedily adds edges in the order
M�log W�, . . . , M2, M1, requiring O(m) work.

3.3 Minimum Edge Cover
Next we turn to the minimum edge cover problem. An edge

cover of a graph G(V, E) is a set of edges E∗ ⊆ E such that each
vertex of V has at least one endpoint in E∗. The minimum edge
cover is an edge cover E∗ of minimum size.

Let G(V, E) be a simple graph. The algorithm to compute a
edge cover is as follows:

1. Find a maximal matching M of G using the procedure de-
scribed in Section 3.1.

2. Let I be the set of uncovered vertices. For each uncovered
vertex, take any edge incident on the vertex in I . Let this set
of edges be U .

3. Output E∗ = M ∪ U .

Note that this procedure produces a feasible edge cover E∗. To
bound the size of E∗ let OPT denote the size of the minimum
edge cover for the graph G and let OPTm denote the size of the
maximum matching in G. It is known that the minimum edge
cover of a graph is equal to |V | − OPTm. We also know that
|U | = |V |−2|M |. Therefore, |E∗| = |V |−|M | ≤ |V |− 1

2 OPTm

since a maximal matching has size at least 1
2 OPTm. Knowing that

OPTm ≤ |V |/2 and using Corollary 3.1 to bound the number of
rounds we have the following theorem.

THEOREM 3.3. There is an algorithm that, with high probabil-
ity, finds a 3

2 -approximation to the minimum edge cover in MapRe-
duce. If each machine has memory η ≥ 40n then the algorithm
runs in O(log n) rounds. Further, if η = n1+�, where 0 < � < c
is a fixed constant, then the algorithm runs in 3�c/��+ 1 rounds.

COROLLARY 3.4. There is an algorithm that, with high proba-
bility, finds a 3

2 -approximation to the minimum edge cover in four
MapReduce rounds when η = n1+2/3c.

Now we prove that the amount of work performed by the edge
cover algorithm is O(m).

LEMMA 3.7. The amount of work performed by the edge cover
algorithm presented above is O(m) when η = n1+� where 0 <
� < c is a fixed constant.

PROOF. By Lemma 3.3 when η = n1+� the first step of the
algorithm can be done performing O(m) operations. The second
step can be performed by a semi streaming algorithm that requires
O(m) work. Thus the claim follows.

4. MINIMUM CUT
Whereas in the previous algorithms the filtering was done by

dropping certain edges, this algorithm filters by contracting edges.
Contracting an edge, will obviously reduce the number of edges
and may either keep the number of vertices the same (in the case
we contracted a self loop), or reduce it by one. To compute the
minimum cut of a graph we appeal to the contraction algorithm in-
troduced by Karger [10]. The algorithm has a well known property
that the random choices made in the early rounds succeed with high
probability, whereas those made in the later rounds have a much
lower probability of success. We exploit this property by showing
how to filter the input in the first phase (by contracting edges) so
that the remaining graph is guaranteed to be small enough to fit
onto a single machine, yet large enough to ensure that the failure
probability remains bounded. Once the filtering phase is complete,
and the problem instance is small enough to fit onto a single ma-
chine, we can employ any one of the well known methods to find
the minimum cut in the filtered graph. We then decrease the fail-
ure probability by running several executions of the algorithm in
parallel, thus ensuring that in one of the copies the minimum cut
survives this filtering phase.

The complicating factor in the scheme above is contracting the
right number of edges so that the properties above hold. We pro-
ceed by labeling each edge with a random number between 0 and
1 and then searching for a threshold t so that contracting all of the
edges with label less than t results in the desired number of vertices.
Typically such a search would take logarithmic time, however, by
doing the search in parallel across a large number of machines, we
can reduce the depth of the recursion tree to be constant. Moreover,
to compute the number of vertices remaining after the first t edges
are contracted, we refer to the connected components algorithm
in Section 2.4. Since the connected components algorithm uses a
small number of machines, we can show that even with many paral-
lel invocations we will not violate the machine budget. We present
the algorithm and its analysis below. Also, the algorithm uses two
subroutines, Findt and Contract which are defined in turn.

Algorithm 1 MinCut(E)

1: for i = 1 to nδ1 (in parallel) do
2: tag e ∈ E with a number re chosen uniformly at random

from [0, 1]
3: t ← Findt(E, 0, 1)
4: Ei ← Contract(E, t)
5: Ci ← min cut of Ei

6: end for
7: return minimum cut over all Ci

4.1 Find Algorithm
The pseudocode for the algorithm to find the correct threshold is

given below. The algorithm performs a parallel search on the value
t so that contracting all edges with weight at most t results in a
graph with nδ3 vertices. The algorithm invokes nδ2 copies of the
connected components algorithm, each of which uses at most nc−�

machines, with n1+� memory.

Algorithm 2 Findt(E, min, max)

1: {Uses nδ2+c/� machines.}
2: γ ← max−min

nδ2

3: for j = 1 to nδ2 (in parallel) do
4: τj ← min +jγ
5: Ej ← {e ∈ E | re ≤ τj}
6: ccj ← number of connected components in G = (V, Ej)
7: end for
8: if there exists a j such that ccj = nδ3 then
9: return j

10: else
11: return Findt(E, τj , τj+1) where j is the smallest value s.t.

ccj < nδ3 , ccj+1 > nδ3

12: end if

4.2 Contraction Algorithm
We state the contraction algorithm and prove bounds on its per-

formance.

Algorithm 3 Contract(E, t)

1: CC ← connected components in {e ∈ E | re ≤ t}
2: let h : [n] → [nδ4] be a universal hash function
3: map each edge (u, v) to machine h(u) and h(v)
4: map the assignment of node u to its connected component

CC(u), to machine h(u)
5: on each reducer rename all instances of u to CC(u)
6: map each edge (u, v) to machine h(u) + h(v)
7: Drop self loops (edges in same connected component)
8: Aggregate parallel edges

LEMMA 4.1. The Contract algorithm uses nδ4 machines with
O(m

nδ4
) space with high probability.

PROOF. Partition V into parts Pj = {v ∈ V | 2j−1 <
deg(v) ≤ 2j}. Since the degree of each node is bounded by n,
there are at most log n parts in the partition. Define the volume of
part j as Vj = |Pj | · 2j . Parts having volume less than m1−� could
all be mapped to one reducer without violating its space restriction.
We now focus on parts with Vj > m1−�, and so let Pj be such a
part. Thus Pj contains between m

1−�

2j and 2m
1−�

2j vertices. Let ρ

be an arbitrary reducer. Since h is universal, the probability that
any vertex v ∈ Pj maps to ρ is exactly n−δ4 . Therefore, in expec-
tation, the number of vertices of Pj mapping to ρ is at most 2m

1−�

2jnδ4
.

Since each of these vertices has degree at most 2j , in expectation
the number of edges that map to ρ is at most 2m

1−�

nδ4
. Let the ran-

dom variable Xj denote the number of vertices from Pj that map
to ρ. Say that a bad event happens if more than 4m

1−�

2j vertices of
Vj map to ρ. Chernoff bounds tell us that the probability of such
an event happening is O(1/n2δ4),

Pr

»
Xj >

10m1−�

nδ4

–
< 2

−
„

10m1−�

nδ4

«

<
1

n2δ4
. (3)

Taking a union bound over all nδ4 reducers and log n parts, we
can conclude that the probability of any reducer being overloaded
is bounded below by 1− o(1).

4.3 Analysis of the MinCut Algorithm
We proceed to bound the total number of machines, maximum

amount of memory, and the total number of rounds used by the
MinCut algorithm.

LEMMA 4.2. The total number of machines used by the MinCut
algorithm is nδ1

`
nδ2+c−� + nδ4

´
.

PROOF. The algorithm begins by running nδ1 parallel copies of
a simpler algorithm which first invokes Findt, to find a threshold
t for each instance. This algorithm uses nδ2 parallel copies of a
connected component algorithm, which itself uses nc−� machines
(see Section 2.4). After finding the threshold, we invoke the Con-
tract algorithm, which uses nδ4 machines per instance. Together
this gives the desired number of machines.

LEMMA 4.3. The memory used by each machine during the ex-
ecution of MinCut is bounded by
max{n2δ3 , n1+c−δ4 , n1+�}.

PROOF. There are three distinct steps where we must bound the
memory. The first is the the searching phase of Findt. Since this al-
gorithm executes instances of the connected components algorithm
in parallel, the results of Section 2.4 ensure that each instance uses
at most η = n1+� memory. The second is the contraction algo-
rithm. Lemma 4.1 assures us that the input to each machine is of
size at most O(m

nδ4
). Finally, the last step of MinCut requires that

we load an instance with nδ3 vertices, and hence at most n2δ3 edges
onto a single machine.

LEMMA 4.4. Suppose the amount of memory available per ma-
chine is η = n1+�. MinCut runs in O(1

�δ2
) number of rounds.

PROOF. The only variable part of the running time is the number
of rounds necessary to found a threshold τ so that the number of
connected components in Findt is exactly nδ3 . Observe that after
the kth recursive call, the number of edges with threshold between
min and max is m

nδ2k . Therefore the algorithm must terminate
after at most 1+c

δ2
rounds, which is constant for constant δ2.

We are now ready to prove the main theorem.

THEOREM 4.1. Algorithm MinCut returns the minimum cut in
G with probability at least 1−o(1), uses at most η = n1+� memory
per machine and completes in O(1

�2
) rounds.

PROOF. We first show that the success probability is at least

1−
„

1− n2δ3

n2

«n
δ1

.

The algorithm invokes nδ1 parallel copies of the following ap-
proach: (1) simulate Karger’s contraction algorithm [10] for the
first n−nδ3 steps resulting in a graph Gt and (2) Identify the min-
imum cut on Gt. By Corollary 2.2 of [12] step (1) succeeds with
probability at least p = Ω(n2δ3−2). Since the second step can be
made to fail with 0 probability, each of the parallel copies succeeds
with probability at least p. By running nδ1 independent copies of
the algorithm, the probability that all of the copies fail in step (1) is
at most 1− (1− p)n

δ1 .
To prove the theorem, we must find a setting of the parameters

δ1, δ2, δ3, and δ4 so that the memory, machines, and correctness
constraints are satisfied.

max{n2δ3 , n1+c−δ4} ≤ η = n1+� Memory

nδ1
“
nδ2+c−� + nδ4

”
= o(m) = o(n1+c) Machines

„
1− n2δ3

n2

«n
δ1

= o(1) Correctness

Setting δ1 = 1 − �/2, δ2 = �, δ3 = 1+�

2 , δ4 = c satisfies all of
them.

Acknowledgments
We would like to thank Ashish Goel, Jake Hofman, John Langford,
Ravi Kumar, Serge Plotkin and Cong Yu for many helpful discus-
sions.

5. REFERENCES
[1] E. Bakshy, J. Hofman, W. Mason, and D. J. Watts.

Everyone’s an influencer: Quantifying influence on twitter.
In Proceedings of WSDM, 2011.

[2] Bernard Chazelle. A minimum spanning tree algorithm with
inverse-Ackerman type complexity. Journal of the ACM,
47(6):1028–1047, November 2000.

[3] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
data processing on large clusters. In Proceedings of OSDI,
pages 137–150, 2004.

[4] Joan Feigenbaum, Sampath Kannan, Andrew McGregor,
Siddharth Suri, and Jian Zhang. On graph problems in a
semi-streaming model. Theoretical Computer Science,
348(2–3):207–216, December 2005.

[5] Michael T. Goodrich. Simulating parallel algorithms in the
mapreduce framework with applications to parallel
computational geometry. Second Workshop on Massive Data
Algorithmics (MASSIVE 2010), June 2010.

[6] Hadoop Wiki - Powered By.
http://wiki.apache.org/hadoop/PoweredBy.

[7] Blake Irving. Big data and the power of hadoop. Yahoo!
Hadoop Summit, June 2010.

[8] Amos Israel and A. Itai. A fast and simple randomized
parallel algorithm for maximal matching. Information
Processing Letters, 22(2):77–80, 1986.

[9] U Kang, Charalampos Tsourakakis, Ana Paula Appel,
Christos Faloutsos, and Jure Leskovec. HADI: Fast diameter
estimation and mining in massive graphs with hadoop.
Technical Report CMU-ML-08-117, CMU, December 2008.

[10] David R. Karger. Global min-cuts in RNC and other
ramifications of a simple mincut algorithm. In Proceedings
of SODA, pages 21–30, January 1993.

[11] David R. Karger, Philip N. Klein, and Robert E. Tarjan. A
randomized linear-time algorithm for finding minimum
spanning trees. In Proceedings of the twenty-sixth annual
ACM symposium on Theory of computing, Proceedings of
STOC, pages 9–15, New York, NY, USA, 1994. ACM.

[12] David R. Karger and Clifford Stein. An Õ(n2) algorithm for
minimum cuts. In Proceedings of STOC, pages 757–765,
May 1993.

[13] Howard Karloff, Siddharth Suri, and Sergei Vassilvitskii. A
model of computation for MapReduce. In Proceedings of
SODA, pages 938–948, 2010.

[14] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos.
Graphs over time: Densification laws, shrinking daimeters
and possible explanations. In Proc. 11th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, 2005.

[15] Jimmy Lin and Chris Dyer. Data-Intensive Text Processing
with MapReduce. Number 7 in Synthesis Lectures on Human
Language Technologies. Morgan and Claypool, April 2010.

[16] Grzegorz Malewicz, Matthew H. Austern, Aart J.C. Bik,
James C. Dehnert, Ilan Horn, Naty Leiser, and Grzegorz
Czajkowski. Pregel: A system for large-scale graph
processing. In Proceedings of SIGMOD, pages 135–145,
Indianapolis, IN, USA, June 2010. ACM.

[17] Mike Schroepfer. Inside large-scale analytics at facebook.
Yahoo! Hadoop Summit, June 2010.

[18] Daniel A. Spielman and Nikhil Srivastava. Graph
sparsification by effective resistances. In Proceedings of
STOC, pages 563–568, New York, NY, USA, 2008. ACM.

[19] Mirjam Wattenhofer and Roger Wattenhofer. Distributed
weighted matching. In Proceedings of DISC, pages 335–348.
Springer, 2003.

[20] Tom White. Hadoop: The Definitive Guide. O’Reilly Media,
2009.

[21] Yahoo! Inc Press Release. Yahoo! partners with four top
universities to advance cloud computing systems and
applications research.
http://research.yahoo.com/news/2743, April
2009.

APPENDIX
A. WEIGHTED MATCHING LOWER

BOUND

LEMMA A.1. There is a graph where our algorithm compute a
solution that has value w(OPT)

8−o(1) with high probability.

PROOF. Let G(V, E) a graph on n nodes and m vertices,
and fix a W = 2�log m�. We say that a bipartite graph
G(V, E1, E2) is balanced if |E1| = |E2|. Consider the follow-
ing graph: there is a central balanced bipartite clique, B1, on

n

2 log W
nodes and all the edges of the clique have weight W

2 + 1.
Every side of the central bipartite clique is also part of other
log W − 1 balanced bipartite cliques. We refer to those cliques
has BE1

2 , BE1
3 , · · · , BE1

W
, BE2

2 , BE2
3 , · · · , BE2

W
. In both BE1

i
and

BE2
i

we have that the weight of the edges in them have weight
W

2i + 1. Furthermore every node in B1 is also connected with an
additional node of degree one with an edge of weight W , and every
node in BE1

i
\B1 and BE2

i
\B1 is connected to a node of degree

one with an edge of weight W

2i−1 . Figure 3 shows the subgraph
composed by B1 and the two graphs BE1

i
and BE2

i
.

Figure 3: The subgraph(we have drawn only the edges of
weight W , W

2 + 1, W

2i+1 and W

2i + 1) of the graph of G for
which our algorithm finds a solution with value w(OPT)

8−o(1) with
high probability.

Note that the optimal weighted maximum matching for this
graph is the one that is composed by all the edges incident to
a node of degree one and its total value is 2W · n

2 log W
+ W ·

n

2 log W
+ W

2 · n

2 log W
+ · · · + n

2 log W
= 2W n

2 log W

P
W

i=0
1
2i =

2W n

2 log W
· 1−2W+1

1−2−1 = (4− o(1))W n

2 log W
.

Now we will show an upper-bound on the performance of our
algorithm that holds with high probability. Recall that in step one
our algorithm splits the graph in G1, · · · , GW subgraph where the
edges in Gi are in in (2i−1, 2i] then it computes a maximal match-
ing on Gi using the technique shown in the previous subsection. In
particular the algorithm works as follows: it samples the edges in
Gi with probability 1

|Ei|�
and then computes a maximal matching

on it, finally it tries to match the unmatched nodes using the edges
between the unmatched nodes in Gi.

To understand the value of the matching returned by the algo-
rithm, consider the graph Gi note that this graph is composed only
by the edges in BE1

i
, BE2

i
and the edges connected to nodes of

degree one with weight W

2i−1 . We refer to those last edges as the
heavy edges in Gi. Note that the heavy edges are all connected to
vertices in BE1

i
\B1 and BE2

i
\B1. Let s be the number of vertices

in a side of BE1
i

, note that Gi, for i > 1 has 6s nodes and s2 + 2s
edges.

Recall that we sample an edges with probability 1
C|Vi|�

=

1
C(6s)� , so we have that in expectation we sample Θ

“
2s 1

(2s)�

”
=

Θ
`
(2s)1−�

´
heavy edges, thus using the Chernoff bound we have

that the probability that the number of sampled heavy edges is big-
ger or equal than Θ

“
3(6s)(1−�)

”
is e−3(6s)(1−�)

. Further notice

that by lemma 3.1 for every set of node in BE1
i

or BE2
i

with
(6s)1+2� edges we have at least an edge in it with probability
e−

√
6s(1

C (6s)�−log(6s)).
Thus the maximum number of nodes left unmatched in BE1

i
or

BE2
i

after step 2 of the maximal matching algorithm is smaller
then (6s)

1+2�
2 + Θ

“
3(6s)(1−�)

”
so even if we matched those

nodes with the heavy edges in Gi we use at most (6s)
1+2�

2 +

Θ
“
3(6s)(1−�)

”
of those edges. Thus we have that for every Gi,

for every i > 1 the maximal matching algorithm uses at most
Θ

“
6(6s)(1−�) + (6s)

1+2�
2

”
= o

“
s

log2 s

”
heavy edges with prob-

ability
“
1− 2e−

√
6s(1

C (6s)�−log(6s))
”

.
With the same reasoning, just with different constant, we no-

tice that the same fact holds also for G1. So we have that for
every Gi we use only o

“
|Vi|

log2 |Vi|

”
heavy edges with probability

“
1− 2e−Θ(

√
|Vi|)

”
, further notice that every maximal matching

that the algorithm computes it always matches the nodes in B1, be-
cause it is alway possible to use the edges that connect those nodes
to the nodes of degree 1.

Knowing that we notice that the final matching that our algo-
rithm outputs is composed by the maximal matching of G1 plus
all the heavy edges in maximal matching of G2, · · · , GW . Thus
we have that with probability

Q
i

“
1− 2e−Θ(

√
|Vi|)

”
= 1 −

o(1)3 the total weight of the computed solution is upper-bounded
by

`
W

2 + 1
´

n

2 log W
+ W log W · o

“
s

log2 s

”
= W

2
n

2 log W
+

o(W) and so the ratio between the optimum and the solution is
(4−o(1))W n

2 log W
W
2

n
2 log W +o(W)

= 1
8−o(1) . Thus the claim follows.

3Note that every |Vi| ∈ Θ
“

n

log W

”

