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ABSTRACT
The goal of this paper is to identify fundamental limitations on how
efficiently algorithms implemented on platforms such as MapRe-
duce and Hadoop can compute the central problems in the motivat-
ing application domains, such as graph connectivity problems.

We introduce an abstract model of massively parallel computa-
tion, where essentially the only restrictions are that the “fan-in” of
each machine is limited to s bits, where s is smaller than the in-
put size n, and that computation proceeds in synchronized rounds,
with no communication between different machines within a round.
Lower bounds on the round complexity of a problem in this model
apply to every computing platform that shares the most basic de-
sign principles of MapReduce-type systems.

We prove that computations in our model that use few rounds
can be represented as low-degree polynomials over the reals. This
connection allows us to translate a lower bound on the (approxi-
mate) polynomial degree of a Boolean function to a lower bound
on the round complexity of every (randomized) massively parallel
computation of that function. These lower bounds apply even in
the “unbounded width” version of our model, where the number
of machines can be arbitrarily large. As one example of our gen-
eral results, computing any non-trivial monotone graph property —
such as connectivity — requires a super-constant number of rounds
when every machine can accept only a sub-polynomial (in n) num-
ber of input bits s.

Finally, we prove that, in two senses, our lower bounds are the
best one could hope for. For the unbounded-width model, we prove
a matching upper bound. Restricting to a polynomial number of
machines, we show that asymptotically better lower bounds require
proving that P 6= NC1.

1. INTRODUCTION
The past decade has seen a resurgence of parallel computation,

and there is now an impressive array of frameworks built for work-
ing with large datasets: MapReduce, Hadoop, Pregel, Giraph, Spark,
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and so on. The goal of this paper is to identify fundamental limita-
tions on how efficiently these frameworks can compute the central
problems in the motivating application domains, such as graph con-
nectivity.

Modern architectures for massively parallel computation share a
number of common attributes. First, the data, or the input to the
computation, is partitioned arbitrarily across all of the nodes par-
ticipating in the computation. Second, computation proceeds in
synchronous rounds. In every round, each machine looks at the lo-
cal data available and performs some amount of computation with-
out communicating with other machines. After the computation is
done, a communication round begins, where each machine can send
messages to other machines. Importantly, there are no restrictions
on the communicating pairs — the communication pattern can be
arbitrary and input-dependent. Once the communication phase is
over, a new round begins. For example, for readers familiar with
the MapReduce framework, the computation corresponds to the re-
duce phase, the designation of addressees to the map phase, and the
actual communication to the shuffle phase.

Most previous work has focused on designing efficient algo-
rithms for these systems. To that end, a number of models for
MapReduce and its variants have been proposed; see Section 1.2
for a complete list and a detailed comparison to the present work.
Since these works aspire to realizable positive results, their models
aim to be faithful to a specific system, and often involve a number
of system-dependent parameters and constraints that govern the al-
gorithmic design space.

In this work, motivated by the rapidly changing landscape of the
systems deployed in practice and in search of impossibility results,
we take a different approach. Instead of looking for a faithful model
for the system du jour, we focus on extracting the most fundamen-
tal constraints shared by all of these models and examine the conse-
quent restrictions on feasible computations. By focusing on a sin-
gle parameter, namely the input size for each machine, and a single
benchmark, the number of rounds of computation, we obtain pa-
rameterized lower bounds that apply to any computing framework
(past or future) that shares the same design principles.

1.1 Summary of Contributions
Our first contribution is a general model of massively parallel

computation that captures the core properties common to all mod-
ern parallel processing systems. Conceptually, computation pro-
ceeds in synchronous rounds, and in each round, each machine
performs an arbitrary computation on its input, and sends arbitrary
information to arbitrary machines in the next round, subject only
to the constraint that each machine receives at most s bits each
round. In the most powerful, unbounded-width, version of our
model, where the number of machines is unlimited, the only re-
striction is that the “fan-in” of each machine is limited to s bits,



where s is a parameter smaller than the input size n. (Unlimited
extra space can be used for computations on these inputs.)

Second, we prove that computations in our model that use few
rounds can be represented as low-degree polynomials over the re-
als. Specifically, we prove that if a function can be computed by
such a computation with space s per machine in r rounds (even
with unbounded width), then the function has a polynomial rep-
resentation with degree at most sr (Theorem 3.1). In particular,
computing a function with a polynomial representation of degree n
requires dlogs ne rounds. This lower bound implies, for example,
that computing such a function with space s = nε per machine
requires 1/ε rounds in our model. Similarly, if s is only polylog-
arithmic, then Ω(logn/ log logn) rounds are needed. Our lower
bounds also extend, with a constant-factor degradation, to random-
ized computations.

An obvious question is whether or not there are super-constant
lower bounds on the number of rounds required to compute natural
functions when the space s is polynomial in n, such as s =

√
n.

Our third contribution is a proof that, in two senses, our lower
bounds are the best one could hope for. For the unbounded-width
model, our lower bound is completely tight, as every function can
be computed in at most dlogs ne rounds in our model. But what
if only a polynomial number of machines are allowed? Here, we
show that better lower bounds require proving very strong circuit
lower bounds. Specifically, any lower bound asymptotically larger
than Θ(logs n) for a function in P would separate NC1 from P , a
major open question in circuit complexity (Theorem 7.1).

Fourth, by connecting MapReduce-type computations to polyno-
mials, we can apply the sophisticated toolbox known for polynomi-
als to reason about these computations. As one example, known re-
sults imply that every non-trivial monotone graph property can only
be represented by polynomials with degree at least roughly n2/3.
(Here n denotes the number of vertices, and the input is given as the
characteristic vector of the graph’s edge set.) We therefore obtain
a lower bound of approximately 1

2
logs n on the number of rounds

required for deciding any such property (Theorem 5.3), including
graph connectivity.

Finally, we develop new machinery for proving lower bounds
on the polynomial degree of Boolean functions, and hence on the
round complexity of massively parallel computations. While poly-
nomial degree lower bounds are of course known for many Boolean
functions, we prove new (tight) lower bounds for graph problems,
including undirected ST-CONNECTIVITY (Theorem 6.4). These
imply an Ω(logs n) lower bound on the round complexity of solv-
ing these problems via any conceivable MapReduce-type system,
even when the width is unbounded.

1.2 Related Work
MapReduce was introduced as a system for large scale data pro-

cessing by Dean and Ghemawat [8]. As the method gained popular-
ity, researchers began to abstract away the core features that made
MapReduce successful in practice. Feldman et al. [13] introduced
the Massive Unordered Data (MUD) model, and were the first to
identify some of the restrictions imposed by the framework.

Karloff et al. [21] introduced a slightly more general model,
MRC, which identified the number of synchronous rounds as the
key metric for comparing any two algorithms. Furthermore, they
limited the amount of parallelism allowed in the model, insisting
that it be not too small, by restricting the memory of each ma-
chine to be sublinear in the input, and also not too large, by re-
stricting the total number of machines to be sublinear in the input
as well. They showed simulation results for a subclass of EREW
algorithms in MRC, but left open the question of whether all NC

languages can be decided in this setting. Goodrich et al. [16] further
extended the simulation results to CRCW PRAMs as well as BSP
algorithms [37], and gave algorithms for sorting and searching.

The MRC model in [21] only placed upper bounds on the number
of machines and the space available on each, limiting both toN1−ε

for an input of size N and some fixed ε > 0. Goodrich et al. [16]
were the first to single out the total input to each machine, the key
parameter of the model of the present work. This decision was later
adopted by authors in proving upper bounds on the space-round
trade-offs in these computations, and this parameter been variously
called memory, space, and key-complexity [2, 5, 15, 26, 32].

The adoption of these models for analysis has led to a set of al-
gorithmic tools and techniques developed for efficient computation
in this setting. These include notions of filtering [26], multi-round
sampling [12, 25], and coresets [3, 28], among others. Recently
Fish et al. [14] introduced a uniform version of MRC, and also
proved strict hierarchy theorems with respect to the computation
time per processor.

The known lower bounds for explicit functions in these mod-
els concern either communication (with a fixed number of rounds)
or restricted classes of algorithms (for round lower bounds). In
more detail, Pietracaprina et al. [32] prove non-trivial lower bounds
for matrix multiplication in a limited setting, which requires com-
puting all elementary products (and specifically excludes Strassen-
like algorithms). Similar kinds of limitations are required by [19]
and [5] to prove lower bounds for a list ranking problem and rela-
tional query processing, respectively. Finally, both Beame et al. [5]
and Afrati et al. [1] study, for a fixed number of rounds (usually a
single round), space-communication trade-offs.

In distributed computing, the total amount of communication is
often the most relevant complexity measure. For example, Wood-
ruff and Zhang [39] and Klauck et al. [22] identify models and
problems for which there is no algorithm that beats the communi-
cation benchmark of sending the entire input to a single machine.
Because massively parallel systems are designed to send a poten-
tially large amount of data in a single round, such communication
lower bounds do not generally imply lower bounds for round com-
plexity. For example, in practice, matrix multiplication is regarded
as an “easy" problem in MapReduce — indeed, MapReduce was
invented for precisely such computations (see e.g. [27]) — even
though its solution requires total communication proportional to
the size of the matrix.

1.2.1 Relation to Other Computational Models
The model proposed in this paper is closely related to several

previously studied computational models.

Congested clique. Perhaps the closest model to the present work
is the “congested clique” model, the special case of the CONGEST
model [31] in which each pair of machines is connected by a direct
link (see [11] and the references therein). The original motivation
of this model was for the design and analysis of distributed algo-
rithms, but it is also relevant to massively parallel computation.
In the most commonly studied version of the model, n machines
with unlimited computational power communicate in synchronized
rounds. Each machine initially holds some number m of input bits,
and in each round each machine can send a (different) message of
w bits to every other machine. (Typically, w = Θ(logn).) Thus,
the number nw of bits that a machine can send and receive in each
round automatically scales linearly with the number of machines.

In our model, we allow the number s of bits that a machine can
receive in a given round to be sublinear in the total number of ma-
chines. In this sense, our model is weaker than the congested clique



model (when s = o(n)).1 On the other hand, MapReduce-type
systems differ from distributed settings in that there is little moti-
vation for restricting the amount of point-to-point communication
in a round. In our model, a machine can receive all s of its bits
in a round from a single other machine. In this sense, our model
is stronger than the congested clique model (when s = ω(w)).
We note that Hegeman and Pemmaraju [17] show that congested
clique computations can be simulated by MapReduce computations
(in the model in [21]), albeit with space-per-machine proportional
to the communication-per-machine in the congested clique com-
putation. (As already noted, the latter generally scales with the
number of machines, while we are generally interested in space-
per-machine smaller than this.)

Drucker et al. [11] forge an interesting connection between con-
gested clique computations and circuits. In analogy with our “bar-
rier” result in Section 7, they prove a simulation result implying that
even slightly super-constant lower bounds on the round complexity
of congested clique computations for a problem in NP would im-
ply better circuit size-depth trade-offs for such problems than are
currently known (for unbounded fan-in circuits with unweighted
threshold gates or with mod-m gates, e.g. m = 6).2

Circuits with medium fan-in. Another related model is “cir-
cuits with medium fan-in” — arbitrary gates with fan-in that scales
with, but is smaller than, the input size — introduced recently
in [18]. Our model is stronger than the one in [18], with the most
significant difference being that the communication pattern in our
model can be input-dependent. Our round complexity lower bounds
imply depth lower bounds for the model in [18]. The focus of [18]
is on circuit size (rather than depth), so the lower bounds and barri-
ers to lower bounds identified in [18] appear incomparable to ours.

Ideal PRAMs. The much older model of “ideal CREW PRAMs”
is also highly relevant to our unbounded-width model. In this model,
which was introduced in [7], there is an unbounded number of pro-
cessors with unbounded computational power and a shared mem-
ory. Computation proceeds in synchronous rounds. Each round,
each processor can read a single memory cell and write to a sin-
gle memory cell, subject to the constraint that at each time step at
most one processor can write to any given memory cell. Perhaps
the most intriguing result in [7] is a parallel algorithm that com-
putes the logical OR function (and, through reductions, many other
functions) in strictly fewer than log2 n rounds. The key idea in this
result is to implicitly transmit extra information by not writing to
a memory cell. This potential “power of staying silent” is exactly
what makes our lower bounds in Section 3 interesting and non-
trivial. Cook et al. [7] also prove a lower bound of Ω(logn) on the
number of rounds required to compute the OR function (and many
others). This lower bound translates (via a simulation argument) to
a lower bound of the form Ω(s−1 logn) in our model (in [7] each
processor reads only one cell in each round, while in our model
each machine receives s bits per round). This implied lower bound
is non-trivial only when s = o(logn), and our lower bound of
Ω(logs n) is asymptotically superior for all super-constant s.

The work of [7] also inspired Nisan [29] to introduce the funda-
mental concept of the “block sensitivity” of a Boolean function (the
logarithm of which characterizes the ideal PRAM round complex-

1For a simple example, suppose the machines want to compute the
logical OR of their nm input bits. In the congested clique model,
this problem can be solved in 1 round. In our model, when the
parameter s is less than n, more than 1 round is required.
2To match our barrier in Section 7 of resolving NC1 vs. P us-
ing the techniques in [11], it seems necessary to prove logarithmic
(rather than just super-constant) round lower bounds for congested
clique computations.

ity, up to a constant factor), which in turn is polynomially related
to the decision tree complexity, degree, and approximate degree of
the function [29, 30]. Our results in Section 5 rely on this circle of
ideas.

Finally, our technique of characterizing parallel computations as
polynomials resembles the work of Dietzfelbinger et al. [9], who
used related ideas to sharpen the lower bound in [7] by a constant
factor for many Boolean functions. Using the degree of the poly-
nomial to establish lower bounds was also used by Beals et al. [4]
to establish query lower bounds for quantum networks.

2. THE S-SHUFFLE MODEL
Section 2.1 develops intuition for our computational model by

presenting an example, and highlights some ways in which Map-
Reduce-type computations differ from traditional circuit computa-
tions. Section 2.2 formally defines the model. Section 2.3 proves
an upper bound on the round complexity of every Boolean function
in the “unbounded-width” version of our model. Only Sections 2.2
and 2.3 are essential for understanding later sections.

2.1 A Warm-Up Example
Before formally defining our model, we study a specific exam-

ple, adapted from Nisan and Szegedy [30].

Example 2.1 (Silence Is Golden) Consider the Boolean function
E12 : {0, 1}3 → {0, 1} on three inputs that evaluates to 1 if and
only if exactly one or two inputs are 1. Define E2

12 : {0, 1}9 →
{0, 1} as the Boolean function that takes nine inputs, applies E12

to each block of three inputs, and then applies E12 to the results of
the three blocks. For instance:

• E2
12(0, 0, 1, 0, 1, 0, 1, 0, 0) = E12(1, 1, 1) = 0;

• E2
12(0, 0, 0, 1, 1, 0, 1, 1, 1) = E12(0, 1, 0) = 1.

We next describe a remarkably efficient strategy for computing
E2

12 in parallel, using only machines that operate on two (ordered)
bits at a time. We first show how to compute E12 in two “rounds.”
Let (x1, x2, x3) denote the input. The first machine reads the bits
x1 and x2; the second machine x2 and x3; and the last machine
x3 and x1. There is also a fourth machine which belongs to “the
second round.” Each machine in the first round sends a 1 to the
second-round machine if its inputs are 0 and 1 (in this order); oth-
erwise, it stays silent (i.e., sends nothing). The second-round ma-
chine receives either a 1 bit (ifE12(x1, x2, x3) = 1) or no bits at all
(if E12(x1, x2, x3) = 0), and in all cases can correctly determine
and output the value of the function.

To compute the function E2
12, we use a layered version of the

same idea (see also Figure 1). We think of the nine input bits as
three blocks of three bits each. There are nine machines in the
first round, three for each block. There are three machines in the
second round, each responsible for a pair of blocks. There is a
single machine in the third round, responsible for the final output.

The three bits of a block are distributed to the corresponding
three first-round machines (in ordered pairs) as in the computation
of E12. Second-round machines have two “ports” in that their in-
puts are also ordered; each has a “first input” (possibly empty) and
a “second input” (again, possibly empty). If the inputs of a first-
round machine are 0 and 1 (in this order), then the machine sends
a 1 to the two second-round machines responsible for its block;
otherwise, it sends nothing. The communication pattern between
the three blocks of first-round machines and the second-round ma-
chines mirrors that of the distribution of bits to first-round ma-
chines: the first second-round machine receives bits (if any) from



x = 001010100

E2
12(x) = 0

0 0 1 0 1 0 1 0 0

M12 M31 M23 M45 M64 M56 M78 M97 M89

B12 B31 B23

R

y1 x = 000110111

E2
12(x) = 1

0 0 0 1 1 0 1 1 1

M12 M31 M23 M45 M64 M56 M78 M97 M89

B12 B31 B23

R

y1

Figure 1: The parallel computation of E2
12, for two different inputs. The arrows show how the machines send bits; an arrow pointing

to the bottom left of a machine indicates that the bit is sent to the first port, while the bottom right indicates the second port. Notice
that at most one arrow points to a given port, but the arrow that does so may change from input to input. Red arrows represent a
zero bit and blue arrows represent a one bit.

the first and second blocks of first-round machines on its first and
second ports, respectively; the middle second-round machine re-
ceives bits from the second and third blocks on its first and second
ports, respectively; and the last second-round machine receives bits
from the third and first blocks on its first and second ports, respec-
tively. If a second-round machine receives nothing as its first input
and a 1 as its second input, then it sends a 1 to the third-round ma-
chine; otherwise, it sends nothing. Finally, the third-round machine
outputs 1 if it was sent a 1, and otherwise (in which case it receives
nothing) it outputs 0. It is straightforward to verify that this compu-
tation correctly evaluates E2

12 on all inputs. The computation uses
three rounds of communication, with each machine receiving only
two bits of input.

There are, unsurprisingly, many resemblances between this par-
allel computation and circuits — each picture in Figure 1 looks
like a Boolean circuit, with machines corresponding to gates, the
number of rounds corresponding to the depth, the number of ma-
chines corresponding to the size, and the number of input ports
corresponding to the fan-in. We note, however, that no circuit with
fan-in 2 and depth 3 (of any size) computes the functionE2

12, as the
function depends on all nine of its inputs. This is true even for cir-
cuits with an alphabet larger than {0, 1}, such as {0, 1, “nothing”}.
In general, while dlogs ne is an obvious lower bound on the depth
of any circuit with fan-in s that computes a function that depends
on all inputs, this lower bound does not necessarily hold for the
number of rounds required by a MapReduce-type computation.

We emphasize that this parallel computation of E2
12 can be triv-

ially translated to a modern parallel processing infrastructure such
as MapReduce (see also Appendix A). Any model that purports to
capture arbitrary MapReduce-type computations, as opposed to re-
stricted families of algorithms, should accommodate computations
like the one above without significant overhead.

2.2 The Basic Model
What augmentations to standard circuit models are required to

capture arbitrary MapReduce-type computations? The first two are
evident from our parallel computation of E2

12 in Section 2.1.

(1) The communication pattern, which plays the role of the cir-
cuit topology (i.e., which gates are connected to which), can
be input-dependent. (cf., Figure 1.)

(2) Each machine has the option of staying silent and sending
nothing. We refer to this as “sending a ⊥.”

At first blush, extension (2) might seem equivalent to enlarging the
alphabet by one character. This is not quite correct, since⊥’s com-
bine with each other and with other bits in a particular way.

Definition 2.2 (⊥-sum) The⊥-sum of z1, z2, . . . , zm ∈ {0, 1,⊥}
is:

• 1 if exactly one zi is 1 and the rest are ⊥;

• 0 if exactly one zi is 0 and the rest are ⊥;

• ⊥ if every zi is ⊥;

• undefined (or invalid) otherwise.

The ⊥-sum of m s-tuples a1, . . . , am is the entry-by-entry ⊥-
sum, denoted �mi=1ai.

Most circuit models severely restrict the computational power of
each gate. This is not appropriate in the present context, where
each “gate” corresponds to a general-purpose machine embedded
in a MapReduce-type infrastructure. This motivates our third ex-
tension.

(3) Each machine can perform an arbitrary computation on its
inputs.3

3When the goal is to prove algorithmically meaningful upper
bounds, it would be sensible to restrict machines to efficient com-
putations. Also, the total space used by a machine, both for its
input and for its computations, should be small (certainly sublinear
in the total input size). Given our focus on lower bounds, our al-
lowance of arbitrary computations and unlimited scratch space on
each machine only makes our results stronger.



Our formal model extends the usual notion of a circuit (with
fan-in s) to accommodate (1)–(3). Our notation follows that in
Vollmer [38] for circuits.

Definition 2.3 (s-SHUFFLE Computation) AnR-round s-SHUFFLE
computation with inputs x1, . . . , xn and outputs y1, . . . , yk has the
following ingredients:

1. A set V of machines, which includes one machine for each
input bit xi and each output bit yi.

2. An assignment of a round r(v) to each machine v ∈ V . Ma-
chines corresponding to input bits have round 0. Machines
corresponding to output bits have round R + 1. All other
machines have a round in {1, 2, . . . , R}.

3. For each pair (u, v) of machines with r(u) < r(v), a func-
tion αuv from {0, 1,⊥}s to {0, 1,⊥}s.

We think of each machine as having s “ports,” where each port can
accept at most 1 bit. The interpretation of a function αuv is: given
that machine u received z = z1, . . . , zs on its s input ports (where
each zi ∈ {0, 1,⊥}), it sends the message αuv(z) ∈ {0, 1,⊥}s to
the s input ports of v.4 Thus, machine u explicitly communicates
with machine v (on at least one port) if and only if at least one co-
ordinate of αuv(z) is not ⊥. We conclude that the model supports
input-dependent communication patterns, as in (1). The model also
supports (2) and (3), by definition.

The output of an s-SHUFFLE computation is evaluated as one
would expect, as in circuits, with the important constraint that, on
every input, each input port should receive a bit (i.e., a non-⊥) from
at most one machine.

Definition 2.4 (Result of an s-SHUFFLE Computation) The result
of an s-SHUFFLE computation assigns a value g(v) ∈ {0, 1,⊥}s
to every machine v ∈ V , and is defined inductively as follows.

1. For a round-0 machine v, corresponding to an input bit xi,
the value g(v) is the s-tuple
(xi,⊥,⊥, . . . ,⊥).

2. Given the value g(u) assigned to every machine uwith r(u) <
q, the value assigned to a machine v with r(v) = q is the ⊥-
sum, over all machines u with r(u) < r(v), of the message
αuv(g(u)) sent to v by u:

g(v) := �u : r(u)<r(v)αuv(g(u)). (1)

The result of an s-SHUFFLE computation is valid if every⊥-sum in
equation (1) is well defined, and if for every machine v correspond-
ing to an output bit yi, the value g(v) is either (0,⊥,⊥, . . . ,⊥) or
(1,⊥,⊥, . . . ,⊥). The “0” or “1” in the first coordinate is then
interpreted as the corresponding output bit yi. Unless otherwise
noted, we consider only valid s-SHUFFLE computations.

By convention, the machines corresponding to the input and out-
put bits of the function do not contribute to the number of rounds
— these are “placeholder machines” that cannot do any non-trivial
computations. Translating the parallel computations in Section 2.1
of the functions E12 and E2

12 into the formalism of Definitions 2.3
and 2.4 yields 2-round and 3-round s-SHUFFLE computations, re-
spectively, in accordance with intuition.

The following definition is analogous to that for circuits.
4The model allows a machine to communicate with machines in all
later rounds, not just machines in the next round. Computations of
the former type can be translated to computations of the latter type
by adding dummy machines, so this is not an important distinction.

Definition 2.5 (Width) The width of an s-SHUFFLE computation
is the maximum number of machines in a round other than round 0
and the final round.

Remark 2.6 (Randomized Computations) By definition, a ran-
domized s-SHUFFLE computation is a probability distribution over
deterministic s-SHUFFLE computations.5 We say that such a com-
putation computes a function f if, for every input x, the output of
the computation equals f(x) with probability at least 2/3.

Remark 2.7 (Unordered Inputs and Larger Alphabets) Definiti-
ons 2.3 and 2.4 are easily extended to accommodate larger alpha-
bets and unordered input ports. With these two extensions, it is
straightforward to map an arbitrary r-round MapReduce computa-
tion that usesmmachines with space at most s each (as formalized
in [21], for example) to an (r+1)-round s-shuffle computation that
usesm(r+1) machines (not counting the machines that correspond
to input and output bits). See Section 4 for formal proofs.

2.3 An Upper Bound for the Unbounded Width
Model

We have argued that the s-SHUFFLE model in Definitions 2.3
and 2.4, and appropriate extensions thereof, capture arbitrary Map-
Reduce-type computations, even those that perform exorbitant com-
putation at each machine. What kind of lower bounds can we hope
to prove for such a strong model?

To calibrate our aspirations, we next prove that, for every s ≥
2 and every function f : {0, 1}n → {0, 1}k, f can be com-
puted by an s-SHUFFLE computation in dlogs ne rounds. This
upper bound requires s-SHUFFLE computations with unbounded
width, and it delineates the strongest-possible lower bounds that
that can be proved for the unbounded-width model. The prospects
for stronger lower bounds for polynomial-width s-SHUFFLE com-
putations are the subject of Section 7.

Proposition 2.8 For every s ≥ 2, every function f : {0, 1}n →
{0, 1}k can be computed by an s-SHUFFLE computation in dlogs ne
rounds.

Proof (sketch): There is one machine vx at round dlogs ne – the last
round before the outputs – for each possible input x ∈ {0, 1}n.
Each machine vx serves as the root of a tree of depth dlogs ne,
the machines of which are responsible for notifying vx whether or
not the input is x. The unique machine vx that is told that the
input is indeed x sends the bits of the answer f(x) to the k output
machines; all other machines vx send nothing. �

3. REPRESENTING SHUFFLES AS POLY-
NOMIALS

3.1 Representing the Basic Model
To prove lower bounds on the number of rounds required by

an s-SHUFFLE computation, we associate each computation with a
polynomial over the reals that matches (on {0, 1}n) the function it
computes. We show that the number of rounds used by the compu-
tation governs the maximum degree of this polynomial, and hence
5This definition corresponds to “public coins,” in that it allows dif-
ferent machines to coordinate their coin flips with no communica-
tion. One could also define a “private coins” model where each
machine flips its own coins. Our lower bounds are for the stronger
public-coin model, and apply to the private-coin model as a special
case.



functions that correspond to polynomials of high degree cannot be
computed in few rounds.

Theorem 3.1 Suppose that an s-SHUFFLE computation computes
the function f : {0, 1}n → {0, 1}k in r rounds. Then there are
k polynomials {pi(x1, . . . , xn)}ki=1 of degree at most sr such that
pi(x) = f(x)i for all i ∈ {1, 2, . . . , k} and x ∈ {0, 1}n.

PROOF. We proceed by induction on the number of rounds. We
claim that for every non-output machine v ∈ V and value z ∈
{0, 1,⊥}s, there is a polynomial pv,z(x1, . . . , xn) that evaluates
to 1 on points x for which the computation’s assigned value g(v)
to v is z and to 0 on all other points x ∈ {0, 1}n. Furthermore,
pv,z has degree at most sr(v).

The base case of the induction is for a machine v in round zero
(r(v) = 0). Each such machine corresponds to an input bit xi and
its value g(v) is (xi,⊥,⊥, . . . ,⊥). The (degree-1) polynomials for
z = (0,⊥, . . . ,⊥) and z = (1,⊥, . . . ,⊥) are pv,z(x1, . . . , xn) =
1 − xi and pv,z(x1, . . . , xn) = xi, respectively. All other values
of z are impossible for such a machine, so they have polynomials
pv,z(x1, . . . , xn) = 0.

Consider a machine v that corresponds to neither an input bit nor
an output bit. Fix some potential value z ∈ {0, 1,⊥}s of g(v), and
focus first on the ith coordinate of g(v). When is it equal to zi?
We first consider the case where zi is 0 or 1 (and not⊥). The entry
g(v)i is a ⊥-sum of the messages that machine v receives on port
i from all machines in previous rounds. Hence g(v)i = zi when a
single machine in a previous round sends zi on port i to machine
v (and the rest send ⊥’s). Consider some machine u of a previous
round. It sends zi on port i to machine v when αuv(g(u)) has an
ith entry of zi. The set of assigned values g(u) to u that cause it
to do this is the preimage, under αuv , of the subset of {0, 1,⊥}s
containing all elements with a zi in the ith coordinate. By our in-
ductive hypothesis, for each value g(u) in this preimage, there is a
polynomial of degree at most sr(v)−1 that indicates the inputs x for
which u receives this value. Since u is assigned exactly one value,
we can sum these polynomials together to get a polynomial (of de-
gree at most sr(v)−1) that indicates when u receives any value in
this preimage. This polynomial indicates the inputs x for which u
sends zi to port i of machine v. Furthermore, since the s-SHUFFLE
computation is valid, at most one machine in a previous round can
send a non-⊥ value to v on port i. Summing over the polynomials
of all machines in previous rounds yields a polynomial, still with
degree at most sr(v)−1, that indicates whether or not v received zi
on port i (from any machine).

The inputs x for which g(v)i = ⊥ are those for which no ma-
chine from a previous round sends a 0 or a 1 to v on the ith port.
A polynomial for this case is just 1 minus the polynomials for the
g(v)i = 0 and g(v)i = 1 cases. The degree of this polynomial is
at most sr(v)−1.

To obtain a polynomial that represents the inputs x for which
g(v) = z, we just take the product of the polynomials that represent
the events g(v)1 = z1, . . . , g(v)s = zs. This polynomial has
degree at most sr(v), and this completes the inductive step.

Finally, consider a machine v that corresponds to an output bit yi.
As in the inductive step above, we can represent the first coordinate
of g(yi) with a polynomial pi of degree at most sr(yi)−1 = sr .
Since the s-SHUFFLE computation is valid, the polynomial pi also
represents the ith output bit of the function f .

See Section 4.1 for an extension of Theorem 3.1 to unordered
inputs and larger alphabets.

The following corollary is immediate.

Corollary 3.2 If some output bit of the function f : {0, 1}n →
{0, 1}k cannot be represented by a polynomial with degree less
than d, then every s-SHUFFLE computation that computes f uses
at least dlogs de rounds.

Theorem 3.1 and Corollary 3.2 apply even to unbounded-width s-
SHUFFLE computations. For functions f with d = n, the lower
bound of dlogs ne in Corollary 3.2 matches the upper bound in
Proposition 2.8 for arbitrary functions from {0, 1}n to {0, 1}k.

There is a mature toolbox for bounding below the polynomial de-
gree necessary to represent Boolean functions; we apply and con-
tribute to this toolbox in Section 5.

3.2 Randomized Computations
We say that a polynomial p(x1, . . . , xn) approximately repre-

sents a Boolean function f : {0, 1}n → {0, 1} if |p(x)− f(x)| ≤
1
3

for every x ∈ {0, 1}n. The approximate degree of a Boolean
function is the smallest value of d such that f can be approxi-
mately represented by a degree-d polynomial. We next give an
analog of Theorem 3.1 for randomized s-SHUFFLE computations
(Remark 2.6), which connects the rounds required by such compu-
tations to the approximate degree of Boolean functions.

Theorem 3.3 Suppose that a randomized s-SHUFFLE computation
computes the function f : {0, 1}n → {0, 1}k in r rounds. Then
there are k polynomials {pi(x1, . . . , xn)}ki=1 of degree at most sr

such that |pi(x) − f(x)i| ≤ 1
3

for all i ∈ {1, 2, . . . , k} and x ∈
{0, 1}n.

PROOF. A randomized s-SHUFFLE computation is a distribu-
tion over deterministic computations. By Theorem 3.1, we can
represent each output bit of these deterministic computations by
a polynomial of degree at most sr . The weighted averages of
these polynomials, with the weights equal to the probabilities of
the corresponding deterministic computations, yields polynomials
p1, . . . , pk such that, for every i and x ∈ {0, 1}n, pi(x) equals the
probability that the randomized s-SHUFFLE computation outputs
a 1 on the input x. Since the randomized computation computes f
in the sense of Remark 2.6, these polynomials satisfy the conclu-
sion of the theorem.

Corollary 3.4 If some output bit of the function f : {0, 1}n →
{0, 1}k has approximate degree at least d, then every randomized
s-SHUFFLE computation that computes f uses at least dlogs de
rounds.

Section 5 applies tools for bounding from below the approxi-
mate degree of Boolean functions to derive round lower bounds for
randomized s-SHUFFLE computations.

4. LARGER ALPHABETS AND UNORDERED
INPUTS

Definitions 2.3 and 2.4 are easily extended to accommodate larger
alphabets and unordered input ports. With these two extensions, it
is straightforward to map an arbitrary r-round MapReduce compu-
tation that uses m machines with space at most s each (as formal-
ized in [21], for example) to an (r+1)-round s-shuffle computation
that uses m(r + 1) machines (not counting the machines that cor-
respond to input and output bits). The machines in a round of the
s-shuffle computation are responsible for simulating the computa-
tion and communication that occurs in the corresponding round of
the MapReduce computation. MapReduce computations operate
on 〈key; value〉 pairs; the id of a machine plays the role of the



key, and the alphabet in the s-shuffle computation corresponds to
the set of all possible values in the MapReduce computation. See
Appendix A for more details.

To formalize the extensions in more detail: with an arbitrary al-
phabet Σ, the input belongs to Σn and the output to Σk. Each
machine u receives a value g(u) and sends messages αuv(g(u))
belonging to {Σ∪ {⊥}}s. A ⊥-sum of m values from Σ∪ {⊥} is
defined in the obvious way whenever at most 1 of the values is not
⊥ (and is undefined otherwise).

To incorporate unordered input ports, the functions αuv are re-
defined to have domain and range equal to the multi-sets of Σ of
cardinality at most s. A ⊥-sum of such multi-sets is their union
(with multiplicities adding), and is undefined if the sum of the mul-
tiplicities exceeds s.

4.1 Shuffles as Polynomials
We now outline how to modify Theorem 3.1 so that it applies to

the extended model in Section 4. To represent a function f : Σn →
Σk, we use k|Σ| polynomials. Every polynomial has one variable
xiσ for each i ∈ {1, 2, . . . , n} and σ ∈ Σ. Inputs x ∈ Σn translate
to binary 0/1 inputs in the variable set {xiσ} in the obvious way.
For i ∈ {1, 2, . . . , k} and σ ∈ Σ, the polynomial piσ indicates the
inputs for which the ith output bit f is σ.

In the proof of Theorem 3.1, a potential value z of a machine
g(v) is now a multi-set of Σ or size at most s, rather than an element
of {0, 1,⊥}s. We can no longer argue coordinate-by-coordinate.
To extend the inductive argument in the proof, consider a machine v
and suppose first that z is a multi-set of size exactly s. For a given
partition of z into ` ≤ s non-empty sets, and a given assignment
of these sets to ` machines in rounds before r(v), the event that
v receives the value z in precisely this way can be inductively ex-
pressed as a polynomial with degree at most sr(v). (Because z has
the maximum-allowable size s and the computation is valid, the
other machines must send nothing to v.) For a multi-set z with size
less than s, the event that v receives some superset of z can be like-
wise expressed as a polynomial with degree at most sr . Subtracting
out the events corresponding to strict supersets of z — formally,
using downward induction on the size of z — completes the repre-
sentation of the event that g(v) = z as a polynomial with degree at
most sr .

Theorem 4.1 Suppose that an s-SHUFFLE computation computes
the function f : Σn → Σk in r rounds. Then for every i ∈
{1, 2, . . . , k} and σ ∈ Σ, the event that f(x)i = σ (for x ∈ Σn)
can be represented as a polynomial of degree at most sr over the
variable set {xiσ}i=1,...,n,σ∈Σ.

4.2 Lower Bounds
This section extends our lower bounds to non-Boolean alphabets,

in two senses. The first case is when the computational problem is
still boolean, but the word size allowed for intermediate compu-
tations is larger than a single bit. The second case is when the
computational problem itself is encoded using a larger alphabet.

For the first case, we show that the lower bound of Corollary 3.2
applies unchanged to larger alphabets. We explore the second case
in Section 6.4, where we show that for undirected ST-CONNECTIVITY
the degree of the function remains large, even in the case of richer
alphabets.

Corollary 4.2 If some output bit j of the function f : {0, 1}n →
{0, 1}k cannot be represented by a polynomial with degree less
than d, then every s-SHUFFLE computation over the alphabet Σ
that computes f uses at least dlogs de rounds.

PROOF. Suppose that some s-SHUFFLE computation over the
alphabet Σ computes f in less than dlogs de rounds. By Theo-
rem 4.1, there is a polynomial p, over the variable set {xiσ}i∈[n],σ∈Σ,
that represents the event when the jth output bit is 1 with degree
less than d. Plugging in (1 − xi) for xi0, xi for xi1, and 0 for
all other variables xiσ , we obtain a polynomial p′ in the variables
{xi}i∈[n] with degree less than d, contradicting the assumption.
We conclude that every s−SHUFFLE computation over Σ that com-
putes f requires at least dlogs de rounds.

5. LOWER BOUNDS FOR POLYNOMIAL
DEGREE

Corollary 3.2 and its extensions reduce the problem of proving
lower bounds on the round complexity of s-SHUFFLE computations
to proving lower bounds on the degree of a polynomial that exactly
or approximately represents the function to be computed. There
is a sophisticated set of tools for proving the latter type of lower
bounds, which we now put to use.

5.1 Warm Up
Consider a Boolean function f : {0, 1}n → {0, 1}. If f can

be represented by a polynomial p, meaning f(x) = p(x) for all
x ∈ {0, 1}n, then it can be represented by a multilinear polyno-
mial (since x2

i = xi for xi ∈ {0, 1}). Recall that for every such
function f , there is a unique multilinear polynomial that represents
it (see e.g. [10]).6 We call the degree of this polynomial the degree
of the Boolean function. The maximum-possible degree is n.

For example, since theANDn function is represented (uniquely)
by the polynomial

∏n
i=1 xi, it has the maximum-possible degree.

Similarly, the ORn function has degree n because it is represented
by the polynomial 1 −

∏n
i=1(1 − xi). Corollary 3.2 immediately

implies the following.

Corollary 5.1 Every s-SHUFFLE computation that computes the
ANDn or the ORn function uses at least dlogs ne rounds.

5.2 Monotone Graph Properties
While pinning down the precise degree of a Boolean function

representing a graph problem can be a difficult task, there are pow-
erful tools for proving loose but useful lower bounds.

The first ingredient concerns the decision tree complexity of mono-
tone graph properties. Recall that a graph property is a property
of undirected graphs that is independent of the vertex labeling. It
is non-trivial if it does not assign the same value to all graphs,
and monotone if adding edges cannot destroy the property. The
Aanderaa-Rosenberg conjecture states that, for every non-trivial
monotone graph property, the decision-tree complexity is Ω(n2) [35].
It was first proved by Rivest and Vuillemin with a lower bound of
n2/16 [34], and a long line of work has yielded a lower bound of
n2/3− o(n2) [23, 20, 24, 36].

The second ingredient is the known polynomial relationship be-
tween the decision tree complexity and the degree of a Boolean
function. Specifically, Nisan and Smolensky (cited in [6]) proved
that, for every Boolean function f , the decision-tree complexity
of f is at most 2 deg(f)4, where deg(f) is the degree of f .

Combining these two ingredients with Corollary 3.2 yields the
following.

6With a non-Boolean alphabet and the expanded variable set used
in Section 4.1, there can be more than one representing polynomial.
This does not affect our lower bounds; see Section 4.2.



Theorem 5.2 For every non-trivial monotone graph property f :

{0, 1}(
n
2) → {0, 1} of graphs with n vertices, every s-SHUFFLE

computation that computes f requires at least 1
2

logs n− 1
4

logs(6−
o(1)) rounds.

5.3 Approximate Degree and Randomized Com-
putations

Recall from Corollary 3.4 that lower bounds on the approximate
degree of a Boolean function translate to lower bounds on the num-
ber of rounds required by randomized s-SHUFFLE computations. It
is also known that both the degree and decision tree complexity of
every Boolean function are polynomially related to its approximate
degree: deg(f) ≤ D(f) ≤ 216 · d̃eg(f)6, where d̃eg denotes
the approximate degree [4, 30].7 We therefore have the following
analog of Theorem 5.2 for randomized computations.

Theorem 5.3 For every non-trivial monotone graph property f :

{0, 1}(
n
2) → {0, 1} of graphs with n vertices, every randomized s-

SHUFFLE computation that computes f requires at least 1
3

logs n−
1
6

logs(648− o(1)) rounds.

In general, round lower bounds on deterministic s-SHUFFLE com-
putations proved via Corollary 3.2 extend automatically, with a
small constant-factor loss, to randomized computations.

6. LOWER BOUNDS FOR GRAPH COMPU-
TATIONS

The goal of this section is develop and apply a technique for
showing that many problems that are important in the field of al-
gorithms (as opposed to in Boolean function analysis) — such as
graph connectivity problems — have maximum-possible degree.

Buhrman and de Wolf [6] credit Yaoyun Shi with the observa-
tion that a Boolean function has degree n if and only if the number
of even solutions (i.e., assignments with an even number of 1s for
which the function evaluates to 1) is not equal to the number of
odd solutions. For the reader familiar with Boolean Fourier anal-
ysis, this corresponds to computing whether f̂([n]), the function’s
Fourier coefficient for the set [n], is nonzero. For example, the
function XORn has no even solutions and 2n−1 odd solutions, so
the function has degree n and hence (by Corollary 3.2) s-SHUFFLE
computations require dlogs ne rounds to compute it.

6.1 Parity Difference Preliminaries
We first establish some notation and lemmas that simplify the

proofs.

Definition 6.1 Given a set S ⊆ {0, 1}n, define the parity differ-
ence function as the number of even inputs in S minus the number
of odd inputs in S:

Φ(S) =
∑
x∈S

∏
i

(−1)xi .

Define the parity difference of a Boolean function f on n bits by
Φ(f) = Φ({x | f(x) = 1}).

In Fourier-analytic terms, Φ(f) is exactly 2nf̂([n]). We have
the following identities.

7For some specific functions, better bounds are known. For exam-
ple, the majority function has approximate degree Ω(

√
n) [33].

Lemma 6.2 (a) Suppose that S ⊆ {0, 1}n and S1, S2 form a
partition of S. Then

Φ(S) = Φ(S1) + Φ(S2).

(b) Suppose that S ⊆ {0, 1}n with S the Cartesian product S1×
S2 of sets S1, S2. Then

Φ(S) = Φ(S1) · Φ(S2).

PROOF. The lemma follows immediately from basic boolean
Fourier analysis, if we consider the functions that represent the
characteristic vectors of S, S1, and S2.

It is also easy to prove the lemma directly from definitions. For
part (a), using the partition assumption, we have∑

x∈S

∏
i

(−1)xi =
∑
x∈S1

∏
i

(−1)xi +
∑
x∈S2

∏
i

(−1)xi .

For part (b), we can split each x ∈ S according to the product
S1 × S2 to factorize the sum:∑

x∈S

∏
i

(−1)xi =
∑
x1∈S1

∑
x2∈S2

∏
i

(−1)x
1
i
∏
i

(−1)x
2
i

=
∑
x1∈S1

∏
i

(−1)x
1
i
∑
x2∈S2

∏
i

(−1)x
2
i .

6.2 Graph Connectivity Problems.
To apply these ideas to graph connectivity problems, we need to

express graph problems as Boolean functions. One natural way is
to use a

(
n
2

)
-variable input to represent an undirected graph on n

vertices (or a 2
(
n
2

)
-variable input for directed graphs), where each

variable indicates the presence of absence of a given edge. This is
effectively the adjacency matrix representation of the graph. (For
lower bounds for the adjacency list representation, see Section 4.)

The CONNECTIVITY problem is: given a graph G = (V,E), is
there a path from every vertex to every other vertex? The related
ST-CONNECTIVITY problem: given a graph G = (V,E) and two
vertices s, t ∈ V , is there a path from s to t? We can assume that s
is the first vertex and t is the second vertex. We pinpoint the degree
of both of these problems for both undirected and directed graphs.
The proof strategy is similar for all four cases: we use induction on
the number of vertices n, show how large problems can be decom-
posed into smaller problems, and use this decomposition to analyze
the highest-degree Fourier coefficient.

6.3 Undirected Connectivity Functions
We begin with the undirected case (Theorems 6.3 and 6.4). Re-

call that to prove that a function has maximum-possible degree, it
suffices to show that its parity difference is non-zero.

Theorem 6.3 The degree of the Boolean function for undirected
CONNECTIVITY on n vertices is

(
n
2

)
.

PROOF. For a graph on n vertices, let fn be the Boolean func-
tion for undirected CONNECTIVITY. We prove that

Φ(fn) = (−1)n−1(n− 1)!, (2)

which implies the theorem.
We proceed by induction on n. The base case n = 1 is trivial; the

graph is always connected and never has any edges, so Φ(f1) = 1.
Suppose that our inductive hypothesis is true for all smaller val-

ues of n. Consider the first vertex of our graph on n vertices. If



we begin with a connected graph and remove this vertex, we ob-
tain a partition of the remaining n − 1 vertices into connected
components. We can split the set S of all connected graphs into
sets SP which yield the same partition P of connected compo-
nents when the first vertex is removed. By Lemma 6.2(a), Φ(S) =∑
P Φ(SP ).
Consider a particular partition P of n − 1 vertices. Each block

of the partition must be connected, and the first vertex of the graph
must be connected to each partition block with at least one edge.
Thus, SP can be thought of as a cross product between the set of
ways to connect the first vertex to the first block, the set of ways to
connect the first block, the set of ways to connect the first vertex to
the second block, the set of ways to connect the second block, and
so on. By Lemma 6.2(b), it suffices to compute the parity difference
of each of these sets separately, and take their product.

First, we consider the set of ways to connect the first vertex to
a block with k vertices. There are k possible edges, and the only
forbidden choice is the one with no edges. Hence there are 2k−1

odd choices but only 2k−1 − 1 even choices (the missing choice is
even), and the parity difference of this set is −1.

By induction, the set of ways of connecting a block of size k has
parity difference (−1)k−1(k−1)!. Multiplying this with the parity
difference of the set of ways that the first vertex can be connected to
the block, the factor of a partition’s parity difference corresponding
to a block of size k is (−1)k(k − 1)!. The contribution of a single
partition is the product of such terms, with one term per block.

Finally, we need to sum the parity differences over all partitions.
Since these are all partitions of n − 1 vertices, they all have the
same sign: (−1)n−1. We need to show that the total magnitude is
(n− 1)! to complete the proof.

To see this, consider all (n − 1)! permutations of n − 1 items.
If we write them in cycle notation, we can view the cycles of a
permutation as yielding a partition of n − 1 vertices. A block of
k vertices can be created by any of (k − 1)! possible cycles on
these vertices. Multiplying over the blocks of a partition, we see
that the number of permutations that map to a partition is exactly
the magnitude of the parity difference of the partition. This implies
that the total parity difference magnitude is the number (n − 1)1
of permutations, which completes the inductive hypothesis and the
proof.

Theorem 6.4 The degree of the Boolean function for undirected
ST-CONNECTIVITY on n vertices is

(
n
2

)
.

PROOF. For a graph on n vertices, et fn be the Boolean function
for undirected ST-CONNECTIVITY. We can assume that s and t are
the first and second vertices. We show that Φ(fn) = (−1)n−1(n−
2)! 6= 0.

It is convenient to analyze −Φ(fn) and consider all graphs in
which s and t are not connected. Let SA,B be the subset of such
graphs in which the connected component of s is A and the con-
nected component of t is B. By Lemma 6.2(a),−Φ(fn) is the sum
of the Φ(SA,B)’s for all such A,B.

Fix A and B. Both are connected, and the remainder of the
vertices of the graph can have an arbitrary subset of edges within
it. We can therefore think of SA,B as a product of the set of ways
to connect A, the set of ways to connect B, and, if there are at
least two vertices outside A ∪ B, the set of ways to pick edges in
the remainder of the graph. By Lemma 6.2(b), we only need to
compute the parity differences of each of these sets and take their
product.

First, we observe that if V \ (A ∪ B) contains more than one
vertex, then the parity difference of the last set (all subsets of edges

of V \ (A ∪B)) is zero. For the rest of the proof, we focus on sets
A,B whose union includes all vertices, except possibly for one.

IfA has a vertices andB has b vertices, then by (2) the parity dif-
ference for the set of ways to connectA is (−1)a−1(a−1)! and the
parity difference for the set of ways to connect B is (−1)b−1(b −
1)!.

Since V \ (A∪B) has zero or one vertex, there are (n−2)!
(a−1)!(b−1)!

ways to choose a set A of size a and a set B of size b. (In the latter
case, there are n − 2 choices for the missing vertex, and

(
n−3
a−1

)
ways of selecting the vertices that join s in A.) Thus, the total
contribution to the parity difference of sets A,B with sizes a, b is
(−1)n−2(n− 2)! (if a+ b = n) or (−1)n−3(n− 2)! (if a+ b =
n − 1). There are n − 1 ways to choose a ≥ 1 and b ≥ 1 so that
a + b = n, and n − 2 ways to choose a ≥ 1 and b ≥ 1 so that
a+ b = n− 1. Our final parity difference (for −Φ) is

(n−1)(−1)n−2(n−2)!+(n−2)(−1)n−3(n−2)! = (−1)n−2(n−2)!.

This completes the proof.

6.4 Connectivity with Large Alphabets
We consider the ST-CONNECTIVITY problem, except the graph

is no longer presented as an adjacency matrix as in the boolean
case. Instead, we are presented with a list of m edges. We model
these as m inputs from an alphabet of size

(
n
2

)
. We will even as-

sume the algorithm is promised that these edges never repeat (if
they could, it would be fairly easy to prove difficulty from OR).
We have a bound on degree given that there are enough vertices in
the graph. Note that some such condition is necessary, since too
few vertices would guarantee that nodes 0 and 1 are always con-
nected. Our vertex requirement is only a constant factor more than
the minimum n to accommodate m distinct edges.

Theorem 6.5 Let f be the function associated with the problem of
undirected ST-CONNECTIVITY presented as an adjacency list. Any
polynomial associated with this function being true has degree at
least m, given n ≥

√
8m.

PROOF. Again, we will show this by plugging variables into
such a polynomial. Let p be a polynomial over xiσ with degree
at least m which is 1 when s and t are connected and 0 otherwise.

Each edge of the input originally has
(
n
2

)
possibilities, but our

plan is actually to further constrain them; we promise each edge of
the input will be one of two possible values. We do this in such
a way that exactly one of these 2m possibilities results in s and t
being unconnected. Equivalently, we can plug in yi, (1− yi), or 0
for every xiσ in a way such that we get the polynomial of degree
at least m (we get the polynomial for OR). But the degree of p can
only decrease when we perform this operation, so this contradicts
our assumption about the degree of p. Hence we will have shown
that no such p exists.

As usual, we assume that s and t are vertices 0 and 1. We want
to choose pairs so that only one possibility does not connect 0 and
1. The first set of inputs are chosen so that this possibility connects
all odd vertices and connects all even vertices. Our first input is
either (0, 1) or (0, 2), our second input is either (1, 2) or (1, 3),
and our third input is either (2, 3) or (2, 4). We continue in this
fashion. Notice if we ever pick the first possibility, 0 and 1 must be
connected. This continues so that either 0 and 1 are connected or
all even vertices are connected and all odd vertices are connected.
Then the remaining inputs offer an edge between vertices of oppo-
site parity, which will connect 0 and 1, or between vertices of the
same parity. Note that we never repeat an edge in this process. This
yields are least n

2

8
pairs, which is more than m if n ≥

√
8m.



6.5 Directed Connectivity Functions
For the more complicated case of directed graphs, we state the

theorems below, but defer the proofs to the full version of the paper.

Theorem 6.6 For a graph of n vertices, the degree of the Boolean
function for directed CONNECTIVITY is 2

(
n
2

)
.

Theorem 6.7 For a graph of n vertices, the degree of the Boolean
function for directed ST-CONNECTIVITY n vertices is

(
n
2

)
.

7. PROSPECTS FOR STRONGER LOWER
BOUNDS

Our lower bounds in Section 3 and 5 apply to general unbounded-
width s-SHUFFLE computations, and by Proposition 2.8 such lower
bounds cannot be larger than dlogs ne. Realizable MapReduce-
type computations translate to s-SHUFFLE computations with a rea-
sonable number of machines, so a natural question is whether or not
stronger lower bounds hold for a polynomial number of machines.
For example, can we prove that there is noO(1)-round s-SHUFFLE
computation for graph connectivity problems with s =

√
n and

a polynomial number of machines? In this section we show that
proving such stronger impossibility results requires proving circuit
lower bounds.

The following result, while not difficult to prove, has significant
implications for the prospects of strong lower bounds for parallel
computation.

Theorem 7.1 Consider any model of parallel computation with the
following properties:

1. The number of machines is polynomial in the input size n.

2. Computation proceeds in time steps. In each time step, a ma-
chine can read s(n) ≥ 2 bits from the input or from previous
rounds of computation.

3. Each machine can output at least a single bit, which is a
function of the s(n) bits it read. The possible functions a
machine can compute need only include Boolean formulas
where each variable appears once.

Suppose some problem in P cannot be solved in O(logs(n) n) time
steps in such a model. Then NC1 ( P .

PROOF. We simply need to show that any model with these fea-
tures can still simulate NC1 circuits. Recall that NC1 is the fam-
ily of problems that can be computed by a logspace-uniform circuit
family Cn of fan-in 2 with poly(n) gates and O(logn) depth. Fix
some such model of parallel computation. We will transform each
circuit into a computation in our model which runs in logs(n) n

time steps. This will show that no NC1 family computes our hy-
pothesized problem, and hence NC1 ( P , as desired.

The computation will compute the output of every circuit gate
with a machine. Each time step will correspond to log s(n) layers
of the circuit. For example, in the first time step, we will have a
machine for every gate at depth at most log s(n). Since the cir-
cuit had fan-in 2, each gate’s output can be determined from at
most s(n) inputs. Furthermore, the output as a function of these in-
puts is a Boolean formula where each of these s(n) inputs appears
only once. In general, in the ith time step, we have a machine
for every gate at depth between (i − 1) log s(n) and i log s(n).
Again, these can be determined from at most s(n) inputs or gates
in previous time steps. We get to output gates withinO( logn

log s(n)
) =

O(logs(n) n) time steps. Each gate becomes a single machine, for
poly(n) machines. Figure 2 illustrates this simulation for a specific
circuit of depth four.

The barrier of Θ(logs(n) n) for lower bounds in Theorem 7.1 is
the same as the lower bounds we proved, even for the unbounded-
width model, in Sections 3 and 5.

Property (1) states that an arbitrarily large polynomial number
of machines should be allowed. Property (2) asks for a complete
communication graph and concurrent reads, and property (3) only
requires fairly weak computing power per machine. s-SHUFFLE
computations with a polynomial number of machines are certainly
one example of a model that satisfies these assumptions. The point
of Theorem 7.1 is that, more generally, the only possible way of
proving lower bounds stronger than Θ(logs n) for any model of
parallel computation is to either (i) prove a notoriously difficult
circuit lower bound or (ii) restrict the model so much that one of
the hypotheses in the theorem is not satisfied. For example, Theo-
rem 7.1 leaves open the possibility of proving strong lower bounds
for restricted classes of algorithms (this violates the third assump-
tion); some of the previous work reviewed in Section 1.2 is of this
type. Another possible approach to proving stronger lower bounds
is to restrict the number of machines to be very small, for exam-
ple at most constant factor larger than the minimum number n/s
needed to read the input.8

The simulation argument in the proof of Theorem 7.1 is quite
versatile. For example, it also works in the uniform setting. Since
NC1 is defined to be logspace-uniform, the lower bound barrier
holds even if the model of parallel computation is restricted to
logspace-uniform computations. This simulation also only blows
up the width by a factor of log s from circuit to parallel compu-
tation. Hence, given a round lower bound on a width-restricted
model of parallel computation, we would get a depth lower bound
on a width-restricted (less so by a factor log s) version of NC,
which would still be an interesting result for circuit complexity.
Similarly, the simulation results in the same number of machines as
there were gates, so a round lower bound for a machine-restricted
model of parallel computation would give a depth lower bound for
a size-restricted version of NC.
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APPENDIX
A. SIMULATING MAPREDUCE

To illustrate the power of the s-SHUFFLE model, this appendix
shows how an s-SHUFFLE computation can be used to simulate a

MapReduce computation. We focus specifically on theMRC class
defined in [21].

Recall that in the MapReduce programming paradigm, the ba-
sic unit of information is a 〈key; value〉 pair. The computation
in a given round is defined by two sets of functions, mappers and
reducers. A mapper, µ is a function that takes as input some num-
ber of 〈key; value〉 pairs and, independently for each such pair,
produces a finite multiset of 〈key; value〉 pairs. A reducer, ρ is a
function that takes as input a binary string k, representing the key,
and a set of values v1, v2, . . ., and outputs a set of 〈key; value〉
pairs, all with key k. We can think of the set of reducers as being
indexed by the corresponding key k.

For the simulation below it will be useful to have an explicit
bound on the size of any 〈key; value〉 pair.

Lemma A.1 Any randomized MRC computation can be simu-
lated round per round with an MRC computation where every
〈key; value〉 pair has at most w = O(logn) bits.

Proof (sketch): First suppose that in a 〈key; value〉 pair, the length
of the key is larger than 3 logn bits. We can transform the pair into
〈h(key); key$value〉, where h is a universal hash function onto
3 logn bits. Since there are at most n2−2ε unique keys, with high
probability each long key is mapped to a unique short key, thereby
keeping the logic of the computation intact.

Now consider a 〈key; value〉 pair where the value string s =
v1v2v3 . . . vk has k > c = w − 4 logn bits. We can break the
string into substrings s1 = v1v2 . . . vt, s2 = vt+1vt+2 . . . v2t, and
so on. We then transform the pair 〈key, s〉 into a set of dk/ce pairs
〈key, u$i$si〉, where u is a random 2 logn bit integer, and $ is a
unique symbol. Since the length of the original string was at most
n1−ε, each value now has at most w bits. Since all of these pairs
have the same key they, they will be shuffled to the same reducer.
Provided the integers u generated for each value string we break up
are unique (a high probability event since there are at most n2−ε

pairs), the machine can use the indexes to reconstruct the original
value string. �

Proposition A.2 Every r-round MRC computation with capac-
ity s per mapper and reducer can be simulated by a (r + 1)-round
s-SHUFFLE computation.

Proof (sketch): We use the version of the s-SHUFFLE model with
an arbitrary finite alphabet and unordered input ports (Section 4).
Our alphabet Σ will be the set of all possible w-bit words. (With
w = O(logn), |Σ| is polynomial in n.)

Round i+ 1 of the s-SHUFFLE computation consists of one ma-
chine per round-i reducer of the MRC computation. (The space
constraint of n1−ε in the latter computation translates to a fan-in
constraint of s = n1−ε in the former computation.) Each such ma-
chine simulates the work of both the corresponding round-i reducer
and the subsequent processing of the generated key-value pairs by
the round-(i + 1) mappers. Round 1 of the s-SHUFFLE computa-
tion simulates the first mapping round of theMRC computation.
The requisite machines corresponding to the inputs and outputs are
added before the initial mappers and the final reducers. The func-
tions αuv simulate the message-passing of key-value pairs in the
MRC computation (these are non-trivial only for pairs u, v of ma-
chines in consecutive rounds). �
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