
Local Search Methods for k-Means with Outliers

Shalmoli Gupta
∗

University of Illinois
201 N. Goodwin Ave.

Urbana, IL, 61801
sgupta49@illinois.edu

Ravi Kumar
Google

1600 Amphitheater Parkway
Mountain View, CA 94043
ravi.k53@gmail.com

Kefu Lu
†

Washington University
1 Brookings Drive

St. Louis, MO 63130
kefulu@wustl.edu

Benjamin Moseley
‡

.
Washington University

1 Brookings Drive
St. Louis, MO 63130

bmoseley@wustl.edu

Sergei Vassilvitskii
Google

76, 9th Ave
New York, NY 10011

sergeiv@google.com

ABSTRACT
We study the problem of k-means clustering in the presence
of outliers. The goal is to cluster a set of data points to min-
imize the variance of the points assigned to the same cluster,
with the freedom of ignoring a small set of data points that
can be labeled as outliers. Clustering with outliers has re-
ceived a lot of attention in the data processing community,
but practical, efficient, and provably good algorithms remain
unknown for the most popular k-means objective.

Our work proposes a simple local search-based algorithm
for k-means clustering with outliers. We prove that this al-
gorithm achieves constant-factor approximate solutions and
can be combined with known sketching techniques to scale to
large data sets. Using empirical evaluation on both synthetic
and large-scale real-world data, we demonstrate that the al-
gorithm dominates recently proposed heuristic approaches
for the problem.

1. INTRODUCTION
Clustering is a fundamental data mining task that has

been extensively studied [3]. In a typical clustering prob-
lem the input is a set of points with a notion of similarity
between every pair of points, and a parameter k, which spec-
ifies the desired number of clusters. The goal is to partition
the points into k clusters such that points assigned to the
same cluster are similar. One way to obtain this partition
is to select a set of k centers and then assign each point to
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its nearest center. Different objectives can be used to de-
termine the quality of the clustering solution. One of the
most popular objectives is the k-means cost function, which
minimizes the sum of squared distances between every point
and its nearest center. In the Euclidean space this is equiv-
alent to minimizing the variance of the points assigned to
the same cluster.

Clustering using the k-means objective is one of the most
widely studied data mining problems. It is well known that
finding the optimal solution is NP-hard. In practice, the
dominant algorithm used for this problem is Lloyd’s algo-
rithm, also known as the k-means method [29]. Underscor-
ing the importance of the k-means problem, Lloyd’s algo-
rithm has been identified as one of the top ten algorithms
used in data mining [39]. However, it is at best a heuristic
and has no guarantees on the quality of the solution (other
than being a local minimum).

In addition to heuristic approaches such as Lloyd’s, there
has been a lot of algorithmic work on the k-means problem.
If the data lies in the Euclidean space, an algorithm that can
achieve an approximation of 1+ε for any ε > 0 is known [27,
16]; unfortunately, it runs in time exponential in k and 1/ε
and hence is not practical. If the data resides in an arbitrary
metric space, the algorithm with the best known theoreti-
cal guarantees is a local search algorithm that achieves a
constant-factor approximation [20, 24].

Clustering with outliers. Although the k-means prob-
lem is well-studied, algorithms developed for it can perform
poorly on real-world data. This is because the k-means ob-
jective assumes that all of the points can be naturally parti-
tioned into k distinct clusters, which is often an unrealistic
assumption in practice. Real-world data typically has back-
ground noise, and the k-means method is extremely sensitive
to it. Noise can drastically change the quality of the clus-
tering solution and it is important to take this into account
in designing algorithms for the k-means objective.

To handle noisy data sets, we propose the problem of k-
means with outliers. In this version of the problem, the
clustering objective remains the same, but the algorithm is
additionally allowed to discard a small set of data points
from the input. These discarded points are labeled as out-
liers and are ignored in the objective, thus allowing the clus-
tering algorithm to focus on correctly partitioning the bulk



of the dataset that is potentially noise-free.
The k-means with outliers problem is far less well-

understood than clustering under the vanilla k-means objec-
tive. While constant-factor polynomial time approximation
algorithms are known [11, 13], these approaches require solv-
ing sophistical mathematical programs and the algorithms
themselves are highly complicated and do not scale. To the
best of our knowledge, these algorithms have never been
implemented.

Developing fast practical algorithms for clustering with
outliers remains an active area of research. For example,
several constant-factor algorithms are known for the (eas-
ier) k-center objective1 [11, 31, 32]. However, the more
widely-used k-means objective remains elusive. The work
of [12] developed an extension of Lloyd’s algorithm to the
case where there are outliers, but no guarantees are known
on the quality of the solution obtained by the algorithm.
The question remains: does there exists an efficient, practi-
cal algorithm with theoretical guarantees on its performance
for the k-means with outliers problem?

Our contributions. In this paper we give the first algo-
rithm for k-means clustering with outliers that has provable
approximation guarantees and is practically efficient. It is
also the first known local search method for this problem
with performance guarantees.

Informally speaking, given the desired number of clusters
(k) and an upper bound (z) on the number of outliers, our al-
gorithm computes a constant-factor approximation to the k-
means objective but may identify slightly more than z points
as outliers. This bicriteria approximation is at the heart of
the analysis: by allowing the algorithm to discard a few more
outliers than specified, we gain analytic tractability. Com-
plementing the analysis, in our experimental evaluation we
demonstrate that the bound we prove is a worst-case theo-
retical bound and the algorithm typically discards close to
the specified number of outliers. It is important to keep in
mind that in practice the exact number of outliers is rarely
known and labeling a few extra points as outliers typically
does not affect the quality of the clustering solution.

Our algorithm is based on a local search process wrapped
by an outlier removal step summarized as follows. Starting
with an arbitrary set of k centers, the algorithm iteratively
checks if swapping one of the current centers with a non-
center would improve the objective, and makes the local
step if it is profitable. Once the algorithm has converged on
a locally optimal solution, it checks if any further local swap,
with the additional removal of z outliers, can significantly
improve the solution. If such a swap exists, it performs the
swap and removal, and goes back to the simple local search
mode. While the algorithm itself is very simple and easy
to implement, proving that it has performance guarantees is
more involved, especially with the outlier-based objective.

In addition to proving the method has theoretical guar-
antees, we show that this local search algorithm works well
in practice. In particular, we compare our algorithm to the
recently published adaptation of Lloyd’s algorithm to the
case of noisy data [12], which serves as a strong baseline.
On both synthetic and large real datasets, we demonstrate
that our algorithm consistently out-performs this baseline

1In the k-center problem the goal is to choose centers to
minimize the maximum distance of a point to a center

in both running time and in the quality of the solution ob-
tained. We obtain similarly strong results when compar-
ing the local search algorithm against other algorithms for
related clustering problems, such as the recent Lagrangian
relaxation algorithm [36].

Finally, we show how our algorithm can be combined with
known sketching techniques to handle large data sets. In
particular, we show how to use the fast k-means++ method
[5] to develop a linear-time algorithm for large values of k
and z. This algorithm has the same strong theoretical guar-
antees as our main algorithm.

2. BACKGROUND

2.1 Notation
Let U be a given set of points. For two points u, v ∈ U ,

let d(u, v) denote the distance between u and v. We assume
d(·, ·) is a metric, i.e., d(u, u) = 0 for all u ∈ U , d(u, v) =
d(v, u) for all u, v ∈ U , and d(u, v) + d(v, w) ≥ d(u,w) for
all u, v, w ∈ U . For a set S ⊆ U and a point v ∈ U , let
d(v, S) denote the distance of v to the closest point in S, i.e.,
d(v, S) = minu∈S d(u, v). By scaling, we can assume that
the minimum distance between points is 1. Let ∆ denote
the maximum distance between the points.

Let S be a set of centers of size k. Let

costKM(S;U ′) =
∑
v∈U′

d(v, S)2,

be the k-means cost of the set of centers S on a subset
U ′ ⊆ U of points. (Other cost measures studied in the
literature include the k-center cost, which is maxv∈U′ d(v, S)
and the k-median cost, which is

∑
v∈U′ d(v, S).)

For a given subset Z ⊆ U of outliers, let

cost(S,Z) = costKM(S;U \ Z) =
∑

v∈U\Z

d(v, S)2, (1)

be the k-means cost for a set S of centers with respect to Z.
Let k be the desired number of centers and let z be the

target number of outliers. Let C = {a1, . . . , ak} be the
set of centers chosen by an algorithm and let Z denote the
set of points marked as outliers by the algorithm; we allow
|Z| ≥ z. Let C∗ = {b1, . . . , bk} denote the optimal set of
centers and let Z∗, |Z∗| = z, denote the outliers with respect
to the optimal solution. Let OPT be the cost of the optimum
solution. We assume that OPT ≥ 1. (The other case is
trivial: by the assumption on the minimum distance, if OPT
< 1, it must be 0. This in turn implies that k = n− z and
any set of k centers and z outliers gives an optimal solution.)

For S, S′ ⊆ U and a non-negative integer α, we define the
α farthest points in S from S′ to be the points v1, . . . , vα
in S that maximize

∑α
i=1 d(vi, S

′). Let outliers(S,X) be
the z farthest points from S in U \X; for simplicity, we let
outliers(S) = outliers(S, ∅).

2.2 A local search algorithm
Our algorithm builds on the known local search algorithm

for the k-means problem with no outliers [20, 24]. We call
this algorithm LS. The algorithm starts with some set C of
centers, given as input, and a universe U of points. It checks
for each center v ∈ C and each non-center u ∈ U if swap-
ping them would result in a better clustering solution, i.e.,
whether C ∪ {u} \ {v} has lower k-means cost than C. If



so, the swap is performed by replacing C by C ∪ {u} \ {v}.
After checking all possible swaps, the algorithm updates the
solution with the best possible swap. The algorithm termi-
nates once the solution value does not decrease significantly
by performing a swap, for instance, once the solution value
improves by less than a (1 − ε/k) factor. A complete de-
scription is given in Algorithm 1.

Algorithm 1 The local search algorithm for k-means with
no outliers

LS (U ′, C, k)

1: α←∞

2: {while the solution improves by performing swaps}
3: while α(1− ε

k
) > costKM(C;U ′) do

4: α← costKM(C;U ′)
5: C ← C {a temporary (improved) set of centers}

6: {for each center and non-center, perform a swap}
7: for each u ∈ U ′ and v ∈ C do

8: {if this is the most improved swap found so far}
9: if costKM((C ∪ {u} \ {v});U ′) < costKM(C;U ′)

then
10: C ← C ∪ {u} \ {v} {update the temp. solution}
11: end if
12: end for

13: {update the solution to the best swap found}
14: C ← C
15: end while
16: return C as the k centers

It is easy to see that this algorithm always reduces the
k-means cost. It is known [20, 24] that Algorithm 1 returns
a 25 approximation to the optimum solution. We can fur-
ther improve the approximation ratio by considering swap-
ping t points of the solution simultaneously. The approx-
imation ratio decreases to (3 + 2/t)2, however, since there
are O(nt) such potential swaps, the running time increases
accordingly.

3. THE ALGORITHM
In this section we present our main algorithm for k-means

clustering with outliers. We analyze the running time and
discuss how data sketching techniques can further speed up
the algorithm especially for large n. Finally, we state the
approximation ratio of the algorithm but defer the full tech-
nical analysis to Section 5.

The algorithm takes as input the set U of n points, the
desired number k of centers, the target number z of outliers,
and a constant 0 < ε < 1/6. (In practice ε simply should
be set sufficiently small; our experiments use ε = 10−4.) It
outputs a final set C of k centers and a set Z of outliers.

3.1 Local search with outliers
In this section we present a local search algorithm that

handles outliers; we call our algorithm LS-Outlier. This algo-
rithm generalizes the classical version LS by allowing points
to be discarded as outliers. It maintains a set Z of outliers
it has identified and a set C of centers. Initially C is an
arbitrary set of k points and Z is the set of the z farthest
points from C. The algorithm tries to locally converge on
good sets C and Z by utilizing three procedures.

Algorithm 2 Our local search algorithm for k-means with
outliers
LS-Outlier (U, k, z)

1: C ← an arbitrary set of k points from U
2: Z ← outliers(C)
3: α←∞
4: while α(1− ε

k
) > cost(C,Z) do

5: α← cost(C,Z)

6: {(i) local search with no outliers}
7: C ← LS(U \ Z,C, k)

8: C ← C {a temporary (improved) set of centers}
9: Z ← Z {a temporary (improved) set of outliers}

10: {(ii) cost of discarding z additional outliers}
11: if cost(C,Z)(1 − ε

k
) > cost(C,Z ∪ outliers(C,Z))

then
12: Z ← Z ∪ outliers(C,Z)
13: end if

14: {(iii) for each center and non-center, perform a swap
and discard additional outliers}

15: for each u ∈ U and v ∈ C do

16: {if this is the most improved swap found so far}
17: if cost(C∪{u}\{v}, Z∪outliers(C∪{u}\{v})) <

cost(C,Z) then

18: {update the temp. solution}
19: C ← C ∪ {u} \ {v}
20: Z ← Z ∪ outliers(C ∪ {u} \ {v})
21: end if
22: end for

23: {update the solution allowing additional outliers if the
solution value improved significantly}

24: if cost(C,Z)(1− ε
k

) > cost(C,Z) then

25: C ← C
26: Z ← Z
27: end if
28: end while
29: return C as the k centers and Z as the outliers

(i) The algorithm first runs LS with centers C and the set
of points U \Z, the input with the current outliers removed,
to converge to a local minimum.

(ii) Next, it checks the improvement that can be achieved
by removing z additional outliers, i.e., the improved cost of
adding the z farthest points in U \Z to Z. We call this the
no-swap operation.

(iii) Last, it checks for each pair of points v ∈ C and
u ∈ U , if swapping these two points in C and discarding
z additional outliers will improve the solution. I.e., the al-
gorithm checks the clustering cost of using the points in
C \ {v} ∪ {u} as the centers and discarding the points in
Z ∪ outliers(C \ {v} ∪ {u}, Z). We will say that the outliers
discarded in this set was due to a swap.

When running (ii) and (iii), the algorithm commits to the
best set of z additional outliers to discard between these two
operations over all possibilities. If the best improvement was
a no swap, it adds z outliers to Z and leaves C the same.
Otherwise the best improvement is a swap between a pair
v ∈ C and u ∈ U . In this case the algorithm updates C
to be C \ {v} ∪ {u} and adds the z farthest points from



C \ {v}∪{u} in U \Z to Z. This continues until there is no
possible operation that will reduce the cost of the algorithm
by a (1− ε

k
) factor. A complete formal description is given

in Algorithm 2.
Note that the algorithm is designed to be as conservative

as possible when discarding additional outliers. In particu-
lar, the algorithm will first try to converge to a local maxi-
mum by performing local search without removing outliers.
Then, the algorithm only discards additional outliers if there
is a significant improvement in the solution cost. In the ex-
periments we show that by being conservative the algorithm
rarely discards more than z outliers.

3.2 Running time
We next show the performance guarantees of LS-Outlier.

First, we analyze its running time.

Theorem 1. Algorithm LS-Outlier runs in time
O( 1

ε
k2n2 log(n∆)).

Proof. First notice that any solution set of k centers,
regardless of the outliers chosen, has total cost at most
O(n∆2). This is because any point is distance at most ∆
from the centers chosen (by definition of ∆) and therefore
each of the n points contributes at most ∆2 to the objective.
Each iteration of the while loop in LS or LS-Outlier improves
the solution cost by at least a (1− ε

k
) factor. Starting with

the worst possible solution of cost O(n∆2) results in at most
O(log1− ε

k
(n∆2)) = O( k

ε
log(n∆)) iterations of the while

loop before the cost is at most 1 ≤ OPT. In each iteration,
there are at most O(kn) swaps to check (each center with
each possible non-center). Finally, each swap reassigns at
most n points to centers giving an overall running time of
O( 1

ε
k2n2 log(n∆)), the number of iterations O( k

ε
log(n∆))

multiplied by the number of swaps per iteration O(kn) and
finally the number of points that need to be reassigned per
iteration O(n).

3.3 Improving the running time
When working with large datasets, a running time

quadratic in the number of points is prohibitive. In this
section we discuss how to use sketching techniques to re-
duce the running time, and make LS-Outlier practical, even
for very large data sets.

A natural notion of a data sketch for clustering problems
is that of a coreset. Observe that it is easy to extend the
costKM objective function to weighted point sets. Given a
weight wv associated with every point, v, we have:

costKM(S;U ′;w) =
∑
v∈U′

wv · d(v, S)2.

We can then formally define the notion of a coreset [21].
A weighted point set Y ⊆ U ′ is an α-coreset, if for any set
of cluster centers C,

costKM(C,U ′) ≤ α · costKM(C;Y ;w).

While there has been a lot of work in understanding trade-
offs between the size of the coreset Y and the approxima-
tion ratio α, we focus on fast and efficient coreset construc-
tions. Perhaps the most well known such technique is k-
means++ [5]. The k-means++ algorithm is a simple ran-
domized sampling procedure for the vanilla k-means prob-
lem (i.e., with no outliers).

The algorithm is parametrized by the number of points to
be chosen `. It works as follows. First it selects an arbitrary
point to add to the set Y . Then for ` − 1 steps it samples
a single point from U and adds it to Y . The points are
not chosen uniformly, rather a point u ∈ U is chosen with
probability proportional to d(u, Y )2. The algorithm runs
in time O(`n). It is known that if we use k-means++ to
sample k points, then it achieves an O(log k) approximation
to the (vanilla) k-means objective. Further if 2k points are
sampled, then it leads to an O(1)-approximation [1].

Notice that k-means++ is designed for a problem with no
outliers. To adapt it to our setting, the key is to consider an
instance of the k-means problem with no outliers, but with
the number of centers set to k + z. In this case it is easy to
see that the cost of the optimal solution to this problem is
only smaller than the optimal solution to the problem where
k centers and z outliers can be chosen. Indeed, one could
set the k+z centers to be the same k centers and z outliers.
Therefore, by selecting 2(k + z) points as centers using k-
means++, the final cost will be an O(1)-approximation to
our problem. This, however, does not immediately solve our
problem since we have chosen an extra k + 2z centers.

To convert the selected set to a coreset we must assign
weights to each point. Each point v ∈ Y is given a weight
wv = |{u | d(u, v) = minv′∈Y d(u, v′)}|, breaking ties arbi-
trarily. The value of wv is the number of points in U where
v is their closest point Y . This set can then be used as an
input to the local search algorithm where the weights are
treated as if there are wv copies of v; this reduces the size
of the input to 2(k + z).

As shown in [17, 21], this weighted point set forms an
O(1)-coreset. If we cluster this weighted point set using an
O(1)-approximation for the k-means with z outliers prob-
lem, then we will get an O(1)-approximation for the original
input. Putting it together, we obtain the following result:

Theorem 2. By combining LS-Outlier with k-means++,
the running time is O( 1

ε
k2(k + z)2 log(n∆) + nz).

For handling extraordinarily large data sets, one can com-
bine the algorithm with the scalable k-means++ method [6]
for a fast distributed computing algorithm that computes a
solution similar to k-means++.

3.4 Clustering quality
We next focus on the quality guarantees of LS-Outlier.

This is our main technical result.

Theorem 3. Given k, z, Algorithm LS-Outlier outputs a
set C, |C| = k of centers and a set Z of outliers such that
cost(C,Z) ≤ c · OPT for some constant c ≥ 1 and |Z| ≤
O(zk log(n∆)).

Note that the algorithm discards at most O(z logn) outliers
when k is fixed and ∆ is bounded by a polynomial in n. Our
analysis presented later in the paper shows that the constant
c in Theorem 3 is 274. The experimental performance of the
algorithm is good and the above statement backs this up by
showing that the algorithm has provable guarantees.

For the related `2-norm objective [20], which is the square
root of the k-means objective, the approximation factor we
obtain is 17. For this objective, the best known analysis of
local search without outliers yields a 5-approximation [24,
20]. Even without outliers, it is known that local search
cannot be better than a 3-approximation in the worst case



for the `2-norm objective [24]. Our results are in line with
what is previously known for the easier special case of the
problem where there are no outliers.

First we bound the number of points marked as an outlier
by LS-Outlier.

Lemma 4. |Z| ≤ O( 1
ε
zk logn∆).

Proof. The bound on the outliers follows from the num-
ber of local steps taken by Algorithm LS-Outlier. The al-
gorithm initially sets C to be an arbitrary set of k centers.
The worst case cost of such a solution is O(n∆2). In each
iteration of the while loop, the algorithm removes at most
z outliers and the cost of the solution decreases by an 1− ε

k
factor. Knowing that the cost must be at least 1, the total
number of iterations can be at most O( 1

ε
k log(n∆)). Thus

the total number of outliers chosen by the algorithm is at
most O( 1

ε
zk log(n∆)).

It remains to bound the cost of the solution obtained by
LS-Outlier. To prove the bound, we carefully string together
the inequalities that hold due to local optimality of the so-
lution. The immediate difference from the no-outlier proof
by [20, 24] is in the notion of capture, where a point in
the algorithm’s solution cannot capture those points labeled
as outliers. This plays a critical role in bounding the cost
of any potential swap, where we first chose to ignore points
labeled as outliers by either the algorithm or the optimal so-
lution, and use the relaxed triangle inequality to bound the
contribution of the other points. Indeed, it is the mechanics
of the proof that motivate the third procedure in the main
algorithm, that of checking the magnitude of the improve-
ment using a swap and an additional z outliers. Intuitively,
this is a reasonable check to make, since the algorithm may
not be using the same z outliers as the optimum. However
proving that there are no unexpected consequences to this
check requires a formal analysis, which we present in Sec-
tion 5.

4. EXPERIMENTS
We evaluate the performance of our algorithm on both

synthetic and real datasets. As described in Section 3.2, we
can use k-means++ to reduce the size of the input our al-
gorithm runs on and improve its running time (Theorem 2).
When running our algorithm, we start by using k-means++
to construct a weighted set of points of size k + z. We run
Algorithm 2 on this weighted point-set. Throughout this
section, abusing terminology slightly, we refer to this entire
procedure as the LS-Outlier algorithm. We use ε = 10−4 in
our experiments.

Baselines. As our main baseline we have implemented the
algorithm in [12], modulo a small modification: instead of
choosing the initial seed points uniformly at random, we
use k-means++ to determine the initial k points to seed
the algorithm. Our experiments showed that this dramat-
ically improves the performance of the algorithm, making
the baseline very strong. Henceforth, we call this algorithm
Lloyd-Outlier.

Recall that our algorithm may discard more than z out-
liers. To make the comparison for cost fair, we first run LS-
Outlier and then allow Lloyd-Outlier to throw out the same
number of outliers.

Apart from Lloyd-Outlier, we also consider three well-
known algorithms from the broader literature on clustering
noisy data:

(i) A two-step process of outlier detection using LOF [10],
followed by clustering using k-means++. We refer to this
as LOF-Outlier. In order to detect the outliers, we compute
LOF score for each point, and remove the top z points as
outliers.

(ii) An integrated clustering with outlier method proposed
in [36]. Optimized for the facility location problem, it uses
Lagrangian relaxation and hence we refer to the method
as LR. While the facility location problem is similar, the
key difference is that the algorithm is allowed to chose any
number of clusters, depending on the facility cost. In some
practical settings, having a cost to open a new cluster is
natural. In other cases the number of clusters is a more
natural parameter.

(iii) DBSCAN from [14]. While DBSCAN is a popular clus-
tering heuristic, we found it unsuitable for this problem.
First, DBSCAN can have an arbitrary number of clusters
and outliers, and it is very hard to set parameters to achieve
a precise trade-off that we seek. Secondly, the DBSCAN
method requires the knowledge of the number of points in
each cluster and the radius of the clusters, which is not avail-
able for traditional unsupervised clustering; especially when
the cluster sizes vary. Both of these concerns have been
echoed in previous work, see for example [9, 18]. Finally,
DBSCAN does not come with any theoretical guarantees on
its performance. The results of the experiments were incom-
parable to the other methods, and thus we chose to omit
them in the experimental evaluation.

Metrics. For each algorithm we compute the k-means ob-
jective cost, given by (1). To further quantify the detection
of outliers, we define two quantities: precision and recall.
Assume that we know the set of true outliers Z∗ and that
an algorithm returns the set Z as outliers. The precision for
the algorithm is the fraction of true outliers within the set of

outliers claimed by the algorithm (formally, |Z
∗∩Z|
|Z| ). Simi-

larly recall is the fraction of true outliers that are returned

by the algorithm, |Z
∗∩Z|
|Z∗| . These metrics together measure

the accuracy of outlier detection.

4.1 Synthetic data
In this section we describe our experiments on synthetic

datasets. To generate the synthetic dataset, we choose k real
centers uniformly at random from a hypercube of side length
100. Centered at each of these real centers, we add points
from a Gaussian distribution with unit variance. This gives
us k well separated clusters. Finally, we sample z outliers
uniformly at random from the hypercube of side length 100.
Some of these outlier points may fall in the middle of the
already selected Gaussians. Due to this, once the entire data
has been generated we consider the points furthest from the
real centers as the true outliers.

We generated the dataset for n = 10000 and d = 2, 15.
Since both algorithms are initialized with a random seeding
procedure, we run 10 trials for each case. We report the av-
erage cost, as well as, precision and recall for d = 15 dataset
(similar trends were observed for d = 2 dataset). The preci-
sion and recall comparisons are presented in Table 1. In Fig-
ure 1 we show the cost of the algorithm. We note LS-Outlier



consistently outperforms Lloyd-Outlier in terms of cost and
also in terms of precision and recall.

We highlight that the number of outliers thrown out by
LS-Outlier, denoted by |Z|, is exactly z in all the cases. This
leads to precision and recall being identical in this dataset .

k z |Z| LS-Outlier Lloyd-Outlier

Prec. Rec. Prec. Rec.

10 25 25 1 1 0.984 0.984
50 50 1 1 0.993 0.993
100 100 1 1 0.994 0.994

20 25 25 1 1 0.987 0.987
50 50 1 1 0.992 0.992
100 100 1 1 0.967 0.967

Table 1: Results on synthetic data, n = 104, d = 15.

Next, we compare the results of our algorithms to the
two-step method of LOF-Outlier. Computing LOF for each
point is considerably slower, and hence for this experiment
we generate a smaller dataset of n = 1000, and d = 2.
The results are shown in Table 2. Observe, the solution
returned by our algorithm is significantly better than LOF-
Outlier both in terms of outlier detection accuracy, as well
as clustering quality. We also note that when z = 100 the
algorithm marked |Z| = 120 points of outliers, demonstrat-
ing the bicriteria approximation behavior. That said, it was
still significantly better than the LOF-Outlier with the same
number of outliers.

z |Z| LS-Outlier LOF-Outlier

Prec. Rec. cost Prec. Rec. cost

25 25 0.94 0.94 2047 0.84 0.84 2434
50 50 0.91 0.91 2158 0.91 0.91 6419
100 120 0.72 0.91 2077 0.58 0.67 10853

Table 2: Comparison with LOF-Outlier on synthetic
data, n = 1000, d = 2, k = 20.

The final comparison we perform is against the LR
method. We generate the synthetic data in the same manner
as for the previous experiments. The LR algorithm accepts
a cost for center creation and also a number of outliers. As
output the algorithm generates a clustering and the num-
ber of centers. To ensure a fair comparison, our algorithms
are run with k equal to the number of clusters generated
by LR, even though the proper number of clusters is known
when generating the synthetic data. These results are shown
in Table 3. We note that our algorithm rarely reports more
outliers than given. Additionally, the LS-Outlier consistently
performs better than the LR algorithm in terms of cost.

4.2 Real data
Next we discuss performance of our algorithm on real

datasets. The datasets we consider are: SUSY, Power,

Skin, Shuttle, and Covertype available in the UCI Ma-
chine Learning Repository [28]. The datasets have 5M, 2M,
245K, 43K, and 11K instances respectively. We run tests by
considering outliers in two different ways discussed below.

k z |Z| LS-Out. Lloyd-Out. LR
cost cost cost

21 25 25 16.54 26.21 16.29
23 50 50 16.54 40.32 28.79
25 100 163 14.79 48.74 35.28

Table 3: Cost comparison with LR on synthetic data.

Unfortunately the LOF-Outlier and LR algorithms scale
poorly to larger datasets, therefore we only include compar-
isons to Lloyd-Outlier algorithm.

Small clusters as outliers. The Shuttle training dataset
contains 43,500 instances. In total there are 7 classes. 99.6%
of the data belongs to the four largest classes, while the
two smallest classes together contain only 17 data points.
We aim to detect these points as outliers. Thus we set the
number of outliers to 17.

The results of our algorithm on this is shown in Table 4.
As noted in [12], small clusters in this dataset are inherently
difficult to separate from the large clusters. Given that,
the precision and recall scores are fairly good (especially for
k = 15), and the method consistently outperforms that of
[12].

k |Z| LS-Outlier Lloyd-Outlier

Prec. Rec. Prec. Rec.

5 21 0.176 0.212 0.159 0.176
10 34 0.176 0.353 0.132 0.294
15 51 0.182 0.553 0.158 0.494

Table 4: Results on Shuttle dataset for z = 17.

Random noise outliers. We test the performance of our
algorithm when random noise is added to real data. We per-
form this experiment on SUSY, Power, Skin, and Covertype.
We generate outliers as follows: randomly choose z points
from the dataset. For each of those points, we add a uniform
random noise on each of its dimensions.

The results of the precision and recall of our algorithm on
the different datasets is shown in Tables 5–8. Notice that
the precision and recall are very high for all the datasets and
are consistently better than the baseline.

k z |Z| LS-Outlier Lloyd-Outlier

Prec. Rec. Prec. Rec.

10 25 25 1 1 0.964 0.964
50 50 1 1 0.974 0.974
100 100 1 1 0.981 0.981

20 25 25 1 1 0.936 0.936
50 50 1 1 0.964 0.964
100 100 1 1 0.958 0.958

Table 5: Results on SUSY dataset.

The cost of the algorithm’s solution can be found in Fig-
ure 2 and Figure 3. Notice the strong performance in the
objective over the baseline method. The running time com-
parisons are shown in Figure 4 and Figure 5. Although



��

���

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
�
� �

������������

����������
�������������

(a) Cost: k = 10

��

��

��

��

��

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
��
��

������������

����������
�������������

(b) Time: k = 10

��

���

����

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��� ����

��
��
��
��
�
� �

������������

����������
�������������

(c) Cost: k = 20

��

��

���

���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ��� ��� ��� ����

�
��
��
��
��
��

������������

����������
�������������

(d) Time: k = 20

Figure 1: Comparison on synthetic data, n = 104, d = 15.

k z |Z| LS-Outlier Lloyd-Outlier

Prec. Rec. Prec. Rec.

10 25 25 1 1 0.960 0.960
50 50 1 1 0.964 0.964
100 100 0.994 0.994 0.982 0.982

20 25 25 0.984 0.984 0.864 0.864
50 50 0.992 0.992 0.948 0.948
100 100 0.994 0.994 0.962 0.962

Table 6: Results on Power dataset.

k z |Z| LS-Outlier Lloyd-Outlier

Prec. Rec. Prec. Rec.

10 25 25 0.904 0.904 0.848 0.848
50 50 0.886 0.886 0.826 0.826
100 120 0.768 0.864 0.752 0.846

20 25 25 0.92 0.92 0.824 0.824
50 50 0.864 0.864 0.832 0.832
100 100 0.878 0.878 0.856 0.856

Table 7: Results on Skin dataset.

LS-Outlier is slower than Lloyd-Outlier, it runs in reasonable
time even for significantly large dataset like SUSY.

In conclusion, even in this random noise model our algo-
rithm performs better than the baseline algorithm in almost
all cases and in many cases significantly better.

4.3 Summary
Thus, our key experimental findings are the following.

• LS-Outlier has high precision and recall. On synthetic
data both are always at least 90%. On real data, both
precision and recall are better than the Lloyd-Outlier
method. The algorithm also performs better than the
LR method.

• The k-means objective cost of our algorithm is always
strictly better than the baseline, even though both are
local search methods, and both start with a solution
seeded by k-means++. In fact, the cost is almost al-
ways 50% better on synthetic data and usually over
20% better on real data.

• On average, the algorithm discards fewer than 2z out-
liers. This demonstrates that in practice the number
of outliers discarded is far better than Theorem 3 pre-
dicts.

k z |Z| LS-Outlier Lloyd-Outlier

Prec. Rec. Prec. Rec.

10 25 25 1 1 0.780 0.780
50 50 1 1 0.878 0.878
100 100 1 1 0.943 0.943

20 25 25 1 1 0.532 0.532
50 50 1 1 0.764 0.764
100 100 1 1 0.880 0.880

Table 8: Results on Covertype dataset.

We believe these results strongly support using LS-Outlier
for k-means clustering with outliers. It has significantly im-
proved cost and more accurately identifies outliers in real
data sets. Further, the number of outliers discarded is close
to the input parameter.

5. ANALYSIS OF CLUSTERING QUALITY
In this section we present a complete analysis of the clus-

tering quality of LS-Outlier. In particular, our goal is to
prove the cost bound in Theorem 3, i.e., we show that the
cost is at most a constant factor larger than the cost of the
optimal solution.

The following fact will be useful throughout the analysis.
It is known as the relaxed triangle inequality.

Fact 1 (Relaxed triangle inequality). For any
points u, v, w in a metric space U it is the case that
2(d(u, v)2 + d(v, w)2) ≥ d(u,w)2.

Proof. Fix any u, v, w ∈ U . We have that d(u,w)2 ≤
(d(u, v) + d(v, w))2 since we know that d(u,w) ≤ d(u, v) +
d(v, w) by definition of a metric space. Further, (d(u, v) +
d(v, w))2 ≤ d(u, v)2 + d(v, w)2 + 2d(u, v)d(v, w). It is easy
to verify that 2d(u, v)d(v, w) ≤ d(u, v)2 + d(v, w)2, which
completes the proof.

For the remainder of the proof fix C = {a1, . . . ak} to be
the set of centers, and Z to be the set of outliers at the end
of the algorithm. Let C∗ and Z∗ be the centers and outliers
of a fixed optimal solution.

5.1 Local optimality
The key property of LS-Outlier and effectively the only

inequality we can rely on in the proof is that of local opti-
mality.
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(d) Covertype

Figure 2: K-means cost of clustering real datasets for k = 10.
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(d) Covertype

Figure 3: K-means cost of clustering real datasets for k = 20.

Proposition 5 (Local optimality). (i) It is the
case that (

cost(C,Z ∪ outliers(C))− cost(C,Z)
)

≥ − ε
k
cost(C,Z).

(ii) Further, for any u ∈ U and v ∈ C it is the case that(
cost(C ∪ {u} \ {v}, Z ∪ outliers(C ∪ {u} \ {v})))

−cost(C,Z)
)
≥ − ε

k
cost(C,Z).

Property (i) states that the solution cannot be improved by
more than a (1− ε

k
) factor even if we allow an additional z

outliers added to Z. Property (ii) states that for any swap
pair u ∈ U and v ∈ C, it is the case that the solution
does not improve by a (1− ε

k
) factor if we swap u and v as

centers and remove an additional z outliers. Both properties
follow from the local search termination conditions of the
algorithm, the while loop in LS-Outlier (Algorithm 2).

Our goal is to find a meaningful way of applying Proposi-
tion 5 to bound the cost of LS-Outlier by the optimal solu-
tion’s cost. Our analysis is inspired by the elegant analysis
of the problem without outliers [20, 24].

5.2 Swap pairs and capture
We define a set of k swap pairs of the form (ai, bj). For

each of these swap pairs, we will apply Proposition 5 and by
summing the inequalities over the pairs we will be able to
bound the cost of LS-Outlier by the optimal solution.

To define the swap pairs, we require the following defini-
tion. For a ∈ C let

N(a) = {v | a = arg min
a′∈C

d(v, a′)},

denote all the points in the cluster corresponding to point a
in the output of LS-Outlier. Similarly, for b ∈ C∗ let

N∗(b) = {v | b = arg min
b′∈C∗

d(v, b′)},

denote all the points in the cluster corresponding to point b
in the optimum.

Definition 6 (Capture). For a ∈ C and b ∈ C∗ we
say that a captures b if

|N(a) ∩ (N∗(b) \ Z)| > 1

2
|N∗(b) \ Z)|.

Note that b ∈ C∗can be captured by at most one a ∈ C.

We define a set P of swap pairs as follows.

• If a ∈ C captures exactly one b ∈ C∗, then add (a, b)
to P.

• For each a ∈ C that captures no b ∈ C∗, add the pair
(a, b) to P for any b ∈ C∗ such that (i) b is not already
included in a swap pair and (ii) each a ∈ C is involved
in at most two swap pairs.

Properties of swap pairs. The key to this definition of
swap pairs is ensuring that it has the following properties.

1. Each b ∈ C∗ is involved in exactly one swap pair;

2. Each a ∈ C is involved in at most two swap pairs;

3. If (a, b) ∈ P then a captures no b′ ∈ C∗ \ {b}.

The second and third properties follow by definition of the
swap pairs. The first property is non-obvious. We will show
that indeed there are enough centers in C that capture no
center in C∗ to ensure that every b ∈ C∗ is involved in one
swap pair. To do so, let β denote the number of centers in
C that capture exactly one center in C∗.

Lemma 7. There are at least k−β
2

centers in C that cap-
ture no center in C∗, where β is the number of of centers in
C that capture exactly one center in C∗.
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(d) Covertype

Figure 4: Running Time of clustering real datasets for k = 10.
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(d) Covertype

Figure 5: Running Time of clustering real datasets for k = 20.

Proof. Let t be the number of centers in C that capture
two or more centers in C∗ and x be the number that capture
none. We know that 2t+ β ≤ k since each center in C∗ can
be captured by at most one center in C. This implies that
t ≤ k−β

2
. We further know that t+ x+ β = k as this counts

all centers in C. Hence we have that

k = t+ x+ β ≥ k − β
2

+ x+ β.

This implies x ≥ k−β
2

proving the lemma.

Lemma 7 thus states that there are k−β
2

centers in C that
capture no center in C∗. Since we allow each a to be involved
in two swap pairs, this ensures that every center in b will be
included in some swap pair. This can be use to derive that
every center in C∗ will be included in some swap pair, since
we allow each center in C to be involved in at most two swap
pairs. However, it may not be the case that every center in
C is involved in a swap pair.

Now that we have swap pairs with the desirable proper-
ties, we will now focus on using Proposition 5 to bound the
cost of LS-Outlier. For brevity, we define

cost(a, b) :=

cost(C ∪ {b} \ {a}, Z ∪ outliers(C ∪ {b} \ {a})).

The following is implied by applying Proposition 5 and
summing over all k swap pairs.∑

(a,b)∈P

(cost(a, b)− cost(C,Z))

≥ −ε · cost(C,Z).

5.3 Bounding the cost of a swap
Our goal is to bound cost(a, b) in a meaningful way. It is

challenging to argue about this value directly, instead, we
define a clustering using centers C ∪ {b} \ {a} that has cost
larger than cost(a, b), which closely resembles the cluster-
ing of LS-Outlier. By doing this and the fact that the swap
pairs include every center in the optimal solution, we will be

able to show that the solution of LS-Outlier closely resem-
bles the optimal solution. This is where we use the notion
of capture (Definition 6). Intuitively, the definition gives us
control on which clusters obtained by LS-Outlier closely re-
semble some cluster in the optimal solution and which clus-
ters resemble no cluster in the optimal solution. We show
that

∑
(a,b)∈P cost(a, b) is bounded by O(cost(C∗, Z∗)), the

optimal solution’s cost. Knowing that cost(C,Z) is cost of
LS-Outlier, the inequality implies that the algorithm is a
constant-factor approximation, for constant ε. The full proof
is much more involved because the assignment of points to
centers after doing a swap is delicate.

Defining a permutation. To begin we first require an-
other crucial definition. We define a permutation π on the
points in U \ (Z∪Z∗). Consider ordering all of the points in
U \ (Z ∪ Z∗) such that those belonging to N∗bi come before
N∗bi+1

for all i = 1, 2, . . . , k − 1. For points in N∗bi for all i
we further define an ordering on them where the points Naj
come before Naj+1 for j = 1, 2, . . . , k − 1. This defines the
permutation.

Using the permutation, we define a mapping between the
points. For a point v ∈ N∗bi let π(v) denote its diametrically
opposite point in N∗bi according the above permutation.

Cost of a swap. We are ready to show an upper bound
on cost(a, b). To do this, using the centers in C ∪ {b} \ {a}
we will define a suboptimal assignment of points in U \ Z
to centers and choose z additional outliers. The cost of
this assignment is clearly only larger than cost(a, b), since
cost(a, b) is defined using the optimal assignment and the
optimal z additional outliers.

Using the above permutation definition, we can define how
to bound the cost of a solution after doing a swap. Consider
a swap pair (a, b) ∈ P. We map points in U to centers in
C ∪ {b} \ {a} in the following way. Note that there are at
most |Z|+ z outliers in this clustering.

• Each v ∈ Z \N∗b and each v ∈ Z∗ is an outlier.

• Each v ∈ N∗b is mapped to the center b.



• Each v ∈ Na′,a′ 6=a \ (Z∗ ∪N∗b ) is mapped to a′.

• Each v ∈ Na \ (Z∗ ∪N∗b ) is mapped to the center for
π(v) in the solution obtained by LS-Outlier. We will
show that this center must not be a and therefore is
in C ∪ {b} \ {a}.

First we show that this mapping is feasible. In particular,
we show that for all v ∈ Na \ (Z∗ ∪ N∗b ) it is the case that
π(v)’s center in the solution obtained by LS-Outlier is not a.

Lemma 8. For any point v ∈ Na \ (Z∗ ∪ N∗b ) we have
π(v) ∈ Na′ for some a′ 6= a.

Proof. By definition π is permutation on points in U \
(Z ∪ Z∗). In particular, this implies that π(v) is not an
outlier either in LS-Outlier or in the optimum. We know
that v ∈ N∗b′ for some b′ 6= b by assumption. Using the
permutation π, v is mapped to the diametrically opposite
point π(v) in N∗b′ . Knowing that a does not capture any
b′ 6= b by definition of swap pairs, it is the case that π(v)
must not be in Na. Since π(v) is not an outlier, this implies
the lemma.

Having concluded that the above definition of the clustering
is feasible, we now bound its cost in the following manner;
we use the fact that outliers have no cost. In the following,
let πc(v) denote the center for π(v) and let vc denote v’s
center in the solution obtained by LS-Outlier.

cost(a, b)− cost(C,Z)

≤
∑
v∈N∗

b

d(v, b)2 +
∑

v∈Na′,a′ 6=a

d(v, a′)2

+
∑

v∈Na\(Z∗∪N∗b )

d(v, πc(v))2 −
∑

v∈U\Z

d(v, vc)2

≤
∑
v∈N∗

b

d(v, b)2 −
∑

v∈N∗
b
\Z

d(v, vc)2

+
∑

v∈Na′,a′ 6=a\(Z∗∪N
∗
b
)

(d(v, a′)2 − d(v, vc)2)

+
∑

v∈Na\(Z∗∪N∗b )

(d(v, πc(v))2 − d(v, vc)2).

We will bound each of these terms separately in the fol-
lowing lemmas over all swap pairs. For the third term,∑
v∈Na′,a′ 6=a\(Z∗∪N

∗
b
)(d(v, a′)2 − d(v, vc)2), notice that vc is

a′ for all v’s in the summation. Thus, this term drops out.
Now consider the first two terms.

Lemma 9. It is the case that
∑

(a,b)∈P
(∑

v∈N∗
b
d(v, b)2−∑

v∈N∗
b
\Z d(v, vc)2

)
≤ cost(C∗, Z∗)− (1− ε

k
)cost(C,Z).

Proof.

∑
(a,b)∈P

∑
v∈N∗

b

d(v, b)2 −
∑

v∈N∗
b
\Z

d(v, vc)2


≤ cost(C∗, Z∗)−

∑
(a,b)∈P

∑
v∈N∗

b
\Z

d(v, vc)2

(∵ each b appears once in a swap pair in P)

We can further bound this as:

≤ cost(C∗, Z∗)−
∑

v∈U\Z

d(v, vc)2 +
∑

v∈Z∗\Z

d(v, vc)2

= cost(C∗, Z∗)− cost(C,Z) +
∑

v∈Z∗\Z

d(v, vc)2

≤ cost(C∗, Z∗)− cost(C,Z) +
ε

k
cost(C,Z)

(∵ |Z∗ \ Z| ≤ z and Proposition 5 ).

We can now consider the last term. The following algebraic
fact will be useful in bounding the complex expression.

Fact 2. For any positive real numbers x, y, z and pa-
rameter 0 < δ ≤ 1 it is the case that (x + y + z)2 ≤
(1 + 2

δ
)(x+ y)2 + (1 + 2δ)z2.

Proof.

(x+ y + z)2

= (x+ y)2 + z2 + 2z(x+ y)

≤
(

1 +
2

δ

)
(x+ y)2 + (1 + 2δ)z2

(∵ either x+ y ≤ δz or x+ y > δz ).

Now we are ready to bound the final term over all swap
pairs.

Lemma 10.
∑

(a,b)∈P
∑
v∈Na\(Z∗∪N∗b )

(d(v, πc(v))2 −
d(v, vc)2) ≤ (8 + 16

δ
)cost(C∗, Z∗) + 4δcost(C,Z) for any

0 < δ ≤ 1.

Proof. Fix any (a, b) ∈ P. Notice that d(v, πc(v)) ≤
d(v, π(v)) + d(π(v), πc(v)) ≤ d(v, b) + d(b, π(v)) +
d(π(v), πc(v)) where both inequalities follow from the tri-
angle inequality.

Consider any v ∈ U\(Z∪Z∗). For any such point v, π(v) is
well defined. Notice that d(v, b)+d(b, π(v))+d(π(v), πc(v))−
d(v, vc) ≥ 0. This is because the first three terms form an
upper bound on the distance from v to a center in C \ {vc}
and v is assigned to center vc in the clustering obtained by
LS-Outlier (the closest center to v in C).

Using the above, we have the following.∑
(a,b)∈P

∑
v∈Na\(Z∗∪N∗b )

(d(v, πc(v))2 − d(v, vc)2)

≤
∑

(a,b)∈P

∑
v∈Na\(Z∗∪N∗b )

((
d(v, b) + d(b, π(v))

+d(π(v), πc(v))
)2
− d(v, vc)2

)

≤ 2
∑

v∈U\(Z∗∪Z)

((
d(v, b) + d(b, π(v))

+d(π(v), πc(v))
)2
− d(v, vc)2

)
( ∵ each a ∈ C appears at most twice and every term

is positive from the above)



Continuing, we bound the sum as:

≤ 2
∑

v∈U\(Z∗∪Z)

((
1 +

2

δ

)(
d(v, b) + d(b, π(v))

)2
+(1 + 2δ)d(π(v), πc(v))2 − d(v, vc)2

))
(∵ Fact 2)

≤ 2
∑

v∈U\(Z∗∪Z)

((
2 +

4

δ

)
(d(v, b)2 + d(b, π(v))2)

+(1 + 2δ)d(π(v), πc(v))2 − d(v, vc)2
))

(∵ Fact 1).

To complete the lemma consider the value of∑
v∈U\(Z∗∪Z)

(
d(π(v), πc(v))2 − d(v, vc)2

)
. This sum-

mation is over all the points considered in the permutation
π and each point v in the permutation is mapped to by
exactly one other point that is diametrically opposite. Due
to this, each point v ∈ U \ (Z∗ ∪ Z) contributes d(v, vc)2

once in the first term and once in the second term. Thus,∑
v∈U\(Z∗∪Z)

(
d(π(v), πc(v))2 − d(v, vc)2

)
= 0.

This argument implies the following.

2
∑

v∈U\(Z∗∪Z)

((
2 +

4

δ

)
(d(v, b)2 + d(b, π(v))2)

+(1 + 2δ)d(π(v), πc(v))2 − d(v, vc)2
))

≤ 2
∑

v∈U\(Z∗∪Z)

((
2 +

4

δ

)
(d(v, b)2 + d(b, π(v))2)

)

+2
∑

v∈U\(Z∗∪Z)

2δd(π(v), πc(v))2

≤
(

8 +
16

δ

)
cost(C∗, Z∗) + 4δcost(C,Z).

5.4 The final step
We can now put all of these arguments together and bound

the cost of LS-Outlier.

Theorem 11. LS-Outlier is an O(1)-approximation algo-
rithm for any fixed 0 < ε ≤ 1/4.

Proof. Recall the main bound we have:

∑
(a,b)∈P

(cost(a, b)− cost(C,Z)) ≥ −εcost(C,Z).

By Lemmas 9 and 10 we have the following.(
8 +

16

δ

)
cost(C∗, Z∗) +

4δ · cost(C,Z) + cost(C∗, Z∗)−
(

1− ε

k

)
cost(C,Z)

≥ −ε · cost(C,Z)

Combing these inequalities gives

9 + 16
δ

1− 4δ − ε− ε
k

cost(C∗, Z∗) ≥ cost(C,Z).

Choosing δ = 2
√
79−16
9

and ε to be sufficiently small es-
tablishes that the algorithm obtains a 274-approximation
for the k-means objective. If the objective is the `2-norm
of the distances of the points to centers, then the algorithm
obtains a 17-approximation.

6. OTHER RELATED WORK

Clustering algorithms have been studied for decades in
several communities, even outside core computer science. A
thorough review of the relevant literature, especially in the
context of data management and data processing, is beyond
the scope of our work. In addition to the book [3], there are
many surveys available [8, 19, 23].

The k-means problem with outliers, which is the main
topic of our paper, has been studied from both theoret-
ical and heuristic points of view. Charikar et al. [11]
and Chen [13] proposed constant-factor approximation al-
gorithms for the problem. Unfortunately these algorithms
are too complicated to be effective in practice. Our algo-
rithm LS-Outlier, on the other hand, has similar theoretical
guarantees while being simple to implement. Chawla and
Gionis [12] extended Lloyd’s algorithm to handle outliers,
but they provide no guarantees on the quality of the clus-
tering, only showing that it reaches a local optimum.

Some papers have focused on other clustering objectives
while taking into account the effect of outliers. Ester et
al. [14] proposed DBSCAN, a heuristic that combines clus-
tering and outlier removal. However, DBSCAN suffers from
a number of problems, as noted in earlier work [18]. It is
very sensitive to parameters, not robust, can have an arbi-
trary number of clusters and outliers, and needs to know the
radius of each cluster. Hence its requirements are outside
the scope of our methods. Bohm et al. [9] extended inde-
pendent component analysis to make clustering robust to
outliers; once again, their method does not have any prov-
able guarantees for the quality of the resulting clustering.
There is a huge body of work dealing with first finding out-
liers, i.e., separating the outlier detection from the clustering
objective [2, 4, 7, 25, 26, 30, 37, 38]. Our work, on the other
hand, treats clustering and outlier removal in an integrated
fashion as done in [22, 9, 14].

Implementations of k-means algorithms have been studied
in the data engineering community, especially in the context
of better integration with an existing relational database
management system. Ordonez and Omiecinski [35] consid-
ered an efficient implementation of k-means that is based on
disk. Subsequently, Ordonez [33, 34] studied an SQL imple-
mentation of k-means. We believe our algorithm LS-Outlier,
owing to its simplicity, can be easily integrated in existing
database management systems.

Scalability issues regarding k-means have also been stud-
ied in the past. Farnstrom et al. [15] used compression-
based techniques to obtain a single-pass algorithm for k-
means. Bahmani et al. [6] extended k-means++ to work
in the MapReduce model. The initial portion of our algo-
rithm LS-Outlier can use this extension, to make it scalable.
The literature on the scalability and the implementation of
k-means in non-traditional computational models such as
streaming and message passing are too numerous to be listed
and are outside the scope of our work.



7. CONCLUSIONS
In this paper we considered the problem of k-means with

outliers and obtained a new algorithm that is based on lo-
cal search. Our algorithm is simple, practical, and can be
adapted to scale for large data; in addition, it has prov-
able performance guarantees. Experiments indicate that
this algorithm can outperform recently proposed heuristic
approaches for the problem on both synthetic and real data.

There are several interesting future research directions.
First, if the data points are from the Euclidean space (as
opposed to a general metric space), can the guarantees be
stronger or the analysis simpler? Second, can we close the
gap between the desired number of outliers and the actual
number of outliers found by the algorithm? Our experimen-
tal evaluation suggests that the algorithm performs much
better than the analysis seems to indicate. Finally, are there
good data structures and sketching techniques to further
speed up the local search and update steps?
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