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Abstract. In this paper we introduce and study a model that considers
the job market as a two-sided matching market, and accounts for the im-
portance of social contacts in finding a new job. We assume that workers
learn only about positions in firms through social contacts. Given that
information structure, we study both static properties of what we call lo-
cally stable matchings, a solution concept derived from stable matchings,
and dynamic properties through a reinterpretation of Gale-Shapley’s al-
gorithm as myopic best response dynamics.

We prove that, in general, the set of locally stable matching strictly
contains that of stable matchings and it is in fact NP-complete to de-
termine if they are identical. We also show that the lattice structure of
stable matchings is in general absent. Finally, we focus on myopic best
response dynamics inspired by the Gale-Shapley algorithm. We study
the efficiency loss due to the informational constraints, providing both
lower and upper bounds.

1 Introduction

When looking for a new job, the most often heard advice is to “ask your friends”.
While in the modern world almost all of the companies have online job appli-
cation forms, these are usually overloaded with submissions; and it is no secret
that submitting a resume through someone on the inside greatly increases the
chances of the application actually being looked at by a qualified person. This is
the underlying premise behind the professional social networking site LinkedIn,
which now boasts more than 40 million users. And, as pointed out by Jackson
[10], has given a new meaning to the word ‘networking,” with Merriam Web-
ster’s Dictionary’s defining it as “the cultivation of productive relationships for
employment or business.”

Sociologists have long studied this phenomenon, and have time and time
again confirmed the role that social ties play in getting a new job. Granovetter’s
seminal work [7, 8] headlines a long history of research into the importance of
social contacts in labor markets. His results are striking, for example, 65 percent
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of managerial workers found their job through social contacts. Other studies
(see, e.g., [15, 13, 9]) all echo the importance of social contacts in securing a new
position.

While there are numerous reasons that social ties play such an important role,
one may think that the employers themselves would prefer to evaluate all candi-
dates for a position before making a hiring decision. This is in fact what happens
in some segments of the job market. In the United States, the National Resident
Match Program is a significant example of a centralized selection matching mech-
anism. Such centralized markets have been well studied in two-sided matching
theory. Indeed, the NRMP is one of the most important practical applications
of the celebrated stable matching problem in two-sided matching markets [16].
For an overview of two-sided matching markets, see [17].

However, the task of evaluating (and ranking) all possible candidates is of-
ten simply not feasible. Especially in today’s economy, it is not rare to hear
of hundreds of applicants for a position, obviously the vast majority cannot be
interviewed, regardless of their qualifications. The recommendation by an em-
ployee thus carries extra weight in the decision process, precisely because it
separates the specific application from the masses.

Model - In this work, we propose a new model that bridges the rigorous analysis
of the two-sided matching theory with the observations made by social network
analysis. Specifically, we develop a model of job markets where social contacts
play a pivotal role; and then proceed to analyze it through the stable matching
lens.

We integrate the usage of social contacts by allowing an applicant to apply
only to jobs in firms employing her friends. Clearly this limitation depends on the
underlying social graph. Intuitively, the equilibrium behavior in well connected
social graphs should be closer to that in classical two sided matchings than in
badly connected ones. But even in well connected social graphs this limitation
leads to behaviors not observed in the traditional model. For example, a firm may
lose all of its workers to the competition, and subsequently go out of business.

The model forces us to consider a setting where job applicants have only
partial information on job opportunities. The main question we focus on in the
paper is: how does the inclusion of such an informational constraint alter the
model and predictions of traditional stable matching theory?

Our Contributions 3 - In traditional two-sided matching theory, a matching
where no worker-firm pair can find a profitable deviation is called stable. Analo-
gously, we call our solution concept a locally stable matching, where the locality
is qualified by the social network graph. We study structural properties of locally
stable matchings by showing that, in general, the set of locally stable matchings
does not form a distributive lattice, as is the case for global stable matchings.
We also show that, in general, it is NP-complete to determine whether all lo-
cally stable matchings are also globally stable. Both of these results exploit a

3 The proofs of all our results are available online at [2].



characterization of locally stable matchings in the special case of matching one
worker per firm, for particular rankings over workers and firms.

We then turn our attention to dynamic analysis. We consider how a particu-
lar interpretation of the classic Gale-Shapley algorithm [6] performs under such
informational constraints; we refer to our algorithm as the local Gale-Shapley
algorithm. We first prove that, unlike the standard Gale-Shapley algorithm [17],
the existence of informational constraints implies that the output of the algo-
rithm is not independent of the order of proposals. Nevertheless, under weak
stochastic conditions, we show that the local Gale-Shapley algorithm converges
almost surely, assuming the same particular rankings over workers and firms as
before.

Unlike the traditional Gale-Shapley algorithm, the algorithm in the limited
information case is highly dependent on the initial conditions. To explore this
further we define a minimal notion of efficiency, namely the number of firms still
in business in the outcome matching, and quantify the efficiency loss under vari-
ous initial conditions. Specifically, we show that if an adversary chooses an initial
matching, he can ensure that some firms lose all of their workers; conversely there
is a distribution on the preference lists used by the firms that guarantees that at
least some firms remain in business, regardless of the actions of the adversary.

Related Work

Our work touches on several threads of the literature. Most closely related is
the work by Calvé-Armengol and Jackson [3, 4]. They consider how information
dissemination through neighbors of workers on potential jobs can affect wage and
employment dynamics in the job market. There are several key differences with
our model. The most important one is that, in [3, 4], there is no competition for
job openings between workers. Unemployment is the result of a random sampling
process and not of strategic interactions between workers and firms. Also, all
workers learn directly about potential job openings with some probability, and
indirectly through their social contacts, whereas in our model a worker can only
learn about potential job openings through her social contacts.

Also related is the work by Lee and Schwarz [11]. The authors consider the
stable matching problem in the job market where a costly information acquisi-
tion step (interviewing) is necessary for both workers and firms to learn their
preferences. Once interviewing is over, the standard Gale-Shapley algorithm is
used to calculate the matching of workers to firms. Although the authors use
stable matching as their solution concept, and only partial information on jobs
and candidates is available, their assumptions imply that the information avail-
able to workers and firms is unchanged throughout the matching phase. In that
sense, their work is related to the equilibrium analysis performed in our model,
but is dramatically different when considering the evolution of the job market
during the actual matching phase.

Finally, in [1, 12], the authors consider the problem of matching applicants to
job positions. A matching is said to be popular if the number of happy applicants
is as large as possible. This notion is related to the notion of efficiency used in
our paper, namely that of maximizing the number of firms in business.



2 Definitions and Notation

Let W be a set of workers, and G = (W, E) be an undirected graph representing
the social network among workers. Let F' be the set of firms, each with k& jobs,
for some k > 0. We are interested in the case where there are as many workers
as positions in all firms, i.e., |W| = n = k|F|. Following standard notation, for
a worker w € W, let I'(w) be the neighborhood of w in G.

An assignment of workers to firms can be described by a function mapping
workers to jobs, or alternatively by a function mapping firms to workers. Fol-
lowing the definition from the two-sided matching literature, we define both
functions simultaneously.

We assume that some companies are better to work for than others, and thus
each worker w has a strict ranking =, over firms such that, for firms f # f’,
w prefers being employed in f than in f’ if and only if f =, f’. Note however,
that the ranking is blind to the individual positions within a firm: all of the k
slots of a given firm are equivalent from the point of view of a worker.

Similarly, each firm f has a strict ranking >y over workers. We assume that all
workers strictly prefer being employed, and that all firms strictly prefer having
all their positions filled. For any worker w, in a slight abuse of notation, we
extend her ranking over firms to account for her being unemployed by setting
f = w for all firms f; in a similar way we extend the rankings of firms over
workers.

Definition 1 (Matching).

1. Case 1: k = 1. The function p : W UF — W UF s a matching if the
following conditions hold: (1) for all w € W, u(w) € F U{w}; (2) for all
J€F, u(f) € WU{f}; and (3) p(w) = f if and only if p(f) = w.

2. Case 2: k > 1. The function p : W UF — 2W U F is a matching if the
following conditions hold: (1) for allw € W, p(w) € F U {{w}}; (2) for all
J€ 5 17) €201} (5) o) = 1 only i € 1) nd (3
p(f) < k.

We say that a matching p is complete if:

U ur)=w

feF

Given a matching p and a firm f, let min(u(f)) be the least preferred worker
employed by firm f (w.r.t. firm f’s ranking) if |u(f)| = k, and min(u(f)) = f
otherwise.

To study the notion of stable matchings, we adapt the usual concept of a
blocking pair. Given the preferences of workers and firms, a matching u, a firm
f and a worker w, we say that (w, f) is a blocking pair if and only if f =, u(w)
and w >; min(p(f)). In other words, worker w prefers firm f to her currently
matched firm; and firm w prefers worker w to its least preferred current employee.

We now define a generalization of the standard notion of stable matching that
accounts for the locality of information. Recall that a (global) matching is said



to be stable if there are no blocking pairs. However, in our paper we assume that
the workers can only discover possible firms by looking at their friends’ places
of employment. This informally captures a significant mechanism of information
transfer: although there may exist a firm f that would make (w, f) a blocking
pair, if none of w’s friends work at f, then it becomes much less likely that w
would learn of f on her own. We have the following definition.

Definition 2 (Locally Stable Matching). Let G = (W, E) be the social net-
work over the set of workers W. We say that a matching p is a locally stable
matching with respect to G if, for allw € W and f € F, (w, f) is a blocking
pair if and only if I'(w) N u(f) =0 (i.e., no workers in w’s social neighborhood
are employed by firm f).

Note that for a given worker w, the set of other workers she is competing
against depends on both the social network G (i.e., her neighbors), and the
current matching.

Ezample 1 (Indirect Competition). Assume k = 2 and G is the path over W =
{w1, we, w3, ws}: w1 — wy — wy — wy. Consider worker wy. If p(f1) = {ws, ws}
and p(f2) = {wy,wa}, then wy can only see positions in f;. However, since ws
is adjacent to ws, wy can see all position in fi. Hence, if wy >¢, w3 >¢, w4, wo
could get wy’s position in f;, leading to w, being replaced by ws even though
Wo ¢ F(’UJ4)

In the remainder of the paper, we characterize static properties of locally
stable matchings, and then analyze dynamics similar to the Gale-Shapley algo-
rithm.

3 Static Analysis

For k = 1, when the preferences of workers and firms are strict, it is known
that the set of global stable matchings is a distributive lattice. In general, the
distributive lattice structure of the set of global stable matchings is not present
in the set of locally stable matchings. We first recall the Lattice Theorem (by
Conway), and then show how, in general, it does not hold for locally stable
matchings. The exposition of the Lattice Theorem is that found in [17] (Theorem
2.16).

Let p and p’ be two matchings. Define the operation Vy over (u,p’) as
follows: uVw ' : WUF — W U F such that, for all w € W, uVy p'(w) =
p(w) if p(w) = @/ (w), and p Vi p/(w) = ' (w) otherwise. For all f € F,
i 1 (F) = 1(F) i ju(F) = 1/ (f), and gy ' (f) = () otherwise. We can
similarly define Ay by exchanging the roles of workers and firms.

Theorem 1 (Lattice Theorem (Conway)) When all preferences are strict,
if w and i’ are stable matchings, then the functions A\ = pNVw p' and v = pAw i’
are both matchings. Furthermore, they are both stable.



In general, given strict preferences  of workers and firms, Theorem 1 does not
hold for the set of locally stable matchings. This is the content of the following
example.

Ezample 2 (Absence of Distributive Lattice). In this example, we assume k = 1,
W = {wi,wq,ws} and F = {f1, f2, f3}. Further, let the preferences of all workers
be fi1 = fo > fs. Similarly, let the preferences of all firms be w; = ws = ws.
Finally, assume the graph G is the path with ws and ws at its endpoints.

Let p(w;) = f; (and p(f;) = w;). It is clear that p is a 1-locally stable
matching. Consider now p’ be such that u'(wq) = f1, p/(w2) = f3 and p'(ws3) =
fa (and p/'(f1) = w1, ¢/ (f2) = ws and p/(f3) = ws). The only blocking pair
here is (w2, f2), but fo = p'(w3) and w3 ¢ I'(ws). Hence p’ is a 1-locally stable
matching.

We now construct A = p Vy p'. For all 4, AMw;) = f;. Now A(f1) = w; but
A f2) = A(f3) = wsz. Hence A is not a matching.

Assumption - In the remainder of the paper we focus on a specific family of
preferences over workers and firms. Uniqueness of global stable matching is a
desirable property in matching markets as it allows for sharp predictions of the
outcome at equilibrium. Clark [5] studies thoroughly the question and identifies
a set of sufficient conditions on the preferences, called aligned preferences, for
the global stable matching to be unique. The study of aligned preferences have
recently received attention in the economics literature [14, 18].

In this paper we consider a subset of aligned preferences, where all workers
share the same ranking over firms, and firms share the same ranking over workers.
This assumption is made for technical reasons - we believe our results extend to
the case of general aligned preferences.

Assumption 1 There exist a labeling of the nodes in W = {wy,...,w,} such
that all firms rank workers as follows: w; = w; if and only if i < j. Similarly,
we assume there exists a labeling of the firms F = {fi,..., fu,} such that all
workers rank the firms as follows: f; = f; if and only if i < j.

We first show that, for £ = 1, the set of locally stable matchings is equivalent
to the set of topological orderings over the partial order induced by G and the
labeling of the workers.

Theorem 2 (Characterization of Locally Stable Matchings) Assumek =
1, and let G(W, E) be the social network over the set of workers. Let D(W, E")
be a directed graph over W such that (w;,w;) € E' if and only if i < j and
(wi,wj) € E. Let (1 be a complete matching of workers to firms. Construct the
following ordering ¢, over W induced by p: the i node in the ordering is the
node w such that p(w) = f;, t.e. ¢, (w) = 1.

The matching  is a 1-locally stable matching if and only if ¢,, is a topological
ordering on D.

4 The absence of the distributive lattice has been previously observed when the pref-
erences are not strict, see Roth [16].



There are several important corollaries to the characterization from The-
orem 2. First, the set complete locally stable matchings can be exponentially
large. Thus, by introducing informational constraints, the uniqueness property
of global stable matchings under aligned preferences is, in general, lost under
locally stable matchings.

Corollary 3 (Number of Locally Stable Matchings) Assume k = 1 and
the social network G(W, E) is the star centered at worker wy. Then there are
(n — 1)! distinct locally stable matchings.

It is interesting to ask whether there are specific properties of the social
network G that guarantee the existence of a labeling under which there is a
unique complete locally stable matching. As shown in the next corollary, it is
NP-complete to answer positively such question.

Corollary 4 Let (k,G(W, E)) be given. It is NP-complete to test if there is a
labeling {wy,ws, ..., wy} of the workers such that, if all firms rank the workers
according to that labeling, the complete locally stable matching is unique.

For general k > 1, we only have a set of sufficient conditions for complete
locally stable matchings to be unique. See [2] for more details.

4 Algorithmic Questions

We are thus interested in decentralized algorithms that can find a locally stable
matching. In this section we propose a decentralized version of Gale-Shapley’s
algorithm. Assumption 1 is again enforced in this section. We first prove that
our algorithm converges. Unlike the case without informational constraints, our
algorithm does not always select the same locally stable matching.

Recall that the Gale-Shapley algorithm is initialized by an empty match-
ing [17]. Since the empty matching is a locally stable matching, our algorithm
requires to be initialized by a non-empty matching. We thus explore our algo-
rithm’s performance under adversarial initial complete matchings. We use the
number of firms with no employees as a proxy for efficiency®. We characterize
the potential efficiency loss by providing upper and lower bounds on the number
of firms with no employees.

4.1 Local Gale-Shapley Algorithm

One can interpret the Gale-Shapley algorithm from two-sided matching theory
as a constrained version of myopic best response dynamics in the following way.

The dynamics proceed in rounds, which we index by ¢ € N. Let pu(? be
the matching at the beginning of round ¢. Let w(? € W be the active worker,

5 Our bounds naturally translate into unemployment rate, a common indicator of the
efficiency of the job market.



where w(@ is sampled uniformly at random from W, and independently from
previous rounds. We call such sampling process the activation process. Such acti-
vation process can be thought of as follows: assume all workers decide to explore
employment opportunities according to a random clock with an exponential dis-
tribution with a given mean (the same mean for all workers). When the clock of
w; “sets off”, w; becomes active and looks for a better job. It is easy to see that
the sequence of active nodes has the same distribution as taking independent
uniform samples from W.

In myopic best response dynamics, w(? would consider its current firm
1 (w®) and compare it to the best firm f it could be employed by given
1@ (ie. the best firm where the worst employee was worse than w given the
matching u(q)). If its current firm was better, it would pass. Else it would quit
its job and get employed by f (leading to a worker being fired, or an empty
position being filled).

Gale-Shapley’s algorithm is a constrained version of the above dynamics as it
requires the active worker to consider the best firm it has not considered before
(in other words it requires the active worker to remember what firms he has
already failed to get a position at).

We consider a local and decentralized version of the myopic best-response
dynamics proposed above. We call it “local Gale-Shapley” algorithm. Instead of
restricting the strategy space of the active worker using “memory” as in Gale-
Shapley’s algorithm, we restrict it using the graph G(W, E) in the following
way: w(® compares its current firm in (% to the best firm that employs one
of its neighbors in G it could be employed by given p(?). An alternative way
to describe the process is that the active node w(? applies for a job at all the
firms employing its neighbors that she strictly prefers to her current employer,
and selects the best offer she gets (that offer might eventually be to stay at her
current job).

More formally, the algorithm proceeds in rounds indexed by ¢ € N. During
round ¢ > 0:

— the active worker w9 is sampled, independently from previous rounds, uni-
formly at random from W.
— Next, w(@ applies to all firms she strictly prefers to (9 (w(9)), her current
employer.
— The active worker receives some offers:
e if at least one offer is received, w(? quits her current employer and joins
the best firm that sent an offer;
e if no offers are received, w(? stays at her current job.

It is important to note that, unlike the Gale-Shapley algorithm, this vari-
ant of best-response dynamics can lead to a firm loosing all its employees as
demonstrated below.

Ezample 8 (Firm with no Employees). Let n = 4 and k = 2. Thus there are
four workers and two firms. Assume that G = K. Consider the following initial



matching:

pO(f1) = {ws,ws} and p @ (f5) = {wy, ws}
in other words, the best company has the worst workers. Then if we activate
workers w; and ws before activating ws or wg, both wy; and we would quit
f2 and work for fi, getting both ws and w, fired. In that setting, f» has no
employees, and thus the process ends.

It is also important to understand the need of the activation process. Recall
that the matching found by the Gale-Shapley algorithm is independent on the
order of activation of the workers [17]. When considering locally stable match-
ings, this is no longer the case even if the underlying graph is the complete graph.
Let us reconsider Example 3.

Ezample 4. Now consider the resulting matching when the activation sequence
is as follows: {w1, wy,wq, ws}. First, wy leaves fy and gets a position at fi. This
makes wy = min(u(?)(f;)) unemployed. Next, since we activate wy, she gets the
free position from f5. Next wo leaves fo and gets a position at f;, which results
in w3 loosing her job. Finally, w3 gets the free position at fo. Thus the resulting
matching is now

p(f1) = {wi, w2}, and p(fz2) = {ws, wa}

which is a locally stable matching different from that obtained with the activation
sequence in Example 3.

An important question is whether this local decentralized version of best
response dynamics converges as it is not immediately clear it can’t cycle. This
is the content of our first result.

Theorem 5 (Convergence of Local Gale-Shapley Algorithm) Given the
social network G(W, E). for any initial matching p®), the local Gale-Shapley
algorithm started at (% converges almost surely to a locally stable matching.

4.2 Worst Case Efficiency

In this subsection we consider the following question. Given that firms can go out
of business when running the local Gale-Shapley algorithm, can we measure the
quality of matchings selected by the algorithm. We explore the previous question
assuming a given initial complete matching z(%).

We consider the following setting. An adversary observes G(W, E) (but not
the ranking over workers used by firms) and produces a probability distribution
Par over initial matchings. The ranking of workers (possibly taken from a dis-
tribution) is then revealed, a sample from Py, is taken to produce x(?); and the
local Gale-Shapley algorithm run.

To compare the efficiency of different final matchings we simply look at the
total number of firms losing all of their employees and subsequently going out of
business. One can easily imagine more intricate notions of efficiency, our point
here is that even in this austere model, the power of the adversary is non-trivial.



The power of the adversary We first show that even without knowing the
relative rankings of the individual workers, the adversary is powerful enough to
force some firms to go out of business.

Theorem 6 (Lower Bound on Firms) Let G(W, E) be given. Let A be its
mazimum degree, and M a mazimum matching in G. Then there exist a proba-
bility distribution Pyy over complete assignment matchings such that

| M| L
E[Nfop] > Lﬂ(gA)J 2FEN(2A — 1)k

where Nyop, 1s the number of firms going out of business; and the expectation is
taken both over the distribution Pp; and over the activation process.

Further, one can find Pys in time polynomial in n.

An important observation is that not only does the adversary force some
firms to go out of business, but he controls the identities of these firms. Thus,
if we measure efficiency by the identity of the firms of the positions filled in a
matching, Theorem 6 provides a lower bound on the efficiency loss of the local
Gale-Shapley algorithm (under adversarial initial conditions).

The power of the social planner Given the lower bound from Theorem 6
on the expected number of firms going out of business, we can ask the following
question: can similar guarantees be proven if a social planner had full control
over the ranking used by firms? More precisely, given G(W, E), if the ranking
over workers used by firms was a sample from a random variable, can the social
planner guarantee, in expectation, a minimal number of firms that will not go
out of business regardless of the power given to the adversary? The following
theorem answers positively that question.

Theorem 7 (Upper Bound on Firms) Let G(W, E) be given. There exist a
probability distribution over the ranking used by firms such that

E[Nfop] <y — Pkll-‘

where I is a mazimum independent set of G (ny is the number of firms and k
the number of positions at each firm)

Note that, just as in Theorem 6 we were able to identify the firms forced out
of business (the top firms) but not the unemployed workers, in Theorem 7 we are
able to identify the workers that are going to be employed (the top employees),
but not which firms will remain in business.



Discussion We have now shown that neither the adversary, nor the social
planner have all the power — we can reinterpret the results above as a game
between these two players. The game proceeds as follows, the adversary picks the
initial assignment matching (possibly random), and the social planner chooses
the ordering on the workers (possibly random). Once they both pick an action
we run the local Gale-Shapley algorithm.

Theorem 6 then states that, even if the social planner knows the probability
distribution selected by the firm adversary, there is a probability distribution over
initial assignments that the firm adversary can use such that, in expectation, at
least some number of firms go out of business.

Theorem 7 states the converse: Even if the firm adversary knows the proba-
bility distribution selected by the social planner, there is a deterministic ordering
of the workers such that at least some number of workers will never loose their
job.

We note that by looking at the number of firms going out of business, we
have used a very minimal notion of efficiency. It is not hard to imagine more
complex notions which may take into account the relative rankings of the firms
going out of business or workers remaining unemployed. We further note that
for dense graphs, where the size of the independent set, and the independent
matchings are quite small, our bounds are quite loose. Our main contribution
here is not the precise bound on Ny, although that remains an interesting open
question, but rather the fact that the adversary has non-trivial power, and the
initial matching plays a pivotal role in determining the final outcome.

5 Conclusions

In this work we have introduced a new model for incorporating social network
ties into classical stable matching theory. Specifically, we show that restricting
the firms willing to consider a worker only to those employing his friends has a
profound impact on the system. We defined the notion of locally stable match-
ings and showed that while a simple variation of the Gale-Shapley mechanism
converges to a stable solution, this solution may be far from efficient; and, unlike
in traditional Gale-Shapley, the initial matching plays a large role in the final
outcome. In fact, if the adversary controls the initial matching, he can force some
firms to be left with no workers in the final solution.

The model we propose is ripe for extensions and further analysis. To give an
example, we have assumed that as employees leave the firm, it may find itself
with empty slots that it cannot fill (and go out of business). However, this is
precisely the time when it can start looking actively for workers, by advertising
online, recruiting through headhunters, etc. This has the effect of it becoming
visible to the unemployed workers in the system. Understanding the dynamics
and inefliciencies of final matchings under this scenario is one interesting open
question.
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