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Abstract

Display advertising has traditionally been sold via guaranteed contracts – a guaranteed contract is
a deal between a publisher and an advertiser to allocate a certain number of impressions over a certain
period, for a pre-specified price per impression. However, as spot markets for display ads, such as the
RightMedia Exchange, have grown in prominence, the selection of advertisements to show on a given
page is increasingly being chosen based on price, using an auction. As the number of participants in the
exchange grows, the price of an impressions becomes a signal of its value. This correlation between price
and value means that a seller implementing the contract through bidding should offer the contract buyer
a range of prices, and not just the cheapest impressions necessary to fulfill its demand.

Implementing a contract using a range of prices, is akin to creating a mutual fund of advertising
impressions, and requires randomized bidding. We characterize what allocations can be implemented
with randomized bidding, namely those where the desired share obtained at each price is a non-increasing
function of price. In addition, we provide a full characterization of when a set of campaigns are compatible
and how to implement them with randomized bidding strategies.

1 Introduction

Display advertising — showing graphical ads on regular web pages, as opposed to textual ads on search pages
— is approximately a $24 billion business. There are two ways in which an advertiser looking to reach a
specific audience (for example, 10 million males in California in July 2009) can buy such ad placements. One is
the traditional method, where the advertiser enters into an agreement, called a guaranteed contract, directly
with the publishers (owners of the webpages). Here, the publisher guarantees to deliver a prespecified number
(10 million) of impressions matching the targeting requirements (male, from California) of the contract in
the specified time frame (July 2009). The second is to participate in a spot market for display ads, such as
the RightMedia Exchange, where advertisers can buy impressions one pageview at a time: every time a user
loads a page with a spot for advertising, an auction is held where advertisers can bid for the opportunity
to display a graphical ad to this user. Both the guaranteed and spot markets for display advertising now
thrive side-by-side. There is demand for guaranteed contracts from advertisers who want to hedge against
future uncertainty of supply. For example, an advertiser who must reach a certain audience during a critical
period of time (e.g around a forthcoming product launch, such as a movie release) may not want to risk
the uncertainty of a spot market; a guaranteed contract insures the publisher as well against fluctuations in
demand. At the same time, a spot market allows the advertisers to bid for specific opportunities, permitting
very fine grained targeting based on user tracking. Currently, RightMedia runs over nine billion auctions for
display ads everyday.

How should a publisher decide which of her supply of impressions to allocate to her guaranteed contracts,
and which to sell on the spot market? One obvious solution is to fulfill the guaranteed demand first, and
then sell the remaining inventory on the spot market. However, spot market prices are often quite different
for two impressions that both satisfy the targeting requirements of a guaranteed contract, since different
impressions have different value. For example, the impressions from two users with identical demographics
can have different value, based on different search behavior reflecting purchase intent for one of the users,
but not the other. Since advertisers on the spot market have access to more tracking information about each
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user1, the resulting bids may be quite different for these two users. Allocating impressions to guaranteed
contracts first and selling the remainder on the spot market can therefore be highly suboptimal in terms of
revenue, since two impressions that would fetch the same revenue from the guaranteed contract might fetch
very different prices from the spot market2.

On the other hand, simply buying the cheapest impressions on the spot market to satisfy guaranteed
demand is not a good solution in terms of fairness to the guaranteed contracts, and leads to increasing short
term revenue at the cost of long term satisfaction. As discussed above, impressions in online advertising
have a common value component because advertisers generally have different information about a given user.
This information (e.g. browsing history on an advertiser site) is typically relevant to all of the bidders, even
though only one bidder may possess this information. In such settings, price is a signal of value— in a model
of valuations incorporating both common and private values, the price converges to the true value of the
item in the limit as the number of bidders goes to infinity ([7, 10], see also [6] for discussion). On average,
therefore, the price on the spot market is a good indicator of the value of the impression, and delivering
cheapest impressions corresponds to delivering the lowest quality impressions to the guaranteed contract3.

A publisher with access to both sources of demand thus faces a trade-off between revenue and fairness
when deciding which impressions to allocate to the guaranteed contract; this trade-off is further compounded
by the fact that the publisher typically does not have access to all the information that determines the value
of a particular impression. Indeed, publishers are often the least well informed participants about the value of
running an ad in front of a user. For example, when a user visits a politics site, Amazon (as an advertiser) can
see that the user recently searched Amazon for an ipod, and Target (as an advertiser) can see they searched
target.com for coffee mugs, but the publisher only knows the user visited the politics site. Furthermore, the
exact nature of this trade-off is unknown to the publisher in advance, since it depends on the spot market
bids which are revealed only after the advertising opportunity is placed on the spot market.

The publisher as a bidder. To address the problem of unknown spot market demand (i.e., the
publisher would like to allocate the opportunity to a bidder on the spot market if the bid is “high enough”,
else to a guaranteed contract), the publisher acts, in effect, as a bidder on behalf on the guaranteed contracts.
That is, the publisher now plays two roles: that of a seller, by placing his opportunity on the spot market,
and that of a bidding agent, bidding on behalf of his guaranteed contracts. If the publisher’s own bid turns
out to be highest among all bids, the opportunity is won and is allocated to the guaranteed contract. Acting
as a bidder allows the publisher to probe the spot market and decide whether it is more efficient to allocate
the opportunity to an external bidder or to a guaranteed contract.

How should a publisher model the trade-off between fairness and revenue, and having decided on a trade-
off, how should she place bids on the spot market? An ideal solution is (a) easy to implement, (b) allows for
a trade-off between the quality of impressions delivered to the guaranteed contracts and short-term revenues,
and (c) is robust to the exact tradeoff chosen. In this work we show precisely when such an ideal solution
exists and how it can be implemented.

1.1 Our Contributions

In this paper, we provide an analytical framework to model the publisher’s problem of how to fulfill guaran-
teed advance contracts in a setting where there is an alternative spot market, and advertising opportunities
have a common value component. We give a solution where the publisher bids on behalf of its guaranteed
contracts in the spot market. The solution consists of two components: an allocation, specifying the fraction
of impressions at each price allocated to a contract, and a bidding strategy, which specifies how to acquire
this allocation by bidding in an auction.

1For example, a car dealership advertiser may observe that a particular user has been to his webpage several times in the
previous week, and may be willing to bid more to show a car advertisement to induce a purchase.

2Consider the following toy example: suppose there are two opportunities, the first of which would fetch 10 cents in the spot
market, whereas the second would fetch only ε; both opportunities are equally suitable for the guaranteed contract which wants
just one impression. Clearly, the first opportunity should be sold on the spot market, and the second should be allocated to
the guaranteed contract.

3While allocating the cheapest inventory to the guaranteed contracts is indeed revenue maximizing in the short term, in the
long term the publisher runs the risk of losing the guaranteed advertisers by serving them the least valuable impressions.
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The quality, or value, of an opportunity is measured by its price 4. A perfectly representative allocation
is one which consists of the same proportion of impressions at every price– i.e., a mix of high-quality and
low quality impressions. The trade-off between revenue and fairness is modeled using a budget, or average
target spend constraint, for each advertiser’s allocation: the publisher’s choice of target spend reflects her
trade-off between short-term revenue and quality of impressions for that advertiser (this must, of course, be
large enough to ensure that the promised number of impressions satisfying the targeting constraints can be
delivered.) Given a target spend 5, a maximally representative allocation is one which minimizes the distance
to the perfectly representative allocation, subject to the budget constraint. We first show how to solve for
a maximally representative allocation, and then show how to implement such an allocation by purchasing
opportunities in an auction, using randomized bidding strategies.

Organization. We start out with the single contract case, where the publisher has just one existing
guaranteed contract, in Section 2; this case is enough to illustrate the idea of maximally representative
allocations and implementation via randomized bidding strategies. We move on to the more realistic case
of multiple contracts in Section 3; we first prove a result about which allocations can be implemented in an
auction in a decentralized fashion, and derive the corresponding decentralized bidding strategies. Next we
solve for the optimal allocation when there are multiple contracts. Finally, in Section 4, we validate these
strategies by simulating on data derived from real world exchanges.

1.1.1 Related Work

The most relevant work is the literature on designing expressive auctions and clearing algorithms for online
advertising [8, 2, 9]. This literature does not address our problem for the following reason. While it is
true that guaranteed contracts have coarse targeting relative to what is possible on the spot market, most
advertisers with guaranteed contracts choose not to use all the expressiveness offered to them. Furthermore,
the expressiveness offered does not include attributes like relevant browsing history on an advertiser site,
which could increase the value of an impression to an advertiser, simply because the publisher does not have
this information about the advertising opportunity. Even with extremely expressive auctions, one might still
want to adopt a mutual fund strategy to avoid the ‘insider trading’ problem. That is, if some bidders possess
good information about convertibility, others will still want to randomize their bidding strategy since bidding
a constant price means always losing on some good impressions. Thus, our problem cannot be addressed
by the use of more expressive auctions as in [9] — the real problem is not lack of expressivity, but lack of
information.

Another area of research focuses on selecting the optimal set of guaranteed contracts. In this line of work,
Feige et al. [5] study the computational problem of choosing the set of guaranteed contracts to maximize
revenue. A similar problem is studied by in [3, 1]. We do not address the problem of how to select the set of
guaranteed contracts, but rather take them as given and address the problem of how to fulfill these contracts
in the presence of competing demand from a spot market.

2 Single contract

We first consider the simplest case: there is a single advertiser who has a guaranteed contract with the
publisher for delivering d impressions. There are a total of s ≥ d advertising opportunities which satisfy
the targeting requirements of the contract. The publisher can also sell these s opportunities via auction in
a spot market to external bidders. The highest bid from the external bidders comes from a distribution F ,
with density f , which we refer to as the bid landscape. That is, for every unit of supply, the highest bid

4We emphasize that the assumption being made is not about price being a signal of value, but rather that impressions do
have a common value component – given that impressions have a common value, price reflecting value follows from the theorem
of Milgrom [7]. This assumption is easily justifiable since it is commonly observed in practice.

5We point out that we do not address the question of how to set target spends, or the related problem of how to price
guaranteed contracts to begin with: given a target spend (presumably chosen based on the price of guaranteed contracts and
other considerations), we propose a complete solution to the publisher’ s problem.
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from all external bidders,which we refer to as the price, is drawn i.i.d from the distribution6 f . (An example
of such a density seen in a real auction for advertising opportunities is shown in section 4.) We assume that
the supply s and the bid landscape f are known to the publisher7. Recall that the publisher wants to decide
how to allocate its inventory between the guaranteed contract and the external bidders in the spot market.
Due to penalties as well as possible long term costs associated with underdelivering on guaranteed contracts,
we assume that the publisher wants to deliver all d impressions promised to the guaranteed contract.

An allocation a(p) is defined as follows: a(p)/s is the proportion of opportunities at price p purchased
on behalf of the guaranteed contract (the price is the highest (external) bid for an opportunity.) That is,
of the sf(p)dp impressions available at price p, an allocation a(p) buys a fraction a(p)/s of these sf(p)dp
impressions, i.e., a(p)f(p)dp impressions. For example, a constant bid of p∗ means that for p ≤ p∗, a(p) = 1
with the advertiser always winning the auction, and for p > p∗, a(p) = 0 since the advertiser would never
win.

Generally, we will describe our solution in terms of the allocation a(p)/s, which must integrate out to
the total demand d: a solution where a(p)/s is larger for higher prices corresponds to a solution where
the guaranteed contract is allocated more high-quality impressions. As another example, a(p)/s = d/s is
a perfectly representative allocation, integrating out to a total of d impressions, and allocating the same
fraction of impressions at every price point.

Not every allocation can be purchased by bidding in an auction, because of the inherent asymmetry in
bidding– a bid b allows every price below b and rules out every price above; however, there is no way to rule
out prices below a certain value. That is, we can choose to exclude high prices, but not low prices. Before
describing our solution, we state what kinds of allocations a(p)/s can be purchased by bidding in an auction.

Proposition 1. A right-continuous allocation a(p)/s can be implemented (in expectation) by bidding in an
auction if and only if a(p1) ≥ a(p2) for p1 ≤ p2.

Proof. Given a right-continuous non-increasing allocation a(p)
s (that lies between 0 and 1), define H(p) :=

1− a(p)
s . Let p∗ := inf {p : a(p) < s}. Then, H is monotone non-decreasing and is right-continuous. Further,

H(p∗) = 0 and H(∞) = 1. Thus, H is a cumulative distribution function. We place bids drawn from H (the
probability of a strictly positive bid being a(0)/s). Then the expected number of impressions won at price p
is then exactly a(p)/s. Conversely, given that bids for the contract are drawn at random from a distribution
H, the fraction of supply at price p that is won by the contract is simply 1−H(p), the probability of its bid
exceeding p. Since H is non-decreasing, the allocation (as a fraction of available supply at price p) must be
non-increasing in p.

Note that the distribution H used to implement the allocation is a different object from the bid landscape
f against which the requisite allocation must be acquired– in fact, it is completely independent of f , and is
specified only by the allocation a(p)/s. That is, given an allocation, the bidding strategy that implements
the allocation in an auction is independent of the bid landscape f from which the competing bid is drawn.

2.1 Maximally representative allocations

Ideally the advertiser with the guaranteed contract would like the same proportion of impressions at every
price p, i.e., a(p)/s = d/s for all p. (We ignore the possibility that the advertiser would like a higher fraction
of higher-priced impressions, since these cannot be implemented according to Proposition 1 above.) However,
the publisher faces a trade-off between delivering high-quality impressions to the guaranteed contract and
allocating them to bidders who value them highly on the spot market. We model this by introducing an
average unit target spend t, which is the average price of impressions allocated to the contract. A smaller
(bigger) t delivers more (less) cheap impressions. As we mentioned before, t is part of the input problem,
and may depend, for instance, on the price paid by the advertiser for the contract.

6Specifically, we do not consider adversarial bid sequences; we also do not model the effect of the publisher’s own bids on
others’ bids.

7Publishers typically have access to data necessary to form estimates of these quantities; this is also discussed briefly in the
conclusion

4



Given a target spend, the maximally representative allocation is an allocation a(p)/s that is ‘closest’
(according to some distance measure) to the ideal allocation d/s, while respecting the target spend constraint.
That is, it is the solution to the following optimization problem:

infa(·)
∫
p
u
(
a(p)
s , ds

)
f(p)dp

s.t.
∫
p
a(p)f(p)dp = d∫

p
pa(p)f(p)dp ≤ td

0 ≤ a(p)
s ≤ 1.

(1)

The objective, u, is a measure of the deviation of the proposed fraction, a(p)/s, from the perfectly
representative fraction, d/s. In what follows, we will consider the L2 measure

u
(
a(p)
s
,
d

s

)
=
s

2

(
a(p)
s
− d

s

)2

as well as the Kullback-Leibler (KL) divergence

u
(
a(p)
s
,
d

s

)
=
a(p)
s

log
a(p)
d
.

Why the choice of KL and L2 for “closeness”? Only Bregman divergences lead to a selection that is consistent,
continuous, local, and transitive [4]. Further, in Rn only least squares is scale- and translation- invariant,
and for probability distributions only KL divergence is statistical [4]. Indeed, KL is more appropriate in our
setting. However, as least squares is more familar, we discuss KL in Appendix C.

The first constraint in (1) is simply that we must meet the target demand d, buying a(p)/s of the sf(p)dp
opportunities of price p. The second constraint is the target spend constraint: the total spend (the spend on
an impression of price p is p) must not exceed td, where t is a target spend parameter (averaged per unit).
As we will shortly see, the value of t strongly affects the form of the solution. Finally, the last constraint
simply says that the proportion of opportunities bought at price p, a(p)/s, must never go negative or exceed
1.

Optimality conditions: Introduce Lagrange multipliers λ1 and λ2 for the first and second constraints,
and µ1(p), µ2(p) for the two inequalities in the last constraint. The Lagrangian is

L =
∫

u
(
a(p)
s
,
d

s

)
f(p)dp + λ1

(
d−

∫
a(p)f(p)dp

)
+ λ2

(∫
pa(p)f(p)dp− td

)
+
∫
µ1(p)(−a(p))f(p)dp+

∫
µ2(p)(a(p)− s)f(p)dp.

By the Euler-Lagrange conditions for optimality, the optimal solution must satisfy

u′
(
a(p)
s
,
d

s

)
= λ1 − λ2p+ µ1(p)− µ2(p),

where the multipliers µ satisfy µ1(p), µ2(p) ≥ 0, and each of these can be non-zero only if the corresponding
constraint is tight.

These optimality conditions, together with Proposition 1, give us the following:

Proposition 2. The maximally representative allocation for a single contract can be implemented by bidding
in an auction for any convex distance measure u.

The proof follows from the fact that u′ is increasing for convex u.
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2.1.1 L2 utility

In this subsection, we derive the optimal allocation when u, the distance measure, is the L2 distance, and
show how to implement the optimal allocation using a randomized bidding strategy. In this case the bidding
strategy turns out to be very simple: toss a coin to decide whether or not to bid, and, if bidding, draw
the bid value from a uniform distribution. The coin tossing probability and the endpoints of the uniform
distribution depend on the demand and target spend values.

First we give the following result about the continuity of the optimal allocation; this will be useful in
deriving the values that parameterize the optimal allocation. See Appendix B for the proof.

Proposition 3. The optimal allocation a(p) is continuous in p.

Note that we do not assume a priori that a(·) is continuous; the optimal allocation turns out to be
continuous.

The optimality conditions, when u is the L2 distance, are:

a(p)
s
− d

s
= λ1 − λ2p+ µ1(p)− µ2(p),

where the nonnegative multipliers µ1(p), µ2(p) can be non-zero only if the corresponding constraints are
tight.

The solution to the optimization problem (1) then takes the following form: For 0 ≤ p ≤ pmin, a(p)/s = 1;
for pmin ≤ p ≤ pmax, a(p)/s is proportional to C − p, i.e., a(p)/s = z(C − p); and for p ≥ pmax, a(p)/s = 0.

To find the solution, we must find pmin, pmax, z, and C. Since a(p)/s is continuous at pmax, we must have
C = pmax. By continuity at pmin, if pmin > 0 then z(C−pmin) = 1, so that z = 1

pmax−pmin
. Thus, the optimal

allocation a(p) is always parametrized by two quantities, and has one of the following two forms:

1. a(p)/s = z(pmax − p) for p ≤ pmax (and 0 for p ≥ pmax).
When the solution is parametrized by z, pmax, these values must satisfy

s

∫ pmax

0

z(pmax − p)f(p)dp = d (2)

s

∫ pmax

0

zp(pmax − p)f(p)dp = td (3)

Dividing (2) by (3) eliminates z to give an equation which is monotone in the variable pmax, which can
be solved, for instance, using binary search.

2. a(p)/s = 1 for p ≤ pmin, and a(p)/s = pmax−p
pmax−pmin

for p ≤ pmax (and 0 thenceforth).
When the solution is parametrized by pmin, pmax, these values must satisfy

sF (pmin) +
∫ pmax

pmin

s
(pmax − p)
pmax − pmin

f(p)dp = d (4)∫ pmin

0

spf(p)dp+
∫ pmax

pmin

sp
(pmax − p)
pmax − pmin

f(p)dp = td. (5)

We show how to solve this system in Appendix A.

Note that the optimal allocation can be represented more compactly as

a(p)
s

= min{1, z(pmax − p)}. (6)

Effect of varying target spend: Varying the value of the target spend, t, while keeping the demand d fixed,
leads to a tradeoff between representativeness and revenue from selling opportunities on the spot market, in
the following way. The minimum possible target spend, while meeting the target demand (in expectation)
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is achieved by a solution where pmin = pmax and a(p)/s = 1 for p less equal this value, and 0 for greater.
The value of pmin is chosen so that∫ pmin

0

sf(p)dp = d⇒ pmin = F−1(
d

s
).

This solution simply bids a flat value pmin, and corresponds to giving the cheapest possible inventory to the
advertiser, subject to meeting the demand constraint. This gives the minimum possible total spend for this
value of demand, of

td =
∫ pmin

0

spf(p)dp = sF (pmin)E[p|p ≤ pmin]

= dE[p|p ≤ pmin]

(Note that the maximum possible total spend that is maximally representative while not overdelivering is
R =

∫
pf(p)dp = dE[p] = dp̄.)

As the value of t increases above t, pmin decreases and pmax increases, until we reach pmin = 0, at which
point we move into the regime of the other optimal form, with z = 1. As t is increased further, z decreases
from 1, and pmax increases, until at the other extreme when the spend constraint is essentially removed,
the solution is a(p)

s = d
s for all p; i.e., a perfectly representative allocation across price. Thus the value of t

provides a dial by which to move from the “cheapest” allocation to the perfectly representative allocation.
Figure 1 illustrates the effect of varying target spend on the optimal allocation.

whereas the expected revenue obtained by selling all opportunities on the ex-
change is sE[p].

As the value of t increases above t, pmin decreases and pmax increases, until
we reach pmin = 0, at which point we move into the regime of the other op-
timal form, with z = 1. As t is increased further, z decreases from 1, and
pmax increases, until at the other extreme when the spend constraint is essen-
tially removed, the solution is a(p)

s = d
s for all p; i.e., a perfectly representative

allocation across price.

Thus the value of t provides a dial by which to move from the “cheapest”
allocation to the perfectly representative allocation. Figure 1 illustrates the
effect of varying target spend on the optimal allocation.

u ppc

a(p)
s

1

d
s

t = p̄

t = t

t3
t2
t1

t < t1 < t2 < t3 < p̄

Figure 1: Effect of target spend on L2-optimal allocation

3.2 Finding the parameter values

We now discuss solving for the complete solution, i.e., finding the values of
z, pmax or pmin, pmax.
When the solution is parametrized by z, pmax, these values must satisfy

s

∫ pmax

0
z(pmax − p)f(p)dp = d ⇒ zF (pmax) (pmax − E[p|p ≤ pmax)]) =

d

s

s

∫ pmax

0
zp(pmax − p)f(p)dp ≤ td

7

Figure 1: Effect of target spend on L2-optimal allocation

2.2 Randomized bidding strategies

The quantity a(p)/s is an optimal allocation, i.e., a recommendation to the publisher as to how much
inventory to allocate to a guaranteed contract at every price p. However, recall that the publisher needs to
acquire this inventory on behalf of the guaranteed contract by bidding in the spot market. The following
theorem shows how to do this when u is the L2 distance.

Theorem 1. The optimal allocation for the L2 distance measure can be implemented (in expectation) in an
auction by the following random strategy: toss a coin to decide whether or not to bid, and if bidding, draw
the bid from a uniform distribution.
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Proof. From (6) that the optimal allocation can be represented as

a(p)
s

= min{1, z(pmax − p)}.

By Proposition 1, an allocation a(p)
s = min{1, z(pmax−p)} can be implemented by bidding in an auction using

the following randomized bidding strategy: with probability min{zpmax, 1}, place a bid drawn uniformly at
random from the range [max{pmax − 1

z , 0}, pmax].

The optimal allocation for KL-divergence decays exponentially with price, and the bidding strategy
involves drawing bids from an exponential distribution; see Appendix C for details.

3 Multiple contracts

We now study the more realistic case where the publisher needs to fulfill multiple guaranteed contracts
with different advertisers. Specifically, suppose there are m advertisers, with demands dj . As before, there
are a total of s ≥

∑
dj advertising opportunities available to the publisher. 8 An allocation aj(p)/s is

the proportion of opportunities purchased on behalf of contract j at price p. Of course, the sum of these
allocations cannot exceed 1 for any p, which corresponds to acquiring all the supply at that price.

As in the single contract case, we are first interested in what allocations aj(p) are implementable by
bidding in an auction. However, in addition to being implementable, we would like allocations that satisfy
an additional practical requirement, explained below. Notice that the publisher, acting as a bidding agent,
now needs to acquire opportunities to implement the allocations for each of the guaranteed contracts. When
an opportunity comes along, therefore, the publisher needs to decide which of the contracts (if any) will
receive that opportunity. There are two ways to do this: the publisher submits one bid on behalf of all the
contracts; if this bid wins, the publisher then selects one amongst the contracts to receive the opportunity.
Alternatively, the publisher can submit one bid for each contract; the winning bid then automatically decides
which contract receives the opportunity. We refer to the former as a centralized strategy and the latter
as a decentralized strategy.

There are situations where the publisher will need to choose the winning advertiser prior to seeing
the price, that is, the highest bid from the spot market. For example, to reduce latency in placing an
advertisement, the auction mechanism may require that the bids be accompanied by the advertisement (or
its unique identifier). A decentralized strategy automatically fulfills this requirement, since there is one bid
for each contract and the highest bid wins, so that the choice of winning contract does not depend upon
knowing the price. In a centralized strategy, this requirement means that the relative fractions won at price
p, ai(p)/aj(p), are independent of the price p– when this happens, the choice of advertiser can be made (by
choosing at random with probability proportional to aj) without knowing the price.

As before, we will be interested in implementing optimal (i.e., maximally representative) allocations.
For such an allocation, as we will show in Section 3.2, if the relative fractions are independent of the price,
they can also be decentralized. We will, therefore, concentrate on characterizing allocations which can be
implemented via a decentralized strategy.

3.1 Decentralization

In this section, we examine what allocations can be implemented via a decentralized strategy. Note that it is
not sufficient to simply use a distribution Hj = 1− aj(p)

aj(0)
as in Proposition 1, since these contracts compete

amongst each other as well. Specifically, using the distribution 1 − aj(p)
aj(0)

will lead to too few opportunities
being purchased for contract j, since this distribution is designed to compete against f alone, rather than

8In general, not all of these opportunities might be suitable for every contract; we do not consider this here for clarity of
presentation. However the same ideas and methods can be applied in that most general case; the results are also qualitatively
similar.
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against f as well as the other contracts. We need to show how to choose distributions in such a way that
lead to a fraction aj(p)/s of opportunities being purchased for contract j, for every j = 1, . . . ,m.

First, we argue that a decentralized strategy with given distributions Hj will lead to allocations that are
non-increasing, as in the single contract case. A decentralized implementation uses distributions Hj to bid
for impressions, i.e., it draws a bid randomly from the distribution Hj to place in the auction on behalf of
j-th contract. Then, contract j wins an impression at price p with probability

aj(p) =
∫ ∞
p

∏
k 6=j

Hk(x)

hj(x)dx,

since to win, the bid for contract j must be larger than p and larger than the bids placed by each of the
remaining m− 1 contracts. Since all the quantities in the integrand are nonnegative, aj is non-increasing in
p.

Now assume that aj are differentiable almost everywhere (a.e.) and non-increasing. Let

A(p)
s

:=
∑
j

aj(p)
s

be the total fraction of opportunities at price p that the publisher needs to acquire. Clearly, aj must be such
that A(p) ≤ s, ∀p. Let p∗ := inf{p : A(p) < s}. Now define

Hj(p) :=
{
e

R∞
p
a′j(x)/(s−A(x))dx p > p∗

0 else
(7)

Then, Hj(p) ≥ 0 and is continuous. Since a′j(p) is non-increasing, Hj(p) is monotone non-decreasing.
Further, H(∞) = 1 and Hj(p∗) = 0. Thus, Hj is a distribution function. Now we verify that bidding
according to Hj will result in the desired allocations: Note that

hj(p) =
d

dp
Hj(p) = Hj(p)

−a′j(p)
s−A(p)

which implies
A′(p)

s−A(p)
=
∑
j

a′j(p)
s−A(p)

= −
∑
j

hj(p)
Hj(p)

,

so that

− log(s−A(x))|∞p =
∫ ∞
p

A′(x)
s−A(x)

dx = −
∫ ∞
p

∑
j

hj(x)
Hj(x)

dx = −
∑
j

log(Hj(x))|∞p

or
log(s−A(p)) =

∑
j

log(Hj(p))

and hence ∏
k

Hk(p) = s−A(p).

Then, the fraction of impressions at p that are won by contract j is

∫ ∞
p

∏
k 6=j

Hk(x)

hj(x)dx =
∫ ∞
p

(∏
k

Hk(x)

)
hj(x)
Hj(x)

dx =
∫ ∞
p

(s−A(x))
hj(x)
Hj(x)

dx =
∫ ∞
p

−a′j(x)dx =
aj(p)
s

Thus, we constructed distribution functions Hj(p) which implement the given non-increasing (and a.e. differ-
entiable) allocations aj(p). If any aj is increasing at any point, the set of campaigns cannot be decentralized.
We summarize this in the following theorem, whose special case for the single contract case is Proposition 1:
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Theorem 2. A set of allocations aj(p) can be implemented in an auction via a decentralized strategy if and
only if each aj(p) is non-increasing in p, and

∑
j aj(p)/s ≤ 1.

Having determined which allocations can be implemented by bidding in an auction in a decentralized
fashion, we turn to the question of finding suitable allocations to implement. As in the single contract case,
we would like to implement allocations that are maximally representative, given the spend constraints.

3.2 Optimal allocation for multiple contracts

As in the single contract case, every contract would ideally like an equal proportion of opportunities at every
price. However, every contract has a per unit target spend which limits the fraction of opportunities that
can be purchased at higher prices. In addition to the target spend, the allocation is also constrained by
the fact that the total fraction of opportunities bought at every price must not exceed one. The maximally
representative allocation is the allocation closest to the ideal allocation that satisfies the target spend con-
straints, and such that the collective allocation does not exceed the supply at any price. That is, it is the
solution to the optimization problem below with the L2 distance measure in the objective. We use j to index
the m contracts.

min s
2

∑m
j=1

∫
p
(aj(p)

s − dj

s )2f(p)dp

s.t.
∫
p
aj(p)f(p)dp = dj ∀j∫

p
paj(p)f(p)dp ≤ tjd ∀j

aj(p) ≥ 0 ∀p, j∑m
j=1 aj(p) ≤ s ∀p

(8)

Observe that the allocations for individual contracts are coupled only by the last constraint.
Optimality conditions: Introduce Lagrange multipliers λj1 and λj2 for the first and second constraints,

and µj1(p), µ2(p) for the last two inequalities. The optimality conditions are

aj(p)
s
− dj

s
= λj1 − λ

j
2p+ µj1(p)− µ2(p),

where λj2, µ
j
1 and µ2 must be nonnegative and can be non-zero only when the corresponding constraint is

tight. Note that µ2 is a contract-independent multiplier, corresponding to the coupling constraint.
Suppose aj(p′) ≥ 0 ∀j and

∑
j aj(p

′) < s for some p′ > 0. Then, µj1(p′) = µ2(p′) = 0. It follows that for
p > p′, aj(p) < aj(p′). Let p∗ = inf {p :

∑
j aj(p) < s}. Then, ∀p ≥ p∗, each aj decays linearly with slope

λj2 until it becomes 0. If p∗ = 0, the solutions decouple, as µ2(p) ≡ 0. In this case, we can solve for the ajs
independently of one another. However, if p∗ > 0, we have ∀p < p∗:

aj(p)
s
− dj

s
= λj1 − λ

j
2p− µ2(p).

Together with
∑
j aj(p) = s, this implies

−µ2(p) =
1
m
− 1
ms

∑
j

dj −
1
m

∑
j

λj1 + p
1
m

∑
j

λj2.

Denoting λ̄2 := 1
m

∑
j λ

j
2, we see that

aj(p)
s

= cj − (λj2 − λ̄2)p, ∀p < p∗.

Therefore, at least one aj will have a positive slope below p∗ unless λj2 = λk2 , ∀j, k. That is, decentral-
ization is not always guaranteed. In case the target spends are such that p∗ > 0 and λj2 = λk2 , ∀j, k, the
optimal allocations aj stay flat until p∗ and then decay with identical slopes until each becomes 0, as shown
in Figure 2.

Thus, the optimal allocation is decentralizable in two cases:
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pmax 1 pmax 2pmin pmax 3

aj(p)

s

z1

z2

z3

Figure 2: Coupled decentralizable allocation.
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Figure 3: Empirical cumulative density function of the bids on the exchange and a log-normal fit to the
distribution.

1. p∗ = 0 : The target spends are such that the solutions decouple. In this case the allocation for each
contract is independent of the others; we solve for the parameters of each allocation as in Section 2.1.1.

2. p∗ > 0 : The target spends are such that, for all j, k, aj(p)
ak(p) is independent of p. In this case we need to

solve for the common slope and pmin, and the contract specific values pjmax, which together determine
the allocation. This can be done using, for instance, Newton’s method.

When the target spends are such that the allocation is not decentralizable, the vector of target spends
can be increased to reach a decentralizable allocation9. One way is to scale up the target spends uniformly
until they are large enough to admit a separable solution; this has the advantage of preserving the relative
ratios of target spends. The minimum multiplier which renders the allocation decentralizable can be found
numerically, using for instance binary search.

4 Experimental Validation

Our algorithms for obtaining representative allocations are randomized, and all of the results are derived in
expectation. In this section we simulate the performance of the algorithms, and verify that the randomization
does not lead to under-delivery for a realistic choice of bid landscape f .

To simulate the bid landscape, data was collected from live auctions conducted by the RightMedia
exchange. RightMedia runs the largest spot market for display advertising, with billions of auctions daily.
Winning bids were collected from approximately 400,000 auctions over the course of a day for a specific
publisher. The cdf of the empirical bid distribution is plotted in Figure 3. (The scale on the x-axis is
omitted for privacy concerns.)

The empirical distribution is well approximated by a log-normal distribution, as seen in Figure 3. For
the experimental evaluation, we, therefore, draw bids from a log-normal distribution. The mean of the

9We do not investigate the approach of finding the best suboptimal allocation that can be decentralized, i.e., an approximately
optimal decentralizable allocation, in this paper.
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Figure 4: Experiment evaluation

distribution is set to 0, and the variance parameter is changed to investigate the sensitivity of our algorithms
to the variance of the bid landscape.

To study the effectiveness of the algorithm in winning the right number of impressions on the exchange,
we fix the target fraction, ds at 0.25, 0.5 and 0.75, and compute the pmax necessary to achieve the allocation,
yet minimize the total spend. For each setting of the variance of the exchange distribution, we run 15 trials,
each with 10,000 auctions total. The results are plotted in Figure 4(a).

We perform a similar experiment to investigate the dependency of the target spend on the variance of the
bid distribution. In this case, we fix the allocation fraction to 0.8 and target spend to 0.25µ, 0.5µ and 0.75µ,
where µ =

∫
p
pf(p)dp is the maximum achievable target spend. For each setting of the variance parameter

we run 15 trials each with 10,000 auctions. The results are plotted in Figure 4(b).
In both simulations, the specific pmin and pmax for each variance setting vary greatly to achieve the

desired allocation and target spend. However, the changes in the resulting a
s and d

s themselves are minimal
– the algorithm rarely underdelivers or under/overspends by more than 1%; it is robust to variations in the
variance of the underlying bid distributions.

5 Conclusion

Moving guaranteed contracts into an exchange environment presents a variety of challenges for a publisher.
Randomized bidding is a useful compromise between minimizing the cost and maximizing the quality of
guaranteed contracts. It is akin to the mutual fund strategy common in the capital asset pricing model. We
provide a readily computable solution for synchronizing an arbitrary number of guaranteed campaigns in an
exchange environment. Moreover, the solution we detail appears stable with real data.

There are many interesting directions for further research. We assumed throughout that the supply
is known to the publisher. A more realistic model assumes either an unknown or a stochastic supply (a
strawman solution is to use algorithms in this paper using a lower bound on the supply in place of s).
Another interesting avenue is analyzing the strategic behavior by other bidders on the spot market in
response to such randomized bidding strategies.
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Appendix

A Solving for pmin and pmax

Calling pmin and pmax x and y respectively, we want to solve the system of equations:

f(y, x) =
d

s

[
1
t

]
,

where

f(y, x) =

[
F (x) +

∫ y
x
y−p
p−xf(p)dp∫ x

0
pf(p)dp+

∫ y
x
p y−py−xf(p)dp

]
.

We will show that the derivative matrix is invertible so we can use Newton’s method to converge to the
solution.

The derivative of f is:

f ′ =

[ ∫ y
x

p−x
(y−x)2 f(p)dp

∫ y
x

y−p
(y−x)2 f(p)dp∫ y

x
p p−x

(y−x)2 f(p)dp
∫ y
x
p y−p

(y−x)2 f(p)dp

]

=
1

(y − x)2

[ ∫ y
x

(p− x)f(p)dp
∫ y
x

(y − p)f(p)dp∫ y
x
p(p− x)f(p)dp

∫ y
x
p(y − p)f(p)dp

]

=
F (y)− F (x)

(y − x)2

[
Ep− x y − Ep

Ep2 − xEp yEp− Ep2

]
,

where we have defined Ep = E[p|x ≤ p ≤ y].
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It is easy to check that Ep− x, y − Ep and Ep2 − xEp are positive since x ≤ p ≤ y. For the final term,
observe that yEp − p2 = E(yp − p2) = Ep(y − p) ≥ 0. We note that Ep2 = (Ep)2 + σ2 where σ2 is the
variance of p conditioned on x ≤ p ≤ y, and therefore can compute the determinant to be −(y − x)σ2.

Therefore, provided that y > x and F is non-degenerate, the matrix is invertible; which in turn implies
that we can use Newton’s method to find the solution.

B Proof of Continuity – L2

Given the (Lebesgue) integral in the objective, a is not assumed continuous a priori . We show that the
optimal solution, however, is. Let t be the average target spend per unit.

infa(·) s
2

∫
(a(p)s −

d
s )2 f(p)dp

s.t.
∫
a(p)f(p)dp = d∫
pa(p)f(p)dp ≤ td

0 ≤ a(p)
s ≤ 1.

(9)

We will ignore the nonnegativity constraint for simplicity. The Lagrangian is

L =
1
2s

∫
(a(p)− d)2 f(p)dp+

∫
µ(p)[a(p)− s]f(p)dp

+ z

(∫
a(p)f(p)dp− d

)
+ λ

(∫
pa(p)f(p)dp− td

)
with µ(·) ≥ 0 and λ ≥ 0. Note that µ(p) = 0 if a(p) < s. By Euler-Lagrange,

a

s
− d

s
+ µ(p) + z + λp = 0

Then, ∫
a(p)f(p)dp = d ⇒ z =

∫
(−µ(p)− λp)f(p)dp

and
a(p) = d− sz − sµ(p)− sλp ∀p

Now suppose there is a p′ such that a(p′) < s. Then, µ(p′) = 0 and

a(p′) = d− sz − sλp′ < s

Then, for p > p′, we have

a(p) = d− sz − sλp− sµ(p)
≤ d− sz − sλp (because µ(p) ≥ 0)
< d− sz − sλp′ = a(p′)

Thus, a(p) is monotone non-increasing.

Let
p0 := inf{p ≥ 0 : a(p) < s}

Note that p0 ∈ [0, F−1(d/s)]. Then,

a(p) = s p < p0

= d− sz − sλp 0 ≤ p0 ≤ p ≤ pm
= 0 pm ≤ p
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Here, pm is such that d− sz − sλpm = 0. We now express z in terms of λ, p0, pm rather than in λ, µ(·):

z(λ, p0, pm) =
sF (p0) + d(F (pm)− F (p0)− 1)− s

∫ pm

p0
λpf(p)dp

s(F (pm)− F (p0))

Similarly for the Lagrangian:

L(λ, p0) =
(s− d)2F (p0)

2s
+
∫ p0

0

λpsf(p)dp

1
2s

∫ pm

p0

[s2z2 − s2λ2p2 + 2sλpd]f(p)dp

It can be verified that
∂z

∂p0
=

f(p0)(s− a(p0))
s(F (pm)− F (p0))

∂L

∂p0
=
f(p0)

2s
(s− a(p0)2 ≥ 0

We see that either the optimum with respect to p0 is achieved on the boundary (p0 = 0 or p0 = F−1(d/s))
or that a(p0) = s at the optimum. We are not interested in the trivial case p0 = F−1(d/s). We thus have
two cases:

Case 1.
a(p) = d− sz − sλp < s ∀p ≥ 0

Case 2.
a(p) = s p < p0

= s(1 + λ(p0 − p) 0 ≤ p0 ≤ p ≤ pm
= 0 pm ≤ p

We could combine the two cases by allowing p0 to be negative.

C KL divergence

We want to minimize the KL divergence between a(p)f(p)/d and f(p):∫
a(p)f(p)

d
log

a(p)f(p)/d
f(p)

dp =
∫
f(p)

a(p)
d

log
a(p)
d
dp

which is equivalent to minimizing ∫
f(p)a(p) log a(p)dp

Given the (Lebesgue) integral in the objective, a is not assumed continuous a priori . We show that the
optimal solution, however, is. Let t be the average target spend per unit. Thus we have

infa(·)
∫
a(p) log a(p) f(p)dp

s.t.
∫
a(p)f(p)dp = d∫
pa(p)f(p)dp ≤ td

0 ≤ a(p)
s ≤ 1.

(10)

Here, t is the average target spend per unit. For feasibility, t ≥ p :=
∫ F−1(d/s)

0
psf(p)dp. If t ≥ p̄ :=∫∞

0
pf(p)dp, the optimal solution is a(p) ≡ d.
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The Lagrangian is

L =
∫
a(p) log a(p) f(p)dp+

∫
µ(p)[a(p)− s]f(p)dp

+ γ

(∫
a(p)f(p)dp− d

)
+ λ

(∫
pa(p)f(p)dp− td

)
with µ(·) ≥ 0 and λ ≥ 0. Note that µ(p) = 0 if a(p) < s. By Euler-Lagrange,

1 + log a+ µ(p) + γ + λp = 0

which gives
a = e−γ−1e−µ(p)−λp

Then, ∫
a(p)f(p)dp = d ⇒ d = e−γ−1

∫
e−µ(p)−λpf(p)dp

which leads to
a(p) =

d

Z(λ, µ(·))
e−µ(p)−λp ∀p

Now suppose there is a p′ such that a(p′) < s. Then, µ(p′) = 0 and

a(p′) =
d

z
e−λp

′
< s

Then, for p > p′, we have

a(p) =
d

z
e−λp−µ(p) ≤ d

z
e−λp (because µ(p) ≥ 0)

<
d

z
e−λp

′
= a(p′)

Thus, a(p) is monotone non-increasing.

Let
p0 := inf{p ≥ 0 : a(p) < s}

Note that p0 ∈ [0, F−1(d/s)]. Then,

a(p) = s p < p0

= d
z e
−λp p ≥ p0

We now express z in terms of λ, p0 rather than in λ, µ(·):

z(λ, p0) =
d
∫∞
p0
e−λpf(p)dp

d− sF (p0)

Similarly for the Lagrangian:

L(λ, p0) = F (p0)s log s+ log
d

z(λ, p0)

∫ ∞
p0

a(p)f(p)dp

+ λ

∫ p0

0

psf(p)dp− λtd

from which follows
∂L

∂p0
= −sf(p0)[log

a(p0)
s
− a(p)

s
+ 1] ≥ 0

16



We see that either the optimum with respect to p0 is achieved on the boundary (p0 = 0 or p0 = F−1(d/s))
or that a(p0) = s at the optimum. We are not interested in the trivial case p0 = F−1(d/s).

We have two cases for the form of the solution in the KL case.

Case 1.
a(p) =

d

z(λ)
e−λp < s ∀p ≥ 0

Case 2.
a(p) = s p < p0

= seλ(p0−p) p ≥ p0 ≥ 0

Figure 5 shows the effect of varying target spend on the optimal allocation.

When the solution is parametrized by pmin, pmax, these values must satisfy

sF (pmin) +
∫ pmax

pmin

s
(pmax − p)
pmax − pmin

f(p)dp = d

∫ pmin

0
spf(p)dp +

∫ pmax

pmin

sp
(pmax − p)
pmax − pmin

f(p)dp ≤ td.

4 KL utility

We have two cases for the form of the solution in the KL case.

Case 1.
a(p) =

d

z(λ)
e−λp < s ∀p ≥ 0

Case 2.
a(p) = s p < p0

= seλ(p0−p) p ≥ p0 ≥ 0

Figure 2 shows the effect of varying target spend on the optimal allocation.
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Figure 2: Effect of target spend on KL-optimal allocation

4.1 Parametric supply distributions

As an illustration, we consider the case when the supply distribution f is expo-
nential: f(p) = γe−γp. Note that p̄ = 1

γ . As the budget decreases, a transition
from Case 1 to Case 2 occurs at a certain budget. Until then, a(p) = d

z e−λp

where d
z ≤ s, with equality at the transitional budget. Demand constraint

∫
γ

d

z
e−(λ+γ)pdp = d

8

Figure 5: Effect of target spend on KL-optimal allocation

Parametric supply distributions As an illustration, we consider the case when the supply distribution f
is exponential: f(p) = γe−γp. Note that p̄ = 1

γ . As the budget decreases, a transition from Case 1 to Case 2
occurs at a certain budget. Until then, a(p) = d

z e
−λp where d

z ≤ s, with equality at the transitional budget.
Demand constraint ∫

γ
d

z
e−(λ+γ)pdp = d

gives
z =

γ

λ+ γ

At the optimum, spend equals budget:

td =
∫
γp
d(λ+ γ)

γ
e−(λ+γ)pdp =

d

λ+ γ

which leads to λ∗ = 1
t − γ and z = γt. Again, note that until the transition happens, d

γt ≤ s, that is,
t ≥ d

sγ = d
s p̄. The optimal KL-divergence for d

s p̄ ≤ t ≤ p̄ is given by

KLopt = γt− 1− log γt

which is 0 when t = p̄ and is d
s − 1− log d

s at the transitional budget.
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