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ABSTRACT
Motivated by the emergence of auction-based marketplaces
for display ads such as the Right Media Exchange, we study
the design of a bidding agent that implements a display ad-
vertising campaign by bidding in such a marketplace. The
bidding agent must acquire a given number of impressions
with a given target spend, when the highest external bid in
the marketplace is drawn from an unknown distribution P.
The quantity and spend constraints arise from the fact that
display ads are usually sold on a CPM basis. We consider
both the full information setting, where the winning price
in each auction is announced publicly, and the partially ob-
servable setting where only the winner obtains information
about the distribution; these differ in the penalty incurred
by the agent while attempting to learn the distribution. We
provide algorithms for both settings, and prove performance
guarantees using bounds on uniform closeness from statis-
tics, and techniques from online learning. We experimen-
tally evaluate these algorithms: both algorithms perform
very well with respect to both target quantity and spend;
further, our algorithm for the partially observable case per-
forms nearly as well as that for the fully observable setting
despite the higher penalty incurred during learning.

1. INTRODUCTION
A bidding agent is an entity that implements an online

advertising campaign by bidding in ad auctions on behalf
of an advertiser. A recent development in Web advertising
is the emergence of an auction-based marketplace for dis-
play ads, where advertisers can bid on individual display
advertising opportunities in real time auctions, as in spon-
sored search. Such a marketplace allows advertisers greater
flexibility in the design and implementation of their display
advertising campaigns, which were previously restricted to
contracts with publishers at pre-negotiated prices. In this
paper, we study the design of bidding agents for display ad-
vertising, which implement an ad campaign by bidding in
such an auction-based marketplace. The bidding agent in
question could either be an advertiser herself, or an inter-
mediary acting on behalf of the advertiser.
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Since display advertising is usually sold on a per impres-
sion (CPM) basis, a campaign for display advertising has
different goals and metrics than one for sponsored search [2].
A CPM-based campaign typically has a target quantity of
impressions that need to be acquired over a certain duration
with certain targeting characteristics (the targeting can in-
clude information both about the webpage on which the ad
will appear, as well as the user viewing the page). In addi-
tion to the target quantity, a typical constraint in a CPM
campaign is a budget constraint on the total spend, since
payment is made on a CPM rather than a per click (CPC)
basis. We will assume that the bidding agent wants to ex-
haust, rather than simply stay within, the allocated budget,
for the following reason. Different advertisers often have dif-
ferent pieces of information regarding how valuable a partic-
ular user might be, and often a high bid for an impression
reflects this information; thus a high price might indicate
high value1. This also agrees with anecdotal observations
that advertisers prefer to exhaust their budgets.

Consider a bidding agent that needs to win d impressions
and has a total budget T . We assume that the bidding agent
knows the total supply n of impressions satisfying the tar-
geting requirements (this is clearly not true in practice, but
a lower bound on the supply can be used instead). Define
f = d/n to be the fraction of the supply that the agent
needs to win, and define t = T/d to be target spend per im-
pression won. We suppose that the highest bids from other
bidders are drawn i.i.d.2 from a distribution with CDF P,
and that each impression is sold using a second price auction.
In general, a given target quantity and spend need not be
simultaneously feasible for the distribution P – if this hap-
pens, we always choose in favor of quantity (our algorithms
can be modified to make the opposite choice).

If the distribution P is known to the bidding agent, then
the problem is simple. Let z? = P−1(f) be the bid that
would win fraction f of the supply. Define p? such that
EP [X |X ≤ p? ] = t, that is, p? is the bid that achieves the

1We assume that an intermediary implementing a campaign
on behalf of an advertiser would also like to deliver high-
value impressions subject to the chosen budget. Since our al-
gorithms target supply over budget when they are not simul-
taneously feasible, the intermediary can deliver the cheapest
impressions if desired by choosing a small enough budget.
2See Section 5 for a discussion.



target spend t in expectation. If z? ≤ p? then bidding p?

with probability A = f/P(p?) independently on each avail-
able impression achieves both the supply and spend targets
in expectation. Otherwise, prioritizing supply, we bid z?

achieving the desired fraction of supply in expectation.
In practice, of course, the distribution P is not known to

the bidding agent. Our problem is therefore one of learn-
ing the unknown distribution P in order to meet the target
quantity and spend constraints. However, learning incurs a
penalty, leading to an explore-exploit tradeoff. The nature
of the penalty depends on the assumptions made about the
extent of information available to the bidding agent. We
consider two settings:

• Fully Observable Exchange. Here, the winning bid
in each auction is announced publicly, so that the bid-
ding agent can learn without placing any bids and
therefore expending any budget. The only tradeoff
here is between accuracy and length of exploration,
which could affect feasibility during exploitation.

• Partially Observable Exchange. A harder prob-
lem is when the winning bid is not announced publicly–
only the winner receives information about the price
and therefore the distribution (a realistic setting in
online advertising). Thus the bidding agent can infer
information about P only by bidding high enough to
win, i.e., it must pay for every sample it observes from
the distribution.

We begin in Section 2 with algorithm Learn-Then-Bid for
the fully observable case, and provide performance guaran-
tees using non-asymptotic uniform convergence results for
empirical processes. While the algorithm is simple– it ob-
serves and then bids according to the empirical distribution,
the analysis is a useful first step for the partially observable
case. A natural improvement is to continue to learn while
exploiting; this algorithm indeed outperforms Learn-Then-
Bid as shown experimentally in Section 4.

In Section 3 we move on to the partially observable case,
which is harder since a cost must be paid for every bid that
is observed from the distribution. We give an algorithm
Guess-Double-Panic that explores the distribution gradually
based on a guess-then-double pattern, in order to control the
spend in the learning phase. A simple guess-then-double
algorithm does not suffice since the distribution may have
mass concentrated right above a guess, leading to severe
overspending upon doubling. We introduce a panic phase
to the algorithm to deal with this problem, which limits the
overspending and allows for performance guarantees.

In Section 4, we experimentally evaluate these algorithms,
as well as some additional heuristics, on realistic data de-
rived from the right media exchange. Both Learn-Then-
Bid (and its improved version Learn-While-Bid) and Guess-
Double-Panic perform very well for a wide range of target
fractions and spends. The experiments also demonstrate
that natural heuristics for the partially observable case are
indeed inadequate, and are well outperformed by Guess-
Double-Panic. Most interestingly, the lack of full infor-
mation is not a severe handicap: Guess-Double-Panic does
nearly as well as Learn-Then-Bid despite access to only par-
tial information.

Related work: Although there are many commercial
ventures that optimize campaigns on behalf of advertisers,

the design and analysis of bidding agents for online adver-
tising has not received much attention in the research lit-
erature. The focus has largely been on bidding agents for
sponsored search keyword auctions– for instance, Cary et
al [2] propose and analyze a pragmatic bidding agent for
sponsored search. Unlike display advertising, the goal there
is to choose the optimal (utility maximizing) slot to bid on
for each keyword; the authors show that there is a greedy
bidding strategy that leads to convergence to equilibrium
when all advertisers use the same strategy.

In this paper, we consider approaches inspired by the on-
line learning literature. In particular, our results are similar
to those on UCB1 [1] where there is an unknown stationary
distribution over events from round to round; we do almost
as well asymptotically as we would had the distribution been
known in advance. However, although this work has been
extended to uncountably infinite action spaces [4], it dif-
fers in two major factors: we try to get the correct average
behavior (i.e., to behave correctly on average). Second, the
expected price obtained on a given round as a function of the
bid (roughly analogous to cost in [5]) is not only non-convex,
but there is also no pre-determined Lipschitz constant K,
making discretization of the action space unboundedly in-
efficient as a method of approximation. As an alternative,
we focus on the specific properties of the problem to more
efficiently explore and exploit.

2. FULLY OBSERVABLE EXCHANGE
We first consider a fully observable exchange where the

winning bid is revealed after every auction. After describing
the algorithm we use the DKW inequality to bound the error
on our estimates and the suboptimality of our performance.

Learn-Then-Bid takes as input a target fraction f , spend
t, supply n and exploration length m. It explores for m steps
by bidding 0, that is, simply waiting and forms the empirical
CDF Pm from the observations Ei ∼ P. It then computes
bid value3 P ?m that would achieve the target spend t, and
Z?m that would achieve the necessary fraction, and bids P ?m
with probability Am if is feasible to achieve both targets on
Pm, else it bids Z?m.

Algorithm Learn-Then-Bid(f, t, n,m)

1: Bid 0 for the first m opportunities;
2: Pm(x)← m−1Pm

i=1 1 [Ei ≤ x];
3: P ?m ← inf {p : EPm [X |X ≤ p ] ≥ t}
4: Am ← fn

(n−m)Pm(P?
m)

5: Z?m ← inf
n
z : Pm(z) ≥ fn

n−m

o
6: if P ?m ≥ Z?m then
7: for opportunities i ∈ {m+ 1, . . . , n} do
8: Bid P ?m with probability Am, and 0 otherwise.
9: else

10: for opportunities i ∈ {m+ 1, . . . , n} do Bid Z?m.
11: end if

We prove that the expected future fraction of impressions
won and amount spent per impression by Learn-Then-Bid
converge in probability with rates exponential in the learn-
ing phase length.

We assume that the distribution P is continuous, strictly
monotonic, has support on [a, b] where 0 ≤ a < b < ∞ and

3We follow the convention that inf ∅ := +∞.



P(a) = 0. This implies that g(y) = EP [X |X ≤ y ] is well-
defined, continuous and strictly increasing over [a, b], and so
P−1 and g−1 are well-defined also.

In normal scenarios, one needs a small number of impres-
sions and has a small budget. Moreover, the total number of
impressions tends to be large. Many of the results we obtain
depend upon the problem being feasible after exploration.
In Section 4 we show experimentally that m can be chosen
small enough so that the problem remains feasible for most
f and t.

Definition 1. Define γ = fn
n−m . If t ≤ EP [X], define

p? = g−1(t). A problem is feasible after exploration if
t ≤ EP [X] and P(p?) ≥ γ.

Note that this also implies γ ≤ 1. We will refer to γ and p?

throughout this section as defined above.

2.1 Measurement Errors
The performance of the algorithm depends primarily upon

the accuracy of the exploration phase measurements.

Definition 2. For a given ε > 0, the algorithm has ε-
accurate observations if for all x ∈ [a, b]:

|P(x)− Pm(x)| ≤ ε . (1)

The following is a restatement of the DKW inequality [3].
For the remainder of the analysis, we will condition our re-
sults on the observations being ε-accurate.

Corollary 3. For ε > 0, the probability of the algorithm
having ε-accurate observations is greater than or equal to
1− 2 exp

`
−2mε2

´
.

Lemma 4. Given ε > 0, if the problem is feasible after ex-
ploration, and the Learn-Then-Bid algorithm has ε-accurate
observations then

|P(Z?m)− γ| ≤ ε . (2)

Proof. We first consider bidding Z?m on each round of
the bidding phase; our goal is to prove that the expected
fraction won P(Z?m) is close to the target fraction γ w.h.p. If
γ ≤ ε, then P(Z?m) ≥ 0 ≥ γ− ε. If γ > ε, then (0, γ− ε] 6= ∅,
and for any ε′ ∈ (0, γ − ε], define z?− = P−1(γ − ε − ε′).
Because the algorithm has ε-accurate observations:

Pm
`
z?−

´
≤ P

`
z?−

´
+ ε = γ − ε′

< γ ≤ Pm (Z?m) ,

and so z?− < Z?m by the monotonicity4 of Pm. Therefore,
for all ε′ ∈ (0, γ− ε], P(Z?m) > P(z?−) = γ− ε− ε′, implying
P(Z?m) ≥ γ− ε. By a similar argument, P(Z?m) ≤ γ+ ε.

2.2 Approximation of Target Supply Won
Our first main result states that Learn-Then-Bid wins

close to fn opportunities, if the algorithm has ε-accurate
observations and the problem is feasible after exploration.
The following lemma is a consequence of a positive partial
derivative.

Lemma 5. For γ, ε > 0, xγ(x+ε)−1 is strictly increasing,
and xγ(x− ε)−1 is strictly decreasing.

4It is important that Pm(z?−) is strictly less than Pm(Z?m)
because Pm is weakly monotonic, thus the need for ε′ > 0.

Theorem 6. Given ε > 0, and j > m, let Bj be the
jth bid of the Learn-Then-Bid algorithm. If the problem is
feasible after exploration and the algorithm has ε-accurate
observations, then:

γ − ε ≤ E[P(Bj)|E1 . . . Em] ≤ γ − ε
γ − 2ε

γ . (3)

Proof. From Lemma 4, we know that |P(Z?m)− γ| ≤ ε.
If Z?m ≥ P ?m and therefore Bj = Z?m, then γ − ε ≤ P(Bj) ≤
γ + ε ≤ γ−ε

γ−2ε
γ. Therefore for the remainder of the proof we

assume that P(P ?m) ≥ P(Z?m) ≥ γ − ε.
In this case, Bj = P ?m with probability Am, and zero

otherwise (P(0) = 0). The conditional probability of win-
ning bid j given the outcome of the exploration phase is
P(P ?m)Am: it is this value we wish to show is close to the
target γ:

P(P ?m)Am =
P(P ?m)

Pm(P ?m)
γ ≥ P(P ?m)

P(P ?m) + ε
γ ≥ γ − ε

γ
γ .

The first equality follows by definition of Am, the first in-
equality follows due to the ε-accurate observations, and the
final inequality is a consequence of Lemma 5 and the in-
equality P(P ?m) ≥ P(Z?m) ≥ γ − ε. We upper-bound the
expected fraction won in a similar fashion:

P(P ?m)

Pm(P ?m)
γ ≤ P(P ?m)

P(P ?m)− εγ ≤
γ − ε
γ − 2ε

γ .

2.3 Approximation of Target Spend
First we convert DKW-type uniform closeness of true and

empirical CDFs to uniform closeness of expected spend.
This “uniformity” is gained by focusing only on the area
of interest, bids that obtain at least γ − ε impressions.

For a given ε ∈ (0, γ/2), define ε− = εb
(γ−ε)(γ−2ε)

+ ε(b−a)
γ−2ε

,

and ε+ = εb
γ(γ−ε) + ε(b−a)

γ
.

Lemma 7. Given ε ∈ (0, γ/2), let z?− = P−1(γ − ε) and
define the function gm(y) = EPm [X |X ≤ y ]. If the algo-
rithm has ε-accurate observations , then if Y ≥ z?−:

gm(Y )− ε− ≤ g(Y ) ≤ gm(Y ) + ε+ .

Proof. Because the algorithm has ε-accurate observa-
tions, both of the following relations hold5 for all y ∈ [a, b]:

|P(y)− Pm(y)| ≤ ε˛̨̨̨Z y

a

(1− P(x)) dx−
Z y

a

(1− Pm(x)) dx

˛̨̨̨
≤ ε(b− a) .

Lower-bounding gm(Y ) with the above relations, identity
d
c+ε

= d
c
− dε

c(c+ε)
, and P(Y ) ≥ P(z?−) = γ − ε:

gm(Y ) =
a+

R Y
a

(1− Pm(x)) dx

Pm(Y )

≥
a+

R Y
a

(1− P(x)) dx

P(Y ) + ε
− ε(b− a)

P(Y ) + ε

= g(Y )−
ε(a+

R Y
a

(1− P(x)) dx)

P(Y )(P(Y ) + ε)
− ε(b− a)

P(Y ) + ε

≥ g(Y )− εb

γ(γ − ε) −
ε(b− a)

γ
. (4)

5The integrals are well-defined because P and Pm are
bounded, monotonic functions.



Upper-bounding gm(Y ) proceeds by the same arguments
and identity d

c−ε = d
c

+ dε
c(c−ε) .

Theorem 8. Given the problem is feasible and ε ∈ (0, γ/2),
If the algorithm has ε-accurate observations, j > m and Bj
is the jth bid and Bj > 0, then: t− ε− ≤ g(Bj) ≤ t+ ε+.

Proof.

t− ε− ≤ g(max(Z?m, P
?
m)) ≤ t+ ε+ . (5)

Note that if j > m and Bj > 0 then Bj = g(max(Z?m, P
?
m)).

As with Lemma 4, we need to analyze values that bracket
the value of interest. In particular, the first value of interest
is z?− = P−1(γ − ε). If g(z?−) ≥ t− ε−, then by Lemma 4,
max(Z?m, P

?
m) ≥ Z?m ≥ z?−, and by the monotonicity of

g, g(max(Z?m, P
?
m)) ≥ g(z?−) ≥ t − ε−. Therefore, we can

assume that g(z?−) < t−ε−. Since t > t−ε− > g(z?−) ≥ a,
t − ε− is in the range of g and g−1(t − ε−) ≥ z?−. For
ε′ ∈ (0, t− ε− − a], define p?− = g−1(t− ε− − ε′).

gm(p?−) ≤ g(p?−)− ε = t− ε′

< t ≤ gm(P ?m) ,

so p?− ≤ P ?m. Therefore, because g is monotonically in-
creasing, for any ε′ > 0, t − ε− − ε′ ≤ g(P ?m), implying
t− ε− ≤ g(P ?m) ≤ g(max(Z?m, P

?
m)). By a similar argument,

t+ ε+ ≥ g(P ?m).

From Corollary 3 the algorithm has ε-accurate observations
with probability 1 − 2 exp

`
−2nε2

´
. From Theorem 6 and

Theorem 8:

Theorem 9. Given a problem that is feasible after explo-
ration. If ε ∈ (0, γ/2): With probability 1− 2 exp

`
−2nε2

´
:

t− ε− ≤ g(Bj) ≤ t+ ε+ if Bj > 0 (6)

γ − ε ≤ E[P(Bj)|e1 . . . em] ≤ γ − ε
γ − 2ε

γ . (7)

3. PARTIALLY OBSERVABLE EXCHANGE
We now move on to the partially observable case, where

information is revealed only to the winner of an auction.
This problem is more difficult because the bidder must pay
a cost in order to obtain information; specifically, we cannot
simply learn about the auction by bidding zero for a while.
The most brute force approach is to bid infinity for an ex-
ploration period, but that can cause overspending by almost
b/t when the target fraction is small. In this section, we will
try to be approximately optimal. If b/t is small then we can
just bid b: however, we want to handle the case where b/t is
large as well.

Consider a simple algorithm that works rather well: bid 2t
blindly until the correct number of impressions are obtained.
Observe that since the minimum bid to get fn impressions
is less than the bid that gets an expected price of t, then the
expected price paid when a bid is made which obtains fn is
less than or equal to t. Therefore, by Markov’s inequality,
the number of the lowest fn impressions below 2t is fn/2.
Moreover, the most that one can spend is 2tfn, and since
the budget is tfn, this is only twice the budget. Therefore,
this algorithm will not dramatically overspend and it will
obtain half the required impressions.

Instead of either of these extremes (bidding 2t blindly or
aggressively exploring with b), we will apply the guess-then-
double pattern. The guess then double approach is used

in a variety of domains. For instance, if we want to create
an array of items but do not know how many elements it
will contain, we make a guess, and if we need more space,
we double the size of the array. Thus, the number of new
allocations is logarithmic in the number of elements entered,
and the number of copies is linear, and the size may be off
by no more than a factor of two. Of course, doubling is only
one possibility: in the case of the array, multiplying by a
factor smaller than 2 will result in more copies but greater
efficiency in space.

In the Guess-Double-Panic algorithm below, we apply a
modification of this technique to our bids during the explo-
ration phase. We will refer to a bid being used during explo-
ration as an exploration bid. A “safe” bid6 is t, the target
spend, since there is no danger of going over budget. From
this point, we exponentially increase our exploration bid, ex-
ploring enough with each new bid to learn the distribution
below this bid. At some point we notice our exploration bid
exceeds p?.

A näıve approach is to simply test for this condition at
each iteration, and then react to our experience at the end of
each phase of the exploration (i.e., remove lines 8-9). How-
ever, this can result in a large amount of overspending, as
the following example shows7. The target price is 10 cents
and we need to obtain 10% of the 1000 impressions. There-
fore, we are searching for 100 impressions for $10.00 total.
The distribution of bids is: 9.9% are at 1 cent. 0.1% are
at $9.01. Finally, the remaining 90% of the bids are at
$10.00. An ideal bid is $9.01. However, it is difficult to say
whether this one bid will be observed. Unless there is a very
slow exploration, the bids will likely exceed $10.00 during
exploration. Thus, there will be a high penalty where the
algorithm will most likely pay 10 times its budget.

Instead, if we start overspending during the exploration
phase, we go to the Panic() subroutine, where we move into
a new phase of “cautious exploration”. Effectively, if we are
overspending, then we momentarily ignore the budget, and
target solely the number of impressions obtained. As before,
we continue to increase the bids, but if we realize that we
can get enough impressions in the exploitation phase, we
immediately move on to the exploitation phase.

The algorithm continues to explore (or panic) until it finds
a price Bi? where it estimates its budget can be exhausted
and it can win enough impressions (or it has explored at
b or above). As with the observable case, we have a good
approximation of the outcome of bidding any price below
Bi? as we leave the exploration phase.

In particular, there are now three modes of operation.
The first mode is exploration: the algorithm explores until
it either gets enough information or the budget becomes
tight. The second (optional) mode is panic: the budget is
tight, but the algorithm does not have enough information
to obtain the right number of impressions, so it aggressively
grabs impressions until it reaches a more stable scenario.
The third stage is exploitation. In the exploitation stage,
if there is sufficient budget to obtain the right number of
impressions, then the algorithm tries to exhaust the budget.
Otherwise, it is cheap and tries to get the right number of

6There is also the possibility that we underspend. This can
happen if we get many opportunities while we are bidding
too low. However, this is not a problem so long as the ex-
ploration period is sufficiently short with respect to γn.
7A similar continuous distribution is easy to construct.



impressions at a discount price.
For the following algorithm, all variables are global.

Algorithm Guess-Double-Panic(f, t, n,m, φ)

1: Initialize: gremain ← fn; budget← tgremain
2: Initialize: P0 ← 0; T0 ← 0; B0 ← 0; i← 0; j ← 0
3: while (Tigremain < budget or Pi(n− j) < gremain) and
Bi < b do

4: i← i+ 1.
5: Bi ← t(φ)i−1.
6: Si ← ∅ to be a multiset.
7: for k = 1 to m do
8: if (gremain − 1)Ti−1 +Bi−1 > budget then
9: return Panic()

10: j ← j + 1.
11: if gremain = 0 then Terminate.
12: Bid Bi.
13: if Bid wins then
14: Define pj ← price won.
15: gremain ← gremain − 1.
16: budget← budget− pj .
17: Add pj to Si.
18: end if
19: end for
20: if Si 6= ∅ then Ti ← 1

|Si|
P
p∈Si

p else Ti ← 0.

21: Pi ← |Si|
m

.
22: end while
23: i? ← i.
24: return Exploit().

The first danger of using any exploration technique is
that the problem may be unsolvable if one spends too much
time exploring. Note that there will be no more than r =
dlogφ(b/t)e+ 1 rounds of exploration, because then the bid
will be above b. In each round, there are m bids, so mr is
the maximum number of steps of exploration.

Definition 10. Define γ = fn
n−mr . If t ≤ EP [X], define

p? = g−1(t). A problem is feasible after exploration if
t ≤ EP [X] and P(p?) ≥ γ.

Again, this implies γ ≤ 1.
Let us consider the period that generated Si. Define S?i

to be the multiset of all prices (observed and unobserved)
during this period (clearly not an observed set). As in the
observed case, there are several observations we could make
about this distribution (although in this case only theoreti-
cally). Formally, define:

Pim(x) = m−1|{y ∈ S?i |y ≤ x}| . (8)

Moreover, we can look at these independently from the al-
gorithm itself.

Definition 11. The algorithm has ε-accurate obser-
vations if for each i ∈ {1 . . . r}, argmaxx∈[a,b] |Pim(x) −
P(x)| ≤ ε.

Lemma 12. The probability of not having ε-accurate ob-
servations is less than or equal to 2(dlogφ(b/t)e+1) exp

`
−2mε2

´
.

The probability of ε-accurate observations can be deter-
mined by applying the DKW inequality to each round of
exploration/panicking, and then applying a union bound.

Subroutine Panic

25: while Bi−1 < b do
26: while k ≤ m do
27: if gremain < Pi−1(n− j) then
28: i? ← i− 1.
29: return Exploit().
30: end if
31: j ← j + 1.
32: Bid Bi.
33: if Bid wins then
34: Define pj ← price won.
35: gremain ← gremain − 1.
36: budget← budget− pj .
37: Add pj to Si.
38: end if
39: k ← k + 1.
40: end while
41: k ← 1.
42: if Si 6= ∅ then Ti ← 1

|Si|
P
p∈Si

p else Ti ← 0.

43: Pi ← |Si|
m

.
44: i← i+ 1.
45: Bi = t(φ)i−1.
46: Si ← ∅ to be a multiset.
47: end while
48: i? ← i− 1.
49: return Exploit().

Subroutine Exploit

50: If gremain ≤ 0 or j ≥ n then Terminate.
51: Bfinal ← Bi? .
52: A← gremain

Pi? (n−j) .

53: if Pi?(n− j) > gremain and Ti?gremain > budget then
54: Sort p ∈ Si? : define qk to be the kth smallest p in

Si? .

55: ks ←
l
gremain
n−j m

m
56: for k = 1 to |Si? | do gk ← 1

k

Pk
i=1 qi.

57: t? ← budget
gremain

.

58: kp ← mink:gk≥t? k.
59: k? ← max(ks, kp).
60: Bfinal ← qk? .
61: A← k?

m
.

62: A← gremain
A(n−j) .

63: end if
64: while More rounds and gremain > 0 do
65: Bid Bfinal with probability A, 0 otherwise.
66: If Bid won then gremain ← gremain − 1.
67: end while



Define Cexplore, Cpanic, and Cexploit to be the spend dur-
ing exploration, panic, and exploitation, respectively. De-
fine nexplore,npanic, and nexploit to be the number of im-
pressions won during exploration, panic, and exploitation
phases, respectively. Define m′ to be the number of oppor-
tunities during the exploration and panic phases combined.
Define n?exploit to be the target number of impressions that
remain after the exploration and panic phases. Note that
this is equal to gremain at the beginning of the exploitation
phase. Instead of targeting γ as we did before, we are tar-

geting γ′ =
n?

exploit
n−m′ , where γ′ ≤ γ because n?exploit ≤ fn

and m′ ≤ mr, implying that γ′ ≤ 1. Because the number
of impressions obtained is a priority, the proof that this is
achieved is fairly straightforward. The spend we will bound
is C = Cexplore + Cpanic + E[Cexploit|E1 . . . Em′ ].

Theorem 13. If the problem is feasible after exploration,
and the algorithm has ε-accurate observations, then:

fn ≥ nexplore + npanic + (n−m′)P(Bfinal)A ≥ fn− ε ,

where Bfinal and A are as in Line 65.

Proof. The upper bound is true because there is always
a check that gremain > 0 before any bid is made. The proof
of the lower bound has the same rough outline as Theorem 6.
qks is analogous to Z?m, and qkp is analogous to P ?m. The fun-
damental difference between this and the proof of Theorem 6
is that during the exploration phase, the target fraction of
impressions to win during exploitation may be lower than
γ, due to some being won during the exploration and panic.
However, it is still easy to prove that |P(qks)−γ′| ≤ ε using
techniques similar to Lemma 4, because the proof does not
depend upon the target. The most serious issue is when
kp ≥ ks, (analogous to P ?m ≥ Z?m), there is no implicit
lower bound on P(qkp) outside of γ′. This makes the upper
bounds that we obtained in Theorem 6 impossible to obtain,
and why we explicitly bound the number of impressions ob-
tained from above. However, the lower bounds on AP(qkp)
work out just as in Theorem 6.

3.1 Bounding the Amount Spent
We prove an upper bound on the spend of the algorithm.

Theorem 14. If the algorithm has ε-accurate observa-
tions and the problem is feasible after exploration, then C ≤
φtfn+ (ε1/3 + ε2/3)nb.

Proof. With Lemmas 15-21, we cover overspending based
upon every outcome of exploration and panic, as well as the
relationship between ks and kp. In particular:

1. If the algorithm exits exploration on Line 24, then
Lemma 15 applies if kp ≥ ks, and Lemma 21 applies if
kp < ks.

2. If the algorithm exits exploration on Line 11, then
Lemma 16 applies.

3. If the algorithm exits exploration on Line 9, then Lemma 17
applies if no panic bids are made, Lemma 18 applies if
a panic bid of Bi?+1 is made, Lemma 20 applies if the
largest panic bid is Bi? and kp ≤ ks, and Lemma 19
applies if kp > ks.

Lemma 15. If the algorithm exits the exploration phase
at Line 24, the algorithm has ε-accurate observations, the
problem is feasible after exploration, and kp ≥ ks, then the
amount overspent is less than C ≤ tfn+ (ε1/3 + ε2/3)bn.

Proof. As before, if a large fraction of the impressions
remains, then the estimates will be pretty accurate. On the
other hand, if many of the impressions are already gone, the
impact of making a mistake is less.

Basically, we choose a point, γ? = ε1/3 + ε, as a threshold:
if γ′ > γ?, we can bound the spend normally. If γ′ ≤ γ?,
then the most we can spend is γ?b.

As we consider the bound proven in Lemma 7, if we re-
place γ with γ? in Equation 4, then we get:

gm(Y ) ≥ g(Y )− εb

γ?(γ? − ε) −
ε(b− a)

γ?
(9)

= g(Y )− εb

(ε+ ε1/3)(ε1/3)
− ε(b− a)

ε1/3
(10)

≥ g(Y )− ε1/3b− ε2/3(b− a) (11)

≥ g(Y )− ε1/3b− ε2/3b . (12)

Equation 12 follows because decreasing the denominator
(replacing ε+ε1/3 with ε) makes the term larger, but making
a negative term larger makes the overall expression smaller.
Also, since ε ≤ 1, ε2/3 ≥ ε, implying γ′b ≤ ε1/3b+ ε2/3b.

Lemma 16. If exploration exits due to Line 11, then C ≤
φtfn .

Proof. Define B? to be equal to budget at the last time
Line 8 was visited. This is the ideal amount to bid on the
last bid such that the budget is exactly met. The maximum
amount that could be bid would be Bi. Before the last bid
was made, gremain = 1 and (due to Line 8), Bi−1 ≤ B?.
Therefore, Bi ≤ φB?. The maximum amount overspent
would be Bi − B? ≤ (φ − 1). Since B? ≤ tfn, the result
follows.

Lemma 17. If exploration exits on Line 9, and no panic
bids (Line 32) are made, then C ≤ φtfn+ (ε1/3 + ε2/3)nb.

Proof. During the middle of an exploration phase, an
impression is won (which we will call the overpriced im-
pression) and Line 8 is true. Define pop to be the price of
this bid. At the time when the expression in Line 8 is true:

tfn− budget = Cexplore + Cpanic (13)

gremain = n?exploit (14)

Consider the last time that Line 8 is false, i.e.when one less
impression was won and pop less was spent.

tfn− budget = Cexplore + Cpanic − pop (15)

gremain − 1 = n?exploit (16)

(gremain − 1)Ti−1 +Bi−1 ≤ budget (17)

(n?exploit)Ti−1 +Bi−1

≤ tfn+ pop − (Cexplore + Cpanic) (18)

In this case, since we go through panic, at this particular
time i − 1 = i?, we can reframe this as a bound on the
“spend”:

Cexplore + Cpanic + (n?exploit)Ti? ≤ tfn+ pop −Bi? .

Because pop −Bi? ≤ (φ− 1)Bi? ≤ (φ− 1)tfn:

Cexplore + Cpanic + (n?exploit)Ti? ≤ φtfn . (19)

The final issue is that Ti? is not necessarily equal to g(Bi?)
(even though Ti? is an estimate of g(Bi?)). The remainder is



similar to Lemma 15. There are two scenarios: either Pi? is
small, and therefore few impressions are left to obtain, or Pi?
is large and Ti? is accurate. Formally, consider γ? = ε+ε1/3.
If Pi? ≤ γ?, then because the expression in Line 27 is true,
n?exploit ≤ nγ?. If Pi? ≥ γ?, then P(Bi?) ≥ γ? − ε, then

substituting γ? for γ in Lemma 7:

g(Bi?) ≤ Ti? +
εb

γ?(γ? − ε) +
ε(b− a)

γ?
(20)

= Ti? +
εb

(ε1/3 + ε)(ε1/3)
+
ε(b− a)

ε+ ε1/3
(21)

≤ Ti? + ε1/3b+ ε2/3(b− a) (22)

≤ Ti? + ε1/3b+ ε2/3b . (23)

Summarizing:

g(Bi?)(n?exploit) ≤ max(γ?nb, (Ti? + ε1/3b+ ε2/3b)fn)

Cexplore + Cpanic + n?exploitg(Bi?) ≤

φtfn+ max(γ?nb, (ε1/3b+ ε2/3b)fn)

Finally, because γ? = ε + ε1/3, and f ≤ 1, the result fol-
lows.

Lemma 18. If, during the Panic() algorithm, a bid of
Bi?+1 is the highest bid that is actually made, the problem is
feasible after exploration, and the algorithm has ε-accurate
observations, then C ≤ fn(tφ+ εb).

Proof. During exploitation, the algorithm bids no more
than Bi? , so the expected price per impression is no more
than g(Bi?). This is the easy part: the hard part is bound-
ing the spend during exploration and panic. Define b? =
min(Bi?+1, b) which is the largest effective bid during pan-
icking. How many impressions need to obtained before the
algorithm realizes it can bid Bi? for the remainder? For-
mally, this is:

max #big bids won = fn− (P(Bi?)− ε)(n−mr)

= fn

„
1− (P(Bi?)− ε)(n−mr)

fn

«
= fn

„
1− (P(Bi?)− ε)

γ

«
= fn

„
γ − (P(Bi?)− ε)

γ

«
Cpanic + Cexploit ≤ fn

„
γ − (P(Bi?)− ε)

γ

«
b?

In other words, the maximum fraction of bids won dur-

ing exploration and panic is
ε+γ−P(Bi? )

γ
. Note that if the

algorithm were to bid P−1(γ) ≤ p?, then in expectation
γ−P(Bi? )

γ
bids would be Bi? or above. Therefore, if the

problem is feasible after exploration:

t = g(p?)

≥ g(P−1(γ))

≥ γ − P(Bi?)

γ
Bi? +

P(Bi?)

γ
g(Bi?)

tφ ≥ γ − P(Bi?)

γ
Bi?φ+

P(Bi?)

γ
g(Bi?)

≥ γ − P(Bi?)

γ
b? +

P(Bi?)

γ
g(Bi?)

tφ+ εb? ≥ γ − P(Bi?)

γ
b? + εb? +

P(Bi?)

γ
g(Bi?)

≥ ε+ γ − P(Bi?)

γ
b? +

P(Bi?)

γ
g(Bi?)

fn(tφ+ εb) ≥ Cexplore + Cpanic + E[Cexploit|E1 . . . Em′ ]] .

The last line is due to the fact that b? is a bound on the
price during exploration and panic, g(Bi?) is a bound on
the expected price during exploitation, and the worst-case
scenario is to have the maximum number of bids during the
exploration and panic phases.

Lemma 19. If the largest panic bid is Bi? , during ex-
ploitation ks < kp (such that the bid during exploitation is
based upon the target spend t), the problem is feasible after
exploration, and the algorithm has ε-accurate observations,
then C ≤ tfn+ (ε1/3 + ε2/3)bn.

Proof Sketch. This scenario is rare, in that it implies
that the algorithm panicked, but then somehow the budget
recovered. One possibility is that a very high but unlikely
bid was obtained, followed by small but unlikely bids.

Since the last round is ε-accurate, the argument is similar
to Lemma 15.

Lemma 20. If the largest panic bid is Bi? , during ex-
ploitation ks ≥ kp (such that the bid during exploitation is
based upon the target number of impressions), the problem is
feasible after exploration, and the algorithm has ε-accurate
observations, then C ≤ φtfn+ εnb.

Proof Sketch. In this case, we know that P(Bi?−1) ≤
γ + ε, and for however long we are exploring and panicking,
we know that Bi?−1 is not expected to give us enough im-
pressions, just as with Bi? in Lemma 18. If the exploitation
bid B was less than or equal to Bi?−1 (e.g., due to a change
in the estimation from Si?−1 to Si?), then the analysis from
Lemma 18 holds, with i? − 1 replacing i?. If B > Bi?−1,
we know that all the bids we obtained during exploration
and panicking were not enough, and during the exploitation
phase, we choose a bid such that we get just enough impres-
sions above Bi?−1. Thus, these impressions above Bi?−1

during exploitation and the impressions during exploration
and panicking are almost exactly enough such that bidding
Bi?−1 during exploitation would have won the remainder.
Therefore, an argument similar to Lemma 18 gives a similar
result.

Lemma 21. If the algorithm exits the exploration phase
at Line 24, the algorithm has ε-accurate observations, the
problem is feasible after exploration, and kp < ks, then C ≤
φtfn+ (ε1/3 + ε2/3)nb.



Proof. This is similar to Lemma 17, in that the algo-
rithm does not have more than one impression that is over-
priced (note that the last impression won during exploration
may be overpriced). Therefore, with the exception that
i∗ = i, a variant of Equation 19 holds here.

Cexplore + Cpanic + (n?exploit)Ti?−1 ≤ φtfn . (24)

If Bfinal ≤ Bi?−1, then the argument from Lemma 17 holds,
in that the algorithm might has well of panicked.

If Bfinal > Bi?−1, then the algorithm might as well have
panicked: the key condition (that it needs more impressions
that it believes will be obtained by Bi?−1) is satisfied at
the end of the exploration phase, which is loosely what is
required in Lemma 20. Note that the bound in Lemma 17
is looser than the bound in Lemma 20.

Unfortunately, there are several cases where the algorithm
underspends. For instance, suppose that the objective is to
obtain a very small number of impressions at a very high
price. For instance, 10% of the impressions are at $11.00,
and 90% are at $1.00, and the target spend is $2.00, and the
algorithm wants 1% of the impressions. Therefore, bidding
$11.00 is ideal. However, if the algorithm starts by bid-
ding $2.00, it is possible that before the exploration phase
is over, the algorithm obtains enough impressions, but has
only spent half the budget. Of course, in this case, the algo-
rithm which starts by bidding b to explore is doing just the
right thing.
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Figure 1: The observed and modeled distribution of
the winning bid on the Right Media exchange.

4. EXPERIMENTS
In this section we evaluate our algorithms on syntheti-

cally derived data drawn from a log-normal distribution,
which fits data observed from the Right Media exchange.
Algorithms for the fully observable case are evaluated in
Section 4.2, and the partially observable case in Section 4.3.

4.1 Methodology and Data
To evaluate our algorithms, we collected winning bids

from live auctions run on the Right Media exchange, which
has over 50,000 buyers and sellers and processes over 6 bil-
lion impressions daily. The bids we collected represent a
1% uniform sample across a variety of individual publish-
ers. Focusing on a single publisher, we plot the CDF of the
empirical distribution of the bids in Figure 1.

While it is difficult to predict the winning bid on any
particular impression, for a fixed publisher the data can be
fitted with a log-normal distribution with the appropriate
mean and variance. In Figure 1 we provide such a fit for
a single publisher (350,000 auctions total). While the ex-
act variance changes from publisher to publisher, on all in-
stances the data can be fitted well with a log-normal distri-
bution.

Based on the above fit, we sample i.i.d. from a log-normal
distribution with mean and variance one.8 While very large
prices are never observed on the exchange, the log-normal
distribution supports arbitrarily large prices. We deal with
this by discarding samples larger than an upper-limit b, cho-
sen to be the 99.7th percentile. That is, we sample from the
log-normal distribution conditioned on {X ≤ b}.

We set the supply to be n = 10, 000 impressions. To eval-
uate each algorithm we choose 16 evenly spaced values of
target f and target t from the interval (0, 1), and measure
the actual fraction and spend against the targets (we in-
clude only 4 data points each for clarity). For each of the
256 parameter settings, we run each algorithm on 500 i.i.d.
samples to average out effects of sampling.

4.2 Results: Fully Observable Exchange
The Learn-Then-Bid algorithm waits for a significant ex-

ploration period before bidding. An obvious improvement
is the Learn-While-Bid algorithm which continues to learn
during exploitation: Pm, P ?m, Am and Z?m are updated after
each bid, as in Learn-Then-Bid lines 2–5 but with adaptive
targets. Although harder to analyze, this has the advantage
of a possibly shorter exploration phase without compromis-
ing estimation accuracy. We compare the performance of
these two algorithms experimentally: on average both algo-
rithms perform very close to ideal. However, Learn-While-
Bid spending is more tightly concentrated around the ideal
than Learn-Then-Bid for the same exploration phase.

Figures 2 and 3 show the spending of Learn-Then-Bid
and Learn-While-Bid respectively. The dotted lines depict
the minimum spending necessary to achieve the target frac-
tion of supply as given by max{E [X |X ≤ z?] , t}: when the
fraction and spend goals cannot simultaneously be satisfied,
both algorithms prioritize the former while minimizing over
spending. The distribution of each algorithm’s spending, for
each (f, t) pair, is summarized by a box-and-whisker plot:
each box depicts the 25%, 50% (the median) and 75% quan-
tiles representing the spread of spending. As is evident in the
figures, more runs of Learn-While-Bid have spend close to
the ideal. To achieve comparable concentration with Learn-
Then-Bid, m must be increased. However this can lead to
infeasibility for high f (e.g. for m = 1, 000 and f = 0.94 the
problem becomes infeasible leading to underdelivery). Fig-
ure 4 plots the performance of the algorithms with respect
to supply. Both algorithms win close to the target fraction
of supply for a wide range of target spending goals.

Figure 5 compares theory and practice, depicting our bounds
on the concentration of the fraction of supply won and the
spending per impression won, with respect to increasing ex-
ploration length. As exploration increases, the bounds be-
come tighter but at the same time the problem becomes

8We note that increasing the variance of the log-normal
distribution does not affect our algorithms’ behavior; they
deliver the same supply and actually overspend less (since
there is a larger fraction of lower-priced impressions).
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Figure 2: Actual & ideal spend per impression won
by Learn-Then-Bid with m = 100 for 4 values of f .
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Figure 3: Actual & ideal spend per impression won
by Learn-While-Bid with m = 100 for 4 values of f .
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Figure 4: Fraction of supply won by Learn-Then-Bid
and Learn-While-Bid with m = 100 for 4 values of t.
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Figure 5: Learn-Then-Bid supply and spend 95%
confidence bands given by: the concentration
bounds, and 1,000-sample empirical quantiles.

harder to satisfy until it becomes infeasible (occurring at
the maximum m shown). Also shown are empirical results
for running Learn-Then-Bid. In particular for each m value
(exploration phase length), Learn-Then-Bid was run 1, 000
times. For each run the fraction won during exploitation,
and the spend per impression won, were calculated and the
95% two-sided quantiles were computed and overlayed. In
this case the distribution-free theory matches the empirical
results well, particularly for concentration of fraction won.

4.3 Results: Partially Observable Exchange
In this section we evaluate algorithms for bidding in a

partially observable exchange. The Guess-Double-Panic al-

gorithm outperforms the strawman bidders in terms of tar-
get spend for a wide range of target supply fractions. More
interestingly, the lack of full information does not handicap
the Guess-Double-Panic algorithm: the accuracy of supply
and spend are very close to those for full information.

Figures 6 and 7 plot the supply and spend for Guess-
Double-Panic as well as two strawman algorithms, Max-
Then-Bid and Bid-Two-t. Given that Learn-Then-Bid per-
forms well even for very short exploration phases, it is natu-
ral to apply the same idea in the partially observable setting:
Max-Then-Bid bids b in the length m exploration phase and
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Figure 6: Fraction of supply won by Bid-Two-t, Max-
Then-Bid and Guess-Double-Panic with m = 100 for
4 values of t.
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Figure 7: Spend per impression won by Bid-Two-
t, Max-Then-Bid and Guess-Double-Panic with m =
100 for 4 values of f .

then exploits based on the empirical distribution.9

While Max-Then-Bid performs well on supply it is an in-
ferior strategy for target spend, since the spending during
exploration can be very high: specifically when f and t are
both small the algorithm must acquire the right number of
impressions at a low price, and Max-Then-Bid is very likely
to overspend. Guess-Double-Panic will perform well pre-
cisely in this setting due to its more cautious exploration
starting with a bid of t as opposed to b. This comparison
is borne out in Figure 7 where Max-Then-Bid overspends
most dramatically relative to Guess-Double-Panic for the
lowest target fraction f = 0.059; overspending is evident for
higher values up to f = 0.59. The Bid-Two-t strawman al-
gorithm does not perform much better than expected from
theory, which predicts supply and spend within only a loose
multiplicative factor of the targets.

5. CONCLUSIONS
We study the problem of acquiring a given number of im-

pressions with a given budget constraint by bidding against
an unknown distribution. Our approach consists of learning
the distribution in an exploration phase, and then bidding
according to the empirical distribution from observations
during exploration. We consider both the fully observable
and the harder partially observable case, and present al-
gorithms with theoretical performance guarantees that also
perform very well in experimental evaluations against re-
alistic data. The experiments indicate that in addition to
performing well with respect to both constraints, our algo-
rithm for partial information does nearly as well as algo-

9Max-Then-Bid dominates Learn-Then-Bid in number of
impressions acquired despite partial information: Max-
Then-Bid wins every impression during exploration in con-
trast to Learn-Then-Bid which wins zero. Also, if the prob-
lem is feasible after Learn-Then-Bid ’s exploration then it
will be feasible for Max-Then-Bid.

rithms in the full information setting despite the fact that
a cost must be paid for every sample during exploration.
The performance of the algorithms improves as the supply
increases, and is asymptotically optimal since a longer ex-
ploration phase can be used for higher accuracy; also, the
actual number of impressions won and the total spend are
more tightly concentrated around their means as n increases.

The most interesting direction for further research is re-
moving the iid assumption, and considering a game theo-
retic perspective: we assume that every other bidder in each
individual auction has unit demand and therefore bids his
value; one can instead consider best response and equilib-
rium analysis when a number of bidding agents compete in
such a marketplace.
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