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ABSTRACT
Spearman’s footrule and Kendall’s tau are two well estab-
lished distances between rankings. They, however, fail to
take into account concepts crucial to evaluating a result set
in information retrieval: element relevance and positional
information. That is, changing the rank of a highly-relevant
document should result in a higher penalty than changing
the rank of an irrelevant document; a similar logic holds for
the top versus the bottom of the result ordering. In this
work, we extend both of these metrics to those with posi-
tion and element weights, and show that a variant of the
Diaconis–Graham inequality still holds — the generalized
two measures remain within a constant factor of each other
for all permutations.

We continue by extending the element weights into a dis-
tance metric between elements. For example, in search eval-
uation, swapping the order of two nearly duplicate results
should result in little penalty, even if these two are highly
relevant and appear at the top of the list. We extend the
distance measures to this more general case and show that
they remain within a constant factor of each other.

We conclude by conducting simple experiments on web
search data with the proposed measures. Our experiments
show that the weighted generalizations are more robust and
consistent with each other than their unweighted counter-
parts.

Categories and Subject Descriptors. H.3.m [Informa-
tion Storage and Retrieval]: Miscellaneous

General Terms. Algorithms, Experimentation, Theory

Keywords. Permutation distances, Kendall tau, Spearman
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1. INTRODUCTION
The study of metrics for information retrieval is as old

as the field itself, after all, it is impossible to evaluate a
result without some sort of a measure. There are dozens of
different metrics used in the literature, from classical ones
like Kendall’s tau and Spearman’s footrule, neoclassical ones
like MAP and NDCG, and much newer propositions, for
example, rank distance [4], ERR [5], and others [1, 7, 21].
The preponderance of measures leads to a natural second
order question: how does one measure the measures?
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Evaluating metrics is indeed a difficult problem. There
have been two approaches generally taken by the commu-
nity. The first is axiomatic. Here the approach is to estab-
lish basic properties that the metric should obey, and then
derive a measure that satisfies these properties. Kendall’s
tau and Spearman’s footrule serve as leading examples of
this approach; a general version of DCG can also be seen in
this light, if the axioms talk about a decreasing importance
with rank and relevance.

A different approach is to exhibit a problem with one of
the standard and accepted metrics, and propose a variation
that fixes the problem. The new metric is then shown to
generally correlate well with the old metric, except for the
problematic examples, where it performs significantly bet-
ter. Overtime, variations on these variations are introduced,
and we are left with dozens of metrics to chose from and re-
port in experimental evaluations.

In this paper we take an axiomatic approach. We argue
that there are several criteria that any modern evaluation
metric should satisfy. We describe these in turn.

(1) Richness. By now it has become evident that there
are three important factors to keep in mind when comput-
ing the distance between two orderings. The metric should
support element weights, which represent the relevance of a
particular document or result to the query. Intuitively, an
error on a high-weight element should be more significant
than an error on a low-weight element. In a similar vein,
the position of the element in the list plays a large role with
respect to the efficacy of the metric: errors at the top of
the list are costlier than errors at the tail of the list, and
any new metric should be reflective of this fact. Finally, di-
versity, and, more generally, interaction between results has
been recognized as an important part of result evaluation.
For example, returning five identical results may not lead to
high user satisfaction even if individually each one of those
results is extremely relevant.

(2) Simplicity. One of the reasons metrics like Kendall’s
tau remain prominent, even when their shortfalls have been
widely recognized, is their inherent simplicity. It is natural
to count the total number of inversions, or look at the total
`1 distance, as in the case of Spearman’s Footrule. However,
as the metrics get richer, this simplicity is often lost. Even
the authors themselves lament that their new “measure is
not intuitive” [4].

(3) Generalization. Notwithstanding the richness criteria,
any proposed metric should collapse to a natural metric in
cases where the richer criteria do not play a role. For exam-
ple if all of the element weights are set to 1, or all pairwise



interactions are the same, the metric should simplify to one
of the classic and well-known metrics. In this sense, the new
metric must generalize already existing metrics.

(4) Basic properties. The proposed evaluation measure
should satisfy some basic properties that make it easier to
reason about. For example, it should be scale-free: that
is scaling all of the weights by a the same constant factor
should not change the solution. It should be invariant under
relabeling of the elements, and, ideally, should follow the
triangle inequality: for two permutations σ and τ , the metric
M should satisfy M(σ, τ) ≤M(σ) +M(τ).

(5) Correlation with other metrics. Finally, a suite of met-
rics all capturing the same effect in different ways is much
more powerful than a single new metric. Typically, all of
these measures have good intuition underlying them, how-
ever the formal statement for the intuition takes on different
forms. Therefore if two metrics are trying to capture the
same effect, but disagree greatly on some of the examples,
it typically implies that neither is fully capturing the effect
in question. One of the best examples of this kind of corre-
lation is the fact that while Kendall’s tau and Spearman’s
footrule take very different ways of measuring distances be-
tween permutations, Diaconis and Graham [9] showed that
the two measures are equivalent up to a factor of 2. The
correlation also gives freedom when trying to build on top
of these metrics. As we illustrate in Section 5 sometimes
solving the problem with respect to one optimization met-
ric is NP-hard, while using an equivalent metric leads to a
polynomial time solution.

1.1 Our contributions
In this work we enrich the space measured by Spear-

man’s footrule and Kendall’s tau to satisfy the first con-
dition above. We give new formulations of these metrics
that capture element weights, position weights, and pair-
wise distances between permutations, while at the same time
retaining their classical form. The generalized footrule dis-
tance can be seen as an `1 distance on the right metric space,
and the generalized Kendall’s tau has a term for every in-
verted pair. We show that even though they take on very
different forms, the generalized versions of these two metrics
remain within a factor of three of each other, and collapse to
their classical variants when all of the weights and pairwise
distances are set to 1.

2. RELATED WORK
The subject of distances between permutations (or ranked

lists) has a rich and long history. Perhaps the two most pop-
ular measure are Spearman’s footrule distance [20], which
measures the `1 distance between ranks and Kendall’s tau [15],
which measures the total number of pairwise inversions. In
a celebrated result, Diaconis and Graham [9] showed that
these two measures are always within a factor of two from
each other. See the book by Diaconis [8] for discussions on
other metrics on permutations.

In the context of web information retrieval many new mea-
sures have been developed over the years. Average precision
(AP) and reciprocal rank (RR) are two popular metrics that
can be seen as distances on permutations of binary strings
(where each document is marked to be either relevant or
not relevant). To quantify the importance of the top few
positions over the bottom ranks, the set of measures was ex-
panded to compare only the top-k rankings, for a given value

of the cut-off k [12]. More generally, a metric like NDCG [14]
uses a scoring function that decays with the rank of the doc-
ument. Recently Yilmaz et al. [21] and Carterette [4] argued
that the lack of this feature makes Kendall’s tau is a poor
metric because, because it penalizes equally inversions near
the head and near the tail of a list. In a new take on a diffi-
cult related problem, D’Alberto and Dasdan [7] address the
sparsity issue often prevalent in web result evaluation and
describe distance measures on incomplete permutations; see
also [3, 11].

In addition to decreasing with the rank, NDCG also com-
bines the relevance (or weight) of the document into the final
score. This variant has been considered in the statistics liter-
ature as well. For example Shieh et al. [18, 19] give a version
of Kendall’s tau distance, where every inversion is weighted
in proportion to the product of the two element weights.
However, this work does not focus on its “metric”-like prop-
erties. In fact, [18] work with a generalization of Spearman
rho (a L2 version of footrule) that takes position weights
into account. Once again, there is no formal analysis of its
properties (or its relationship to a Kendall variant). Sculley
[17] proposed extending Kendall’s tau to incorporate item-
item similarity using a notion of “similarity projections”; his
extension, however, does not appear amenable to our anal-
ysis.

A growing area of research has recently focused on incor-
porating diversity into search metrics. The cascade model
[6], and the follow up work by Agrawal et al. [1] and Chapelle
et al. [5] show that earlier results have a profound effect
on the perceived relevance of results further in the list and
present several new metrics to take that into account.

A different strand of research uses distances between per-
mutations to solve the rank aggregation problem: given a
number of different orderings of results, find the most agree-
able ordering. This problem has been extensively studied by
Dwork et al. [10] and Fagin et al. [13], and has a close rela-
tion to the Feedback Arc Set (FAS) problem on tournament
graphs [2, 16].

3. BASIC DEFINITIONS
Let [n] = {1, . . . , n} be a universe of elements. Let Sn

be the set of permutations on [n] and for σ ∈ Sn, let σ(i)
denote the rank of the element i.

There are two well-known metrics that evaluate the dis-
tance between two permutations σ, τ ∈ Sn: the Spearman’s
footrule distance F (σ, τ) and the Kendall’s tau K(σ, τ). Be-
fore we state the definitions, we note that these metrics do
not depend on the actual identity of elements (such met-
rics are called invariant). Hence, it suffices to consider
F (σ) = F (σ, 1) and K(σ) = K(σ, 1), where 1 is the identity
permutation. Now we proceed with the formal definitions.

(1) The Spearman’s footrule distance is given by

F (σ) =
∑
i

|i− σ(i)|; (1)

this measures the total element-wise displacement from the
identity permutation.

(2) The Kendall’s tau is given by

K(σ) =
∑

(i,j):i>j

[σ(i) < σ(j)] ; (2)

this measures the total number of pairwise inversions.



In a celebrated result, Diaconis and Graham [9] showed1

that these metrics differ by at most a constant factor (such
pair of metrics are said to be equivalent).

Theorem 1 (Diaconis–Graham (DG) inequality).
For all σ ∈ Sn, K(σ) ≤ F (σ) ≤ 2K(σ).

This inequality is in fact tight.
All the metrics we will define in the paper are invari-

ant metrics. Note that if M is an invariant metric on Sn,
then M is symmetric provided ∀σ,M(σ) = M(σ−1). In-
deed, M(σ, τ) = M(στ−1) = M((στ−1)−1) = M(τσ−1) =
M(τ, σ), where the first and last equalities follow from in-
variance and the second equality follows from the premise.
Also, to make our exposition simpler, we will not normalize
our metrics to be in [0, 1] or [−1, 1].

3.1 Element weights
For i ∈ [n], let wi > 0 be the weight of an element ; let

w = w1, . . . , wn. For the remainder of the paper, we assume
that the weights are integral, i.e., wi ∈ Z+; all of the results,
however, follow for non-integral weights as well.

There are many ways to define a weighted analog of Kendall’s
tau (Kw) and Spearman’s footrule (Fw). For example, to
define Kw, one can stipulate that an inversion of elements
i and j should have a penalty proportional to some aver-

age of their weights, say
wi+wj

2
, or to their product, wiwj .

Alternatively, one may define Fw where each displacement
is scaled by the weight of the element i that is displaced,
say, wi|i−σ(i)|. We strive to find a variant of Kendall’s tau
and Spearman’s footrule so that the measures continue to
be equivalent, up to a small constant factor.

We define the weighted version Kw of Kendall’s tau by
penalizing each inversion proportionally to the product of
the weights of the two elements being inverted:

Kw(σ) =
∑
i>j

wiwj [σ(i) < σ(j)] . (3)

The weighted footrule Fw is defined to be:

Fw(σ) =
∑
i

wi

∣∣∣∣∣∣
∑
j:j≤i

wj −
∑

j:σ(j)≤σ(i)

wj

∣∣∣∣∣∣ . (4)

The inner term measures the sum of weights of elements
that span the displacement of element i.

Note that if all of the weights are uniformly unit, (3) and
(4) collapse to (2) and (1) respectively.

Example. Consider the permutation σ([abc]) = [bca], and
let wa = 1, wb = 2, and wc = 3. Then Kw(σ) = 1·2+1·3 = 5
and Fw(σ) = 1 · (2 + 3) + 2 · 1 + 3 · 1 = 10. Notice that in
this case Kw(σ) and Fw(σ) are a factor of 2 apart. As we
will show later, these two metrics are always within a factor
of two of each other.

3.2 Position weights
As we discussed earlier, in addition to element weights, we

wish to define a distance that penalizes inversions early in
the permutation more than inversions late in the permuta-
tion. We therefore introduce position weights to differentiate

1Actually, they show something stronger, but we will not be
concerned about the stronger version.

between inversions occurring near the head or the tail of a
permutation.

In order to study the effect of position weights we first
model the cost of a swap between two adjacent positions.
Let δi, i > 1 be the cost of swapping an element at position
i−1 with an element at position i; let δ = δ2, . . . , δn. In the
traditional version of Kendall and footrule metrics, δi = 1
for all i, and thus all swaps have the same cost. As with
element weights, we assume that δi ≥ 0 for all i. Let p1 = 1
and for 1 < i ≤ n, pi = pi−1 + δi. For notational purposes,
let

p̄i(σ) =
pi − pσ(i)
i− σ(i)

,

be the average cost that i encountered in moving from po-
sition i to position σ(i), where p̄i = 1 if i = σ(i). By the
monotonicity of the pi’s, we have p̄i(σ) > 0 for all i.

We are now ready to define the position weighted versions
Spearman’s footrule (Fδ) and Kendall’s tau (Kδ):

Kδ(σ) =
∑
i<j

p̄i(σ)p̄j(σ) [σ(i) > σ(j)] . (5)

Fδ(σ) =
∑
i

p̄i(σ)

∣∣∣∣∣∣
∑
j:j≤i

p̄j(σ)−
∑

j:σ(j)≤σ(i)

p̄j(σ)

∣∣∣∣∣∣ . (6)

Note that if ∀i, δi = 1, then ∀i, p̄i(σ) = 1. Hence for unit
swap costs, (5) and (6) collapse to (2) and (1) respectively.

Example.. Let σ([abc]) = [bca] as before, and let δ2 =
1, δ3 = 0.5. Then p̄a = 0.75, p̄b = 1, and p̄c = 0.5. We get
Kδ(σ) = 1.125 and Fδ(σ) = 2.25.

3.3 Element similarities
While position weights address the question of swaps oc-

curring near the beginning or an end of a permutation, many
times the importance of the swap crucially depends on the
similarity of the elements being swapped. In an extreme
case, swapping two identical elements should result in no
change to the metric, whereas swapping two radically dif-
ferent elements should result in a large effect, even if the
weights are small and the elements are in adjacent posi-
tions. To formally describe this, we define a distance metric
on elements. Let D : [n]× [n] be a non-empty metric on Sn
and let Dij be the cost of a swap of elements i and j; clearly,
D is a metric and for three elements i, j, k, we have

Dik ≤ Dij +Djk. (7)

The generalization of Kendall’s tau (KD) and Spearman’s
footrule (SD) to incorporate element distances is most ev-
ident in the former, where we scale each inversion by the
distance between the pair of elements inverted.

KD(σ) =
∑
i<j

Dij [σ(i) > σ(j)] . (8)

And, likewise, we define

F ′D(σ) =
∑
i

∣∣∣∣∣∣
∑
j:j≤i

Dij −
∑

j:σ(j)≤σ(i)

Dij

∣∣∣∣∣∣ . (9)



Observe that when D is the unit metric, (8) and (9) col-
lapse to (2) and (1) respectively. Notice that the definition
of F ′D above is asymmetric and we symmetrize it as

FD(σ) =
1

2
(F ′D(σ) + F ′D(σ−1)). (10)

3.4 The general definition
Finally, we can combine element weights, position weights,

and element similarities into one single definition.

Definition 2 (Generalized Kendall’s tau). Given
w, δ,D, for σ ∈ Sn, let

K∗ = Kw,δ,D(σ) =
∑
i<j

wiwj p̄ip̄jDij [σ(i) > σ(j)] . (11)

Definition 3 (Generalized Spearman’s footrule).
Given w, δ,D, for σ ∈ Sn, let

F ′∗ = F ′w,δ,D(σ) =
∑
i

wip̄i(σ)

·

∣∣∣∣∣∣
∑
j:j≤i

wj p̄j(σ)Dij −
∑

j:σ(j)≤σ(i)

wj p̄j(σ)Dij

∣∣∣∣∣∣ . (12)

The above footrule version can be symmetrized as before
and from now on, we will only work with the symmetric
version F ∗.

4. PROPERTIES

4.1 Basic characteristics
We first show a reduction from the element-weighted case

to the unweighted case.

Lemma 4. Given w, for any σ, there is a τ such that
Kw(σ) = K(τ) and Fw(σ) = F (τ).

Proof. Recall that all of the weights are assumed to be
integral. Therefore we can divide an element i of weight
wi > 0 into wi sub-elements i′1, . . . , i

′
wi

, each of weight
1. Consider a permutation τ that keeps all of the sub-
elements in the same order, but reorders these blocks based
on σ. Formally, τ(i′k) = k +

∑
j:σ(j)<σ(i). (For example,

if σ([abc]) = ([bca]) and wa = 1, wb = 2, wc = 3, then the
corresponding τ is: τ([a′1b

′
1b
′
2c
′
1c
′
2c
′
3]) = [b′1b

′
2c
′
1c
′
2c
′
3a
′
1]).) In

what follows, denote by pos(i) =
∑
j:j<i wj .

First, consider the set of inversions produced by σ. Each
inversion 〈i, j〉 in σ results in wi · wj inversions in τ , since
every sub-element of i is inverted with every sub-element of
j. This implies that Kw(σ) = K(τ). In addition,

F (τ) =
∑
i

wi∑
j=1

|pos(i) + k − (k +
∑

j:σ(j)<σ(i)

wj)|

=
∑
i

wi∑
j=1

|pos(i)−
∑

j:σ(j)<σ(i)

wj |

=
∑
i

wi|pos(i)−
∑

j:σ(j)<σ(i)

wj |

= Fw(σ).

Next we show how to transform the position weight case into
an element weight case.

Lemma 5. Given δ, for any σ, there is a w such that
Kδ(σ) = Kw(σ) and Fδ(σ) = Fw(σ).

Proof. Fix σ and let wi = p̄i(σ). Then, from (5) and
(3), we have Kδ(σ) = Kw(σ). Likewise, from (6) and (4),
we have Fδ(σ) = Fw(σ). It is important to note that the ele-
ment weights here are not oblivious — they actually depend
on the permutation σ that is being considered.

Finally we show that the metrics are scale invariant.

Lemma 6. Given w, δ, and a metric D, let w′ = c1 · w,
δ′ = c2 · δ, and D′ = c3 ·D for some constants c1, c2, c3 > 0.
Then for any σ, Kw′,δ′,D′(σ) = c·Kw,δ,D(σ) and Fw′,δ′,D′(σ) =
Fw,δ,D(σ), where c = c21c

2
2c3.

4.2 Metric properties
It is easy to see that both K∗ and F ∗ do not depend

on the actual identity of the elements, as long as relabeling
an element affects neither its weight nor its similarity to
other elements. Hence, these are invariant distances. Since
we assume w > 0, δ > 0, and D to a non-empty metric,
K∗(σ) = 0 = F ∗(σ) if and only if σ = 1. Furthermore,
by our definition, we have K∗(σ) = K∗(σ−1) and F ∗(σ) =
F ∗(σ−1). This guarantees symmetry.

For triangle inequality, notice that Lemma 4 and Lemma
5 show that Kw, Fw,Kδ, Fδ satisfy the triangle inequality. It
only remains to show the triangle inequality for the element
similarity case, i.e., KD and FD also satisfy the triangle
inequality.

First, we consider the element similarity version of Kendall’s
tau. Interestingly, the proof does not use the metric prop-
erty of D.

Lemma 7. Given D, for all σ, τ , KD(σ, τ) ≤ KD(σ) +
KD(τ).

Proof. We will use (8) and show that the triangle in-
equality holds point-wise. Indeed, consider a pair 〈i, j〉 of
inversions between σ and τ . Without loss of generality, let
σ(i) > σ(j) and τ(j) < τ(i). If i < j, then, 〈i, j〉 is inverted
in σ and if i > j, then 〈i, j〉 is inverted in τ .

We next prove that the Spearman footrule with element
similarities satisfies the triangle inequality. Interestingly, the
triangle inequality is not satisfied point-wise, i.e., it is easy
to construct examples such that for each fixed i, the term
in (12) fails to satisfy the triangle inequality. Unlike the
Kendall tau case, this proof crucially uses the fact that D is
a metric (otherwise, there are simple counter-examples).

Lemma 8. Given a metric D, for all σ, τ , FD(σ, τ) ≤
FD(σ) + FD(τ).

Proof. Recall that our goal is to prove that for two per-
mutations σ, τ , FD(σ, τ) ≤ FD(σ) + FD(τ). We will do that
by examining the occurrences of a specific Dij on both the
LHS and RHS of the desired inequality.

First, we define an unordered interval I(a, b) to be [a, b] if
a < b and [b, a] otherwise. We define the box of an element
i with respect to σ, τ ∈ Sn to be the multi-set

boxσ,τ (i) ={j : σ(j) ∈ I(σ(i), τ(i))} ∪
{j : τ(j) ∈ I(σ(i), τ(i))},

where the union is a multi-set union (the multiplicity of each
element is at most 2). If τ = 1, we simply abbreviate it as
boxσ(i).



Informally, boxσ(i) consists of all the elements that do not
cancel out in the inner summation in (9), for a fixed i. In
fact, each occurrence of Dij in the expression for FD(σ) is
the sum of the multiplicity of j in boxσ(i) and the multiplic-
ity of i in boxσ(j). Moreover, it is easy to verify that if 〈i, j〉
is inverted between σ and τ , then boxσ(i) ∩ boxσ(j) 6= ∅.
Note that the converse of this statement is not necessarily
true.

Now, consider a specific Dij . We first claim that in any
expression for FD(σ, τ), the term Dij can occur 0, 2, 3, or
4 times. Clearly if boxσ,τ (i) ∩ boxσ,τ (j) = ∅, then the term
Dij never occurs. If σ(i) = τ(j) and τ(i) = σ(j), then it
can be seen that Dij occurs four times. If only one of these
conditions is satisfied, then Dij occurs thrice and if neither is
satisfied, but the boxes of i and j intersect, then Dij occurs
twice. Our goal now is to show that each occurrence of Dij
on the LHS is matched by an occurrence of value Dij or
more on the RHS.

SupposeDij occurs twice on the LHS. If boxσ(i)∩boxσ(j) 6=
∅, then we will have at least two occurrences of Dij on
the RHS. If boxσ(i) ∩ boxσ(j) = ∅, then it follows that
〈i, j〉 is not inverted in σ. In this case, one can check that
boxτ (i) ∩ boxτ (j) 6= ∅, yielding at least two occurrences of
Dij on the RHS. Note that in the latter case, 〈i, j〉 need not
be inverted in τ , but the boxes will intersect.

Suppose Dij occurs thrice on the LHS. While the analy-
sis for the two occurrence case can still be applied here to
match two occurrences of Dij , we still need to account for
the third occurrence of Dij . Now observe that there is some
k such that σ(i) = k = τ(j) (the case when σ(j) = k = τ(i)
is similar). It follows i ∈ boxσ(k) and j ∈ boxτ (k). There-
fore, both the terms Dik and Dkj will occur on the RHS.
(Note that these terms cannot “claimed” elsewhere since k is
uniquely defined by both i and j.) By the triangle inequality
(7), we can account for the third occurrence of Dij on the
LHS by the term Dik +Dkj ≥ Dij on the RHS.

The case whenDij occurs four times on the LHS is similar.
We will have σ(i) = k1 = τ(j) and σ(j) = k2 = τ(i) and the
triangle inequality (7) has to be applied twice.

4.3 Equivalence
In this section our goal is establish the equivalence rela-

tionship between F ∗ and K∗. We proceed to do this by a se-
ries of reductions. We first show that the Diaconis–Graham
inequality holds “as is” between Kw and Fw and between Kδ

and Fδ.
In the case of element weights, we show that Kw and Fw

are equivalent up to a factor of 2.

Theorem 9. For all σ and w, Kw(σ) ≤ Fw(σ) ≤ 2Kw(σ).

Proof. This follows from the reduction in Lemma 4 and
then applying Theorem 1.

Next, we show that Kδ and Fδ are equivalent up to a
factor of 2.

Theorem 10. For all σ and δ, Kδ(σ) ≤ Fδ(σ) ≤ 2Kδ(σ).

Proof. This follows from Lemma 5 and then applying
Theorem 9.

Moreover, the factor of 2 is the best possible. Consider a
three element unweighted example, σ([abc]) = [bca]. Then
the footrule distance is 4, while Kendall’s tau is 2.

In the case of element similarities, recall that for any two
elements i and j the cost of inverting these two elements is
Dij . We show that the KD and FD differ by at most a factor
of 3 from each other.

We begin with a simple classification of the inversions in
KD.

(1) Type I: an inversion 〈i, j〉 is a type I inversion if σ(j) ∈
[i, σ(i)] or σ(i) ∈ [j, σ(j)]. Note that in this case the term
Dij appears both in the calculation of Kendall’s tau and in
Spearman’s footrule.

(2) Type II: an inversion 〈i, j〉 is a type II inversion if
σ(j) < i < j < σ(i). In this case the term Dij appears in
the expression for KD but not in FD.

We now develop a notion of a valid mapping that will be
helpful. Let Bi be the set of elements that form inversions
of type II with i: Bi = {j : σ(j) < i < j < σ(i)}. These
are the bad elements for i. On the other hand, for a given
i, consider the elements Gi = {k : σ(k) ≥ i}. These are the
good elements, and we will map each bad element j ∈ Bi to
one good element k ∈ Gi.

Definition 11. A mapping µ : ∪iBi → ∪iGi is valid if
the following four properties hold:

(a) ∀i, j, j′ ∈ Bi µi(j) 6= µi(j
′),

(b) ∀i, i′, j ∈ Bi ∩Bi′ µi(j) 6= µi′(j),

(c) ∀i, j ∈ Bi σ(µi(j)) ∈ [i, σ(i)), and

(d) ∀i, j ∈ Bi σ(µi(j)) ∈ [j, σ(j)).

We emphasize that the mapping µ is different for each per-
mutation σ.

We now proceed to define a mapping µ and prove that it
is valid. Let Bi and Gi as before, and let βi(j) = |{j′ ∈
Bi, j

′ < j}|, i.e., the number of elements j′ in Bi that pre-
cede j. Similarly, let γi(k) = {k′ ∈ Gi, σ(k′) < σ(k)}, i.e.,
the number of elements in Gi that precede k. We define the
mapping µ as:

µi(j) = {k : βi(j) = γi(k)}.

Lemma 12. The mapping µ is valid.

Proof. To show property (a), fix i and consider j, j′ ∈
Bi. Since the elements j and j′ have different βi, µi(j) 6=
µi(j

′). For properties (c) and (d), observe that for all k ∈ Gi,
k > i > σ(j). On the other hand, by definition of βi and γi,
σi(j) ≤ j. Therefore σi(j) ≤ j < σ(i).

It remains to prove property (b). Consider i, i′ with i > i′

and an element j so that j ∈ Bi and j ∈ Bi′ . We claim that
µi(j) 6= µi′(j). Suppose by contradiction that the two were
equal. Then, there is some element k = µi(j) = µi′(j), and
therefore βi(j) = γi(k) and βi′(j) = γi′(k). Equivalently,
βi′(j)− βi(j) = γi′(k)− γi(k). From the definition of γi, we
can conclude that γi′(k)− γi(k) = i− i′.

On the other hand, we will show that βi′(j)−βi(j) < i−i′,
and hence property (b) holds. In what follows we say that
an element j′ contributes to βi(j) if j′ ∈ Bi and j′ < j.

Consider the elements that contribute to βi′(j). Since
all of these elements are in Bi′ they must lie in the range
of (i′, j). We split this range into three groups: (i′, i), the
element i, and (i, j). To maximize βi′(j), we can assume
that all of the elements from the first group contribute to
it. The total number of such elements is i − i′ − 1. Now
consider the element i that forms the second group. Since
j ∈ Bi∩Bi′ , we know that i′, i < j < σ(i′), σ(i). Since i′ < i



we have i′ < i < σ(i′), and therefore i 6∈ Bi′ . Thus i does
not contribute to βi′(j).

Finally, we show that every element in the third group
that contributes to βi′(j) also contributes to βi(j). There-
fore the contribution is canceled out when looking at the
difference of βi′(j) − βi(j). Formally we must prove that
if j′ ∈ Bi′ ∩ (i, j), then j′ ∈ Bi. To show that any such
j′ ∈ Bi we must show that (i) σ(j′) < i, which follows since
σ(j′) < i′ < i and (ii) i < j′, which is true since j′ ∈ (i, j),
and (iii) j′ < σ(i), which is true since j′ < j < σ(i).

Therefore any element that contributes to βi′(j) but not
to βi(j) must come from the interval (i′, i) and there are at
most i′ − i− 1 such elements.

Now, we are ready to show that the generalized Kendall
tau is never much larger than the Spearman footrule dis-
tance.

Lemma 13. For all σ and metrics D, KD(σ) ≤ 3FD(σ).

Proof. The basic idea is to explicitly map each term of
KD to a term of FD so that no term of FD has more than
three terms of KD mapped to it.

We charge the inversions of different types separately. For
each 〈i, j〉 inversion of type I the Dij term appears both in
KD and in FD.

Now suppose that 〈i, j〉 is an inversion of type II, then the
term Dij appears in KD but not in FD. Since D defines a
metric, by the triangle inequality (7), we can conclude that
for any µi(j),

Dij ≤ Diµi(j) +Dµi(j)j .

Since µ is a valid mapping, property (c) ensures that
µi(j) ∈ (i, σ(i) and thus the term Diµi(j) appears in FD.
Similarly, since µi(j) ∈ (j, σ(j)), the term Dµi(j)j appears
in FD. Thus we have can charge each inversion of type II
to two terms that appear in FD. To complete the proof,
observe that no term in FD can be charged more than three
times: the first time by the inversions of type I, and then
at most twice by the type II inversions. The latter claim
follows from properties (a) and (b) of µ.

Having shown that KD < 3FD, we proceed to showing the
converse. The proof follows the same structure as the proof
of Lemma 13. We begin by categorizing the types of terms
that appear in FD into those that appear in KD as well,
and those that do not. For the latter group, we construct a
mapping ν that maps each term to two inversions in KD so
that no inversion is mapped to at most twice.

We start by dividing all terms that appear in FD(σ) into
two categories.

(1) Type I term: a pair 〈i, j〉 is a term of type I if σ(j) ∈
[i, σ(i)) and j > i. Then 〈i, j〉 form an inversion and the
term Dij appears both in FD and in KD.

(2) Type II term: a pair 〈i, j〉 is a term of type II if σ(j) ∈
[i, σ(i)) and j < i. Then the term Dij appears in FD but
does not appear in KD since i and j are

We will map each term of type II to a pair of inversions.
To define the mapping, let Pi = {j : j < i ≤ σ(j) < σ(i)}
(these are the items that form type II terms with i) and
Qi = {k : σ(k) ≤ i < k}.

Definition 14. A mapping ν : ∪iPi → ∪iQi is valid if
it satisfies the following four properties:

(a) ∀i, j, j′ ∈ Pi νi(j) 6= νi(j
′).

(b) ∀i, i′, j ∈ Pi ∩ Pi′ νi(j) 6= νi′(j).

(c) ∀i, j ∈ Pi i and νi(j) form an inversion.

(d) ∀i, j ∈ Pi j and νi(j) form an inversion.

As before, we construct a mapping ν and prove that it is
a valid mapping. Let Pi and Qi as above. For an element
j ∈ Pi denote by πi(j) = |{j′ ∈ Pi : i ≤ σ(j′) < σ(j)}| the
number of elements in Pi that precede σ(j). For an element
k ∈ Qi denote by ξi(k) = |{k′ ∈ Qi|k′ < k}|. We define the
mapping ν as

νi(j) = {k : πi(j) = ξi(k)}.

Lemma 15. The mapping ν is valid.

Proof. To show property (a), fix i and consider j, j′ ∈
Qi. Sine j and j′ have different πi values, νi(j) 6= νi′(j).

Now consider i, i′ with i > i′ and an element j ∈ Qi∩Qi′ .
We claim that νi(j) 6= νi′(j). Suppose otherwise, and let
k = νi(j) = νi′(j). Then πi′(j) − πi(j) = ξi′(k) − ξi(k).
From the definition of π, we have that πi′(j)−πi(j) = i− i′.

On the other hand, consider the maximum value of ξi′(k)−
ξi(k). The elements that contribute to ξi(k) can be divided
into three groups. Those in the interval (i, i′), the element i′

and those in the interval (i′, k). To maximize ξi(k), we can
assume that all of the elements in the first interval contribute
to it; there are i− i′− 1 such elements. The element i is not
in Qi′ therefore it does not contribute to the value of ξi′(k).
Finally, for elements k′ ∈ (i, k), if any such k′ ∈ Qi′ then it
is also in Qi, and therefore contributes equally to ξi(k) and
to ξi′(k). Therefore the maximum value for ξi(k)− ξi′(k) =
i− i′ − 1.

It is easy to check that properties (c) and (d) follow.

We can now show that the generalized Spearman distance
is never much larger than the generalized Kendall tau.

Lemma 16. For all σ and metrics D, FD(σ) ≤ 3KD(σ).

Proof. We charge each term separately. For terms of
type I,Dij appears both in FD and inKD. LetDij be a term
of type II. By the triangle inequality (7), we can conclude
that Dij ≤ Diνi(j) + Dνi(j)j for any νi(j). Furthermore,
since ν is a valid metric, νi(j) forms inversions with both
i and j, and therefore the terms Diνi(j) and Dνi(j)j appear
in KD. Finally, any term Dij can be charged at most three
times — once by terms of type I and at most twice by terms
of type II. The proof is complete.

Finally, putting all of these together, we obtain the main
result.

Theorem 17 (Generalized DG inequality). For
all σ, (1/3)F ∗(σ) ≤ K∗(σ) ≤ 3F ∗(σ).

We conjecture that K∗ ≤ F ∗, but proving that remains
an open problem.

5. DISCUSSION
We have presented a generalized version of Kendall’s tau

and Spearman’s footrule metrics that take into account the
element weights, their position in the permutation and pair-
wise distance when computing the distance between two per-
mutations. Importantly, these two new metrics address the



desiderata put forth in the Introduction. They are rich
enough to handle the modern requirements on a metric,
especially in the context of web search results. They re-
main relatively straightforward: for example, the general-
ized Kendall’s tau simply scales the score of each inversion
by the pairwise distance between the inverted element and
their element and position weights. They are indeed true
generalizations: when all of the weights, and distances are
set to 1, we recover the original Kendall’s tau and footrule
distances. Although not at first evident, we proved in Sec-
tion 4.1 that the two measures satisfy all of the basic prop-
erties — they are right invariant, scale free, and satisfy the
triangle inequality. Finally, we showed that these two met-
rics are equivalent, and regardless of the setting of the ele-
ment and position weights and the instantiation of the met-
ric space D, they will always be within a factor of three
from each other. Below, we give a practical application of
this invariance.

5.1 Generalized rank aggregation
Consider, the rank aggregation problem: given a set of

disparate rankings: σ1, . . . , σk, find one that minimizes the
total disagreement. Since there are two ways to measure
disagreement we can define two versions of the problem. In
the footrule version, we strive to find a permutation σ∗F ,
that minimizes the total footrule distance

∑k
i=1 F (σ−1σ∗F ).

In the Kendall version, we wish for a permutation σ∗K that
minimizes the total Kendall distance:

∑k
i=1K(σ−1σ∗K). A

priori, both problems look daunting: a direct approach to
finding σ∗K is to solve the feedback arc set problem (FAS).
Here we have a node for each element, and a directed edge
between i and j with the weight set to the number of per-
mutations in which i precedes j. Solving the FAS prob-
lem on the resulting tournament graph (since there is an
edge between any pair of nodes) would lead to an optimal
σ∗K . Unfortunately the FAS problem is NP-hard, even on
tournament graphs [2, 16], so we can at best hope for an
approximation; even so while a PTAS for this problem ex-
ists, it is far from practical. On the other hand, Dwork et
al. [10] show how to find σ∗F in polynomial time via a simple
minimum-cost perfect matching algorithm. The equivalence
of F and K allows us to to conclude that σ∗F is a non-trivial
2-approximation to σ∗K . A trivial 2-approximation exists
because the distance is a metric: one of the input rankings
achieves this factor.

The equivalence can work in the opposite direction as well.
Consider the same rank aggregation problem with general-
ized footrule and Kendall’s tau. The addition of element, po-
sition and distance weights means the minimum cost match-
ing formulation used by [13] no longer applies. However, the
FAS formulation still holds — the cost of each directed (i, j)
edge becomes the total contribution to the (i, j)th term of
K∗ by the rankings where i > j. Now we can find an ap-
proximation to σ∗K either by using the PTAS in [16] or the
Quick-Select algorithm in [2].

6. EXPERIMENTS
In general it is not easy to evaluate a new ranking func-

tion, especially due to the lack of a suitable ground truth.
Instead of focusing on how our new measures correlate with
widely-used relevance measures such as mean-average preci-
sion or DCG, we focus on the robustness of our measures.
In particular, we study how our generalizations utilize the
additional information (such as the element weights, or the
position weights) available to them in order to provide a bet-
ter understanding on rankings. We also focus on a specific
application in web search: finding queries where a particular
search engine performs badly.

6.1 Data
The data we use for our experiments are from two real-

world sources. Our first dataset, called D1, is a subset
of search clicks from Yahoo! search, for a week period in
September 2009. For each query with at least a thousand to-
tal clicks, we track the number of clicks at each position and
retain these counts only for the top ten positions. The result-
ing dataset has about 80,000 queries. Note that the number
of clicks naturally induces a permutation (there may be some
ties, but these will be broken arbitrarily) on {1, . . . , 10}.

We will use this permutation in our experiments, with
three different types of position weights, in addition to the
unweighted case (called UNIT).

(1) DCG: Here, we set

δi =
1

log(i+ 1)
− 1

log(i+ 2)
.

This corresponds to weighing each position by the standard
position weight used in DCG computations.

(2) CTR: Here, we set δi = ctri − ctri+1, where ctri is
the aggregated click-through rate at position i. This corre-
sponds to penalizing each swap by the amount of the click-
through rate lost. Table 1 shows the actual values we used
in our experiments.

(3) TOPK: Here, we use a step function to simulate the
top k ranking. For i ≤ 5, we set δi = 1 and for i > 5, we set
δi = 0. This means there is no penalty for swapping after
the fifth position.

Our second dataset, called D2, is a subset of human-
labeled judgments for a number of queries. Each query has
the top five results judged into four scales from 0 (meaning
worst) to 3 (meaning best). This data has about 140,000
queries and its associated judgments. The judgments induce
a permutation (actually, a partial order, but we will break
ties arbitrarily) on the top five positions; we will use this
permutation in our experiments. The editorial labels give a
natural weighting for elements (called EDIT). As before, we
use UNIT to denote the unweighted case.

6.2 Tightness of the equivalence
Our first experiment concerns the tightness of the inequal-

ity given by Theorem 17. We are interested in how much
the Kendall’s tau and Spearman footrule vary (as a ratio)
for various choices of the position weights. To do this, we
use the dataset D1. The top panel in Figure 1 shows the
scatter plot of Kendall vs footrule values, for the DCG po-
sition weight. The two envelopes are the lines y = x and
y = 2x. From the plot we can see that if the Kendall value
itself is small, the footrule value is nearly twice as big, with
the majority of the points near the upper envelope. On the



Position i 1 2 3 4 5 6 7 8 9 10
ctri .488 .146 .089 .066 .051 .041 .033 .029 .027 .027

Table 1: Click-through rates used in our experiments as position weights.

other hand, if the Kendall’s tau value is itself large, then the
footrule value is closer to the Kendall’s tau. In contrast, the
bottom panel in Figure 1 shows the same plot for D1, using
the unweighted versions of the metrics. Here, the points are
always distributed more towards the upper envelope showing
a greater discrepancy between the two measures. This can
be explained by the fact that when the Kendall’s tau value
is large, the permutations are very different, and DCG po-
sition weights reduce the effect in the lower positions. This
is precisely what we want in a ranking measure.
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Figure 1: The ratio of the measures for D1 with
DCG position weight and with unit weights.

6.3 Correlation among the measures
In practice, should one use Kendall’s tau or the footrule

measure? Both have their advantages and disadvantages,
ranging from computability to interpretability. A point to
note is that even though Theorem 17 shows that general-
ized measures are equivalent, it is not clear how much these
measures themselves are correlated: given two permutations
σ, τ , how correlated are the four quantities K∗(σ), K∗(τ),
F ∗(σ), F ∗(τ) ? Ideally, we would like to show that the

weighted versions are better correlated with one another
in practice than their unweighted counterparts. We study
the error in correlation for two sequences X = {xi} and
Y = {yi}, defined as follows:

ε(X,Y ) = 1− E[XY ]− µ(X)µ(Y )

σ(X)σ(Y )
,

where µ(X) = E[X], σ2(X) = E[(X − E[X])2].
In our application, for a particular setting of either the

position weights or element weights, we take X to be the
Spearman’s footrule values and Y to be the Kendall’s tau
values; for such a choice, we define Z to be the point-wise
ratio Z = {xi/yi}. We study E[Z], the average ratio of
the footrule to Kendall’s tau values, σ(Z), its standard de-
viation, and ε(X,Y ), the correlation error between the two
values. Table 2 shows these values for our datasets and var-
ious weighting schemes.

E[Z] σ(Z) ε(X,Y )
D1

UNIT 1.756 0.248 0.040
DCG 1.756 0.273 0.022
CTR 1.806 0.268 0.026

TOPK 1.767 0.262 0.026
D2

UNIT 1.799 0.354 0.058
EDIT 1.721 0.342 0.040

Table 2: Correlation between weighted Kendall and
footrule measures.

As we can see from the results, all of the weighted ver-
sions have much less correlation error than the unweighted
versions, for both D1 and D2. The average value of the ratio
is away from 2 (the upper bound) in all cases. Interestingly,
the variance is more for the weighted measures, this, once
again, can be explained by their emphasis on the higher po-
sitions.

6.4 Finding the worst queries
In this section we illustrate the robustness of our weighted

measures via a simple application: the goal is to find the
worst-performing queries in a search engine. For D1, these
are the queries whose click ordering is furthest away from
the result ordering. For D2, these are the queries whose
editorial judgments are disagree the most with the result
ordering.

We wish to illustrate the robustness of the weighted mea-
sures by asking the following question: suppose one were to
use the unweighted Kendall’s tau or footrule measure to pull
out the k most egregious queries? How sensitive is this to
the choice of the metric, i.e., whether we use Kendall’s tau
or the footrule measure? In other words, how consistent are
the top k (worst) sets returned by Kendall’s tau and footrule
measures?



We measure this consistency by computing the normal-
ized set intersection of the top k queries deemed worst by
Kendall’s tau and the top k queries deemed worst by the
footrule measure. We compare this intersection with that of
using the weighted counterparts. The top panel of Figure
2 shows the result for D1 for the DCG position weight. It
is easy to see that the weighted versions return very similar
queries. This holds for even moderately large value of k; of
course, for large enough k, these curves will start converg-
ing. A similar pattern holds for D2. The bottom panel of
Figure 2 shows the results.
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Figure 2: Correlation between the unweighted
and weighted measures for D1 with DCG position
weights and for D2 with EDIT element weights.

7. CONCLUSIONS
We presented generalizations of the Spearman’s footrule

and Kendall’s tau distance metrics to take into account el-
ement weights, position weights, and the relative similarity
between elements. These generalizations encode some of the
common metrics used in practice. For example, by setting
dij to be 1 between the pairs of elements in the top k po-
sition, 0 for elements in positions k + 1, . . . , n, and p for
the distances between the two partitions, we recover a top-k
metric for Kendall’s tau.

We remark that our definitions lead to an intriguing met-
ric between two orderings of nodes in a graph. Given a
weighted graph G = (V,E), let Dij be the shortest distance
between two nodes i, j ∈ V . The distance between any two
orderings can be computed using the FD or KD metrics that
we have defined. As an application, consider a co-authorship

graph, and rank nodes (i.e., authors) based on how often
certain keywords, (e.g., internet, routing, advertising, etc)
appears in their titles. A footrule or Kemeny optimal rank
aggregation might lead to finding interesting co-authorship
patterns.
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