K-MEANS++: THE ADVANTAGES OF CAREFUL SEEDING

> SERGEI VASSILVITSKII DAVID ÅRTHUR (STANFORD UNIVERSITY)

CLUSTERING

Given n points in \mathcal{R}^d split them into k similar groups.

CLUSTERING

Given n points in \mathcal{R}^d split them into k similar groups.

This talk: k-means clustering:

Find k centers, $\mathcal C$ that minimize

$$\sum_{x \in X} \min_{c \in \mathcal{C}} \|x - c\|_2^2$$

WHY MEANS?

Objective: Find k centers, $\mathcal C$ that minimize

$$\sum_{x \in X} \min_{c \in \mathcal{C}} \|x - c\|_2^2$$

For one cluster: Find y that minimizes $\sum_{x \in X} \|x - y\|_2^2$

0

0

Easy!
$$y = \frac{1}{|X|} \sum_{x \in X} x$$

Initialize with random clusters

Assign each point to nearest center

Recompute optimum centers (means)

Repeat: Assign points to nearest center

Repeat: Recompute centers

Repeat...

Repeat...Until clustering does not change

ANALYSIS

How good is this algorithm?

Finds a local optimum

That is potentially arbitrarily worse than optimal solution

APPROXIMATING K-MEANS

- Mount et al.: $9 + \epsilon$ approximation in time $O(n^3/\epsilon^d)$
- Har Peled et al.: $1 + \epsilon$ in time $O(n + k^{k+2} \epsilon^{-2dk} \log^k(n/\epsilon))$
- Kumar et al.: $1+\epsilon$ in time $2^{(k/\epsilon)^{O(1)}}nd$

APPROXIMATING K-MEANS

- Mount et al.: $9 + \epsilon$ approximation in time $O(n^3/\epsilon^d)$
- Har Peled et al.: $1 + \epsilon$ in time $O(n + k^{k+2} \epsilon^{-2dk} \log^k(n/\epsilon))$
- Kumar et al.: $1+\epsilon$ in time $2^{(k/\epsilon)^{O(1)}}nd$

Lloyd's method:

- Worst-case time complexity: $2^{\Omega(\sqrt{n})}$
- Smoothed complexity: $n^{O(k)}$

APPROXIMATING K-MEANS

- Mount et al.: $9 + \epsilon$ approximation in time $O(n^3/\epsilon^d)$
- Har Peled et al.: $1 + \epsilon$ in time $O(n + k^{k+2} \epsilon^{-2dk} \log^k(n/\epsilon))$
- Kumar et al.: $1+\epsilon$ in time $2^{(k/\epsilon)^{O(1)}}nd$

Lloyd's method:

For example, Digit Recognition dataset (UCI):

n = 60,000 d = 600

Convergence to a local optimum in 60 iterations.

CHALLENGE

Develop an approximation algorithm for k-means clustering that is competitive with the k-means method in speed and solution quality.

Easiest line of attack: focus on the initial center positions. Classical k-means: pick k points at random.

K-MEANS ON GAUSSIANS

K-MEANS ON GAUSSIANS

SENSITIVE TO OUTLIERS

0

SENSITIVE TO OUTLIERS

SENSITIVE TO OUTLIERS

K-MEANS++

Interpolate between the two methods:

Let D(x) be the distance between x and the nearest cluster center. Sample proportionally to $(D(x))^{\alpha} = D^{\alpha}(x)$

Original Lloyd's: $\alpha = 0$

Furthest Point: $\alpha = \infty$

k-means++: $\alpha = 2$

Contribution of x to the overall error

K-MEANS++

0

K-MEANS++

0

Theorem: k-means++ is $\Theta(\log k)$ approximate in expectation.

Ostrovsky et al. [O6]: Similar method is O(1) approximate under some data distribution assumptions.

PROOF - 1ST CLUSTER

Bound the total error of that cluster.

PROOF - 1ST CLUSTER

Let A be the cluster. Each point $a_0 \in A$ equally likely to be the chosen center.

Expected Error:

$$E[\phi(A)] = \sum_{a_0 \in A} \frac{1}{|A|} \sum_{a \in A} ||a - a_0||^2$$
$$= 2 \sum_{a \in A} ||a - \bar{A}||^2 = 2\phi^*(A)$$

PROOF - OTHER CLUSTERS

Suppose next center came from a new cluster in OPT.

Bound the total error of that cluster.

OTHER CLUSTERS

Let B be this cluster, and b_0 the point selected.

Then:

$$E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \cdot \sum_{b \in B} \min(D(b), \|b - b_0\|)^2$$

CONT.

For any b: $D^2(b_0) \le 2D^2(b) + 2\|b - b_0\|^2$

CONT.

For any b: $D^2(b_0) \le 2D^2(b) + 2\|b - b_0\|^2$

Avg. over all b:
$$D^2(b_0) \le \frac{2}{|B|} \sum_{b \in B} D^2(b) + \frac{2}{|B|} \sum_{b \in B} \|b - b_0\|^2$$

Recall:

$$E[\phi(B)] = \sum_{b_0 \in B} \frac{D^2(b_0)}{\sum_{b \in B} D^2(b)} \cdot \sum_{b \in B} \min(D(b), ||b - b_0||)^2$$

$$\leq \frac{4}{|B|} \sum_{b_0 \in B} \sum_{b \in B} ||b - b_0||^2 = 8\phi^*(B)$$

WRAP UP

If clusters are well separated, and we always pick a center from a new optimal cluster, the algorithm is 8- competitive.

WRAP UP

If clusters are well separated, and we always pick a center from a new optimal cluster, the algorithm is 8-competitive.

Intuition: if no points from a cluster are picked, then it probably does not contribute much to the overall error.

WRAP UP

If clusters are well separated, and we always pick a center from a new optimal cluster, the algorithm is 8-competitive.

Intuition: if no points from a cluster are picked, then it probably does not contribute much to the overall error.

Formally, an inductive proof shows this method is $\Theta(\log k)$ competitive.

EXPERIMENTS

Tested on several datasets:

Synthetic

• 10k points, 3 dimensions

Cloud Cover (UCI Repository]

• 10k points, 54 dimensions

Color Quantization

• 16k points, 16 dimensions

Intrusion Detection (KDD Cup)

• 500k points, 35 dimensions

TYPICAL RUN

KM++ v. KM v. KM-Hybrid

EXPERIMENTS

Total Error

	k-means	km-Hybrid	k-means++
Synthetic	0.016	0.015	0.014
Cloud Cover	$6.06 imes 10^5$	$6.02 imes 10^5$	$5.95 imes 10^5$
Color	741	712	670
Intrusion	32.9×10^3	_	3.4×10^3

Time:

k-means++ 1% slower due to initialization.

FINAL MESSAGE

Friends don't let friends use k-means.

THANK YOU

ANY QUESTIONS?