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Problem Statement 

Given a large multiset       with     elements, count 
the number of distinct elements in     .

Alternatively, given samples from a distribution    , 
estimate the 0-th frequency moment. 
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X = {a, b, c, a, a, c, b, a} =⇒ Distinct(X) = 3

n



Why Do We Care?

Good Planning for SQL Queries.   Consider:

 

where     is expensive to compute. 
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select * from R, S where R.A = S.B and f(S.C) > k

f

S.C fIf          has few distinct elements, compute     first, 
cache results, then join. 

S.C

f

If          has many elements, compute the join first, 
then check the     condition.

Orders of Magnitude Improvements



Classical problem

Different approaches:

Streaming Input - Minimize space used.

Sample from Input - Guarantee on 
approximations?

Given a sample of size     from     , find      an 
approximation to                        .
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r X D̂

Distinct(X)
Given a sample of size     from     , find      an 
approximation to                        .



Previous Work

Good-Turing Estimator: “The Population 
Frequencies of Species, and the estimation of 
Population Parameters,” 1953. 

Other Heuristic Estimators:  

Smoothed Jackknife Estimator (Haas et. al)

Adaptive Estimator (Charikar et. al) 

Many Others
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Previous Work - Theory

Given      samples from a set of size 

Guaranteed Error Estimator(GEE) [CCMN]

Approximation Ratio: 
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Lower Bound:

There exist inputs such that with constant 
probability any estimator will have appro-
ximation ratio at least: 



Lower Bound Detail

Scenario 1: 

Scenario 2:

With                             , after     samples cannot 
distinguish between the two scenarios with 
probability at least    .  
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= {x, x, . . . , x, y1, . . . , yk}, |S

′| = n

S = {x, x, . . . , x}, |S| = n
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So Why Are We Here?

Many large datasets are not worst-case. In fact, 
many follow Zipfian Distributions. 

Examples: 

- In/Out-Degrees of the Web Graph

- Word frequencies in many languages

- many, many more.
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Zipfθ(i) ∝
1

iθ



Problem Definition

Suppose                       on       elements.  

 is known,     is unknown

Estimate      by sampling from      .
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X ∼ Zipfθ D

D X

- Best-you-can Estimation:  Given a sample 
from    ,  return best estimate of      .X D

Dθ

X- Adaptive Sampling:  Will sample from       until 
a stopping condition is met. 

Two Kinds of Results:



Results

Let       be the probability of the least likely element. 
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p
∗

Adaptive sampling will return       after at most 

                    samples with constant probability.O(
log D

p∗
)

D

r =
(1 + 2ε)1+θ

p∗
1 + ε

D

1 − exp(−Ω(Dε
2))

Given                             samples, can return an          
estimate to       with probability at least 
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Approximation Techniques

For a sample of size   let      be the number of 
distinct values in the sample. 

Suppose     and    are known, then we can compute   
                the expected number of distinct values in 
the sample. 

If       is the number of distinct values observed, the 
estimator returns       such that                          .
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Pr
[

|E[fr] − fr| ≥ εE[fr]
]

≤ exp(−ε2Ω(D))

Analysis

Lemma: Tight Distribution of     . 

For large enough    ,

Proof: Parallels the sharp threshold coupon 
collector arguments for uniform distributions.
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Analysis (2)

Lemma: MLE preserves approximation

Given:                                      , observed      elements                                    

Let      such that                           , and                 .

Then:
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fr ≤ (1 + ε)ED,θ[fr]

D̂ f∗

r = ED̂,θ[fr]

(1 − 2ε)D̂ ≤ D ≤ (1 + 2ε)D̂

f∗

r

r ≥ 1/p∗
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The Competition

Zipfian Estimator (ZE): Performance guarantees 
only for Zipfian Distributions.

Guaranteed Error Estimator (GEE):                     
error guarantee.  (Works for all distributions)

Analytic Estimator (AE):  Best performing 
heuristic  - no theoretical guarantees. 
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Datasets

Synthetic Data:

- Vary number of distinct elements

- Vary the Database size

- Vary the skew of the distribution

Real Datasets 

- “Router” dataset - Packet trace from the Internet 
Traffic Archive.              ,               ,
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θ ∈ {0, 0.5, 1}

D ∈ {10k, 50k, 100k}

n ∈ {100k, 500k, 1000k}

θ ≈ 1.6 n ≈ 4M D ≈ 250k



Estimating

Recall: 

Let      be the frequency of the i-th element. 

Estimate     by doing linear regression on            

                        plot.
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θ

Zipfθ(i) ∝
1

iθ

fi

E[fi] = cri−θ =⇒ log E[fi] = log cr − θ log i

θ

log fi vs log i



Experimental Results
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Experimental Results (2)
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Conclusion

Can have error guarantees if the family of 
distributions is known ahead of time.

How does the approximation of     affect error 
guarantees?
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θ

Subtle problem: disk reads occur in blocks. Time 
to sample 10% is equivalent to reading the whole 
DB.



Thank You


