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Problem: Given two point sets A and B, translate A to best match B.

Example:

Which is best?
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NOTES ON ICP

Accuracy: Bad in worst case
Time to converge: Never repeat the Nji(-) function = O(n")
Better Bounds? [ESE SoCG 2006]: 2(nlogn) in 2d
O(dn?)?
We tighten the bounds and show: Q(n”/d)*

But ICP runs very fast in practice, and the worst case bounds don't do
It justice.
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WHEN WORST CASE IS TOO BAD

The theoretician’s dilemma:

An algorithm with horrible worst case guarantees - unbounded
competitive ratio, exponential running time ...

But: i1s widely used In practice
From Worst to ...7
Best-case? Average-case?

Smoothed Analysis [Spielman & Teng '01)
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SMOOTHED ANALYSIS

What is smoothed analysis:
Add some random noise to the input

Look at the worst case expected complexity

How do we add random noise?
Easy in geometric settings... perturb each point by N (0, o)

“Let P be a set of n points in general position...”



NOTES ON ICP

Accuracy: Bad in worst case
Time to converge: Never repeat the Nji(-) function = O(n")
Better Bounds? [ESE SoCG 2006]: 2(nlogn) in 2d
O(dn?)?
We tighten the bounds and show: Q(n”/d)*

But ICP runs very fast in practice, and the worst case bounds don't do
It justice.

_ ; O(1) Diam :
Theorem: Smoothed complexity of ICP is n
oF



PROOF OF THEOREM

Outline: bound the minimal potential drop that occurs in every step.

Two cases:

1. Small number of points change their NN assignments
— Bound the potential drop from recomputing the translation.

2. Large number of points change their NN assignments

— Bound the potential drop from new nearest neighbor
assignments.

In both cases,
Quantify how “"general” is the general position obtained after
smoothing.
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Warm up: If every point is perturbed by /N (0, o) then the minimum
distance between points is at least ¢ with probability 1 — n*(e/o)?

Proof: Consider two points p and ¢ . Fix the position of p. The random
perturbation of ¢ will put it at least ¢ away with prabability 1 — (¢/0)?

Easy generalization: Consider sets of up to £ points.
P = {p17p27 A=t 7pk}7 Q = {Q17QQ7 SAds 7Qk}

Then: | sz- — Z q;|| > € with prabability 1 — n?**(e/0)?.
peP qeQ

We will take € = o /poly(n) and k = O(d).
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PROOF: PART | (CONT)

Np(a+ x;) —a
i Al

Recall: b
acA

If only & points changed their NN assignments, then with high
probability ||z;11 — z;|| > €/n.

Fact. For any set S with ¢(5) as its mean, and any point ¥ .

D s =yl® = 18] e(S) = yll* + ) _ lls — e(S)]

sesS SES

Thus the total potential dropped by at least: 7 (e/n)2 = 62/n
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Suppose many points change their NN assignments. VWhat could go
wrong?

A=0Q
B=‘ : S
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PROOF: PART Il CONT

What can we say about the points? Every active point in /A must be
near the bisector of two points in B5.

For a different point the slab has a different orientation:

And the translation vector must lie in this slab as well.
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orientation will appear random.



PROOF: PART Il CONT

But if the slabs are narrow, because of the perturbation their
orientation will appear random.

Intuitively, we do not expect a large (w(d)) number of slabs to have a
common intersection.

Thus we can bound the minimum slab width from below.
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Theorem. With probability 1 — 2p ICP will finish after at most
D\ 2
O(n''d () p~2/9) iterations.
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Since ICP always runs in at most O(an)d iterations, we can take

P O(dn2)_d to show that the smoothed complexity is polynomial.



PROOF: FINISH

Theorem. With probability 1 — 2p ICP will finish after at most

D\ 2
O(n''d () p~2/9) iterations.

o
Since ICP always runs in at most O(an)d iterations, we can take

P O(dn2)_d to show that the smoothed complexity is polynomial.

Many union bounds — n

But, linearin d!



OTHER GEOMETRIC HEURISTICS?

k-means method: Popular iterative clustering algorithm, similar in
spirit to ICP.

Worst case upper bound: O(nkd) iterations.
Show a smoothed upper bound of I polynomial in the
dimension, consistent with empirical evidence.

Big Open Question: Can we push this to nPW o (Conjecture: Yes]



CONCLUSION

Showed worst-case ICP suffers from the curse of dimensionality.
But smoothed ICP is linear in the number of dimensions.

Similar results for the k-means (Lloyd's) method.

Techniques focus on analyzing the separation obtained by the
smoothing perturbation.
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