SMOOTHED ANALYSIS OF ICP

David Arthur
Sergei Vassilvitskii

[Stanford University]

MATCHING DATASETS

Problem: Given two point sets A and B, translate A to best match B.

ICP: Iterative Closest Point

Problem: Given two point sets A and B, translate A to best match B.
Example:

$$
\mathcal{A}=\Sigma
$$

ICP: Iterative Closest Point

Problem: Given two point sets A and B, translate A to best match B.
Example:

ICP: Iterative Closest Point

Problem: Given two point sets A and B, translate A to best match B.
Example:

$$
\min _{x} \phi(x)=\sum_{a \in A}\left\|a+x-N_{\mathcal{B}}(a+x)\right\|_{2}^{2}
$$

ICP: Iterative Closest Point

Given $\mathcal{A}, \mathcal{B}, \quad|\mathcal{A}|=|\mathcal{B}|=n$

1. Begin with some translation x_{0}
2. Compute $N_{\mathcal{B}}\left(a+x_{i}\right)$ for each $a \in \mathcal{A}$
3. Fix $N_{\mathcal{B}}(\cdot)$, compute optimal $x_{i+1}=\sum_{a \in A} \frac{N_{\mathcal{B}}\left(a+x_{i}\right)-a}{|\mathcal{A}|}$

$$
\begin{aligned}
& A=O \\
& B=O
\end{aligned}
$$

ICP: Iterative Closest Point

Given $\mathcal{A}, \mathcal{B}, \quad|\mathcal{A}|=|\mathcal{B}|=n$

1. Begin with some translation x_{0}
2. Compute $N_{\mathcal{B}}\left(a+x_{i}\right)$ for each $a \in \mathcal{A}$
3. Fix $N_{\mathcal{B}}(\cdot)$, compute optimal $x_{i+1}=\sum_{a \in A} \frac{N_{\mathcal{B}}\left(a+x_{i}\right)-a}{|\mathcal{A}|}$

$$
\begin{aligned}
& A=O \\
& B=O
\end{aligned}
$$

ICP: Iterative Closest Point

Given $\mathcal{A}, \mathcal{B},|\mathcal{A}|=|\mathcal{B}|=n$

1. Begin with some translation x_{0}
2. Compute $N_{\mathcal{B}}\left(a+x_{i}\right)$ for each $a \in \mathcal{A}$
3. Fix $N_{\mathcal{B}}(\cdot)$, compute optimal $x_{i+1}=\sum_{a \in A} \frac{N_{\mathcal{B}}\left(a+x_{i}\right)-a}{|\mathcal{A}|}$

$$
\begin{aligned}
& A=O \\
& B=O
\end{aligned}
$$

NOTES ON ICP

Accuracy: Bad in worst case
Time to converge: Never repeat the $N_{\mathcal{B}}(\cdot)$ function $\Rightarrow O\left(n^{n}\right)$

NOTES ON ICP

Accuracy: Bad in worst case
Time to converge: Never repeat the $N_{\mathcal{B}}(\cdot)$ function $\Rightarrow O\left(n^{n}\right)$
Better Bounds? [ESE SoCG 2006]: $\Omega(n \log n)$ in 2d

$$
O\left(d n^{2}\right)^{d}
$$

NOTES ON ICP

Accuracy: Bad in worst case
Time to converge: Never repeat the $N_{\mathcal{B}}(\cdot)$ function $\Rightarrow O\left(n^{n}\right)$
Better Bounds? [ESE SoCG 2006]: $\Omega(n \log n)$ in 2d

$$
O\left(d n^{2}\right)^{d}
$$

We tighten the bounds and show: $\Omega\left(n^{2} / d\right)^{d}$

NOTES ON ICP

Accuracy: Bad in worst case
Time to converge: Never repeat the $N_{\mathcal{B}}(\cdot)$ function $\Rightarrow O\left(n^{n}\right)$
Better Bounds? [ESE SoCG 2006]: $\Omega(n \log n)$ in 2d

$$
O\left(d n^{2}\right)^{d}
$$

We tighten the bounds and show: $\Omega\left(n^{2} / d\right)^{d}$
But ICP runs very fast in practice, and the worst case bounds don't do it justice.

When Worst Case is Too Bad

The theoretician's dilemma:
An algorithm with horrible worst case guarantees - unbounded competitive ratio, exponential running time ...

When Worst Case is Too Bad

The theoretician's dilemma:
An algorithm with horrible worst case guarantees - unbounded competitive ratio, exponential running time ...

But: is widely used in practice.

When Worst Case is Too Bad

The theoretician's dilemma:
An algorithm with horrible worst case guarantees - unbounded competitive ratio, exponential running time ...

But: is widely used in practice
From Worst to ...?
Best-case? Average-case?

When Worst Case is Too Bad

The theoretician's dilemma:
An algorithm with horrible worst case guarantees - unbounded competitive ratio, exponential running time ...

But: is widely used in practice
From Worst to ...?
Best-case? Average-case?
Smoothed Analysis [Spielman \& Teng '01]

SMOOTHED ANALYSIS

What is smoothed analysis:
Add some random noise to the input
Look at the worst case expected complexity

SMOOTHED ANALYSIS

What is smoothed analysis:
Add some random noise to the input
Look at the worst case expected complexity

How do we add random noise?
Easy in geometric settings... perturb each point by $N(0, \sigma)$
"Let P be a set of n points in general position..."

NOTES ON ICP

Accuracy: Bad in worst case
Time to converge: Never repeat the $N_{\mathcal{B}}(\cdot)$ function $\Rightarrow O\left(n^{n}\right)$
Better Bounds? [ESE SoCG 2006]: $\Omega(n \log n)$ in 2d

$$
O\left(d n^{2}\right)^{d}
$$

We tighten the bounds and show: $\Omega\left(n^{2} / d\right)^{d}$
But ICP runs very fast in practice, and the worst case bounds don't do it justice.
Theorem: Smoothed complexity of ICP is $n^{O(1)}\left(\frac{\text { Diam }}{\sigma}\right)^{2}$

PROOF OF THEOREM

Outline: bound the minimal potential drop that occurs in every step.
Two cases:

1. Small number of points change their NN assignments
\Rightarrow Bound the potential drop from recomputing the translation.
2. Large number of points change their NN assignments
\Rightarrow Bound the potential drop from new nearest neighbor assignments.

In both cases,
Quantify how "general" is the general position obtained after smoothing.

PROOF: PART I

Warm up: If every point is perturbed by $N(0, \sigma)$ then the minimum distance between points is at least ϵ with probability $1-n^{2}(\epsilon / \sigma)$.

PROOF: PART I

Warm up: If every point is perturbed by $N(0, \sigma)$ then the minimum distance between points is at least ϵ with probability $1-n^{2}(\epsilon / \sigma)^{d}$.

Proof: Consider two points p and q. Fix the position of p. The random perturbation of q will put it at least ϵ away with probability $1-(\epsilon / \sigma)$.

PROOF: PART I

Warm up: If every point is perturbed by $N(0, \sigma)$ then the minimum distance between points is at least ϵ with probability $1-n^{2}(\epsilon / \sigma)$.

Proof: Consider two points p and q. Fix the position of p. The random perturbation of q will put it at least ϵ away with probability $1-(\epsilon / \sigma)$.

Easy generalization: Consider sets of up to k points.

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, Q=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}
$$

Then: $\left\|\sum_{p \in P} p_{i}-\sum_{q \in Q} q_{i}\right\| \geq \epsilon$ with probability $1-n^{2 k}(\epsilon / \sigma)^{d}$

PROOF: PART I

Warm up: If every point is perturbed by $N(0, \sigma)$ then the minimum distance between points is at least ϵ with probability $1-n^{2}(\epsilon / \sigma)^{d}$.

Proof: Consider two points p and q. Fix the position of p. The random perturbation of q will put it at least ϵ away with probability $1-(\epsilon / \sigma)$.

Easy generalization: Consider sets of up to k points.

$$
P=\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}, Q=\left\{q_{1}, q_{2}, \ldots, q_{k}\right\}
$$

Then: $\left\|\sum_{p \in P} p_{i}-\sum_{q \in Q} q_{i}\right\| \geq \epsilon$ with probability $1-n^{2 k}(\epsilon / \sigma)^{d}$.
We will take $\epsilon=\sigma / \operatorname{poly}(n)$ and $k=O(d)$.

PROOF: PART I (CONT)

Recall: $x_{i+1}=\sum_{a \in A} \frac{N_{\mathcal{B}}\left(a+x_{i}\right)-a}{|\mathcal{A}|}$
If only k points changed their NN assignments, then with high probability $\left\|x_{i+1}-x_{i}\right\| \geq \epsilon / n$.

PROOF: PART I (CONT)

Recall: $x_{i+1}=\sum_{a \in A} \frac{N_{\mathcal{B}}\left(a+x_{i}\right)-a}{|\mathcal{A}|}$
If only k points changed their NN assignments, then with high probability $\left\|x_{i+1}-x_{i}\right\| \geq \epsilon / n$.

Fact. For any set S with $c(S)$ as its mean, and any point y.
$\sum_{s \in S}\|s-y\|^{2}=|S| \cdot\|c(S)-y\|^{2}+\sum_{s \in S}\|s-c(S)\|^{2}$

Thus the total potential dropped by at least: $n \cdot(\epsilon / n)^{2}=\epsilon^{2} / n$

PROOF: PART II

Suppose many points change their NN assignments. What could go wrong?

PROOF: PART II

Suppose many points change their NN assignments. What could go wrong?
$A=O$
$B=O$

\square

0

PROOF: PART II

Suppose many points change their NN assignments. What could go wrong?
$A=O$
$B=O$

Proof: Part II Cont

What can we say about the points? Every active point in \mathcal{A} must be near the bisector of two points in \mathcal{B}.

Then the translation vector must lie in this slab.

Proof: Part II Cont

What can we say about the points? Every active point in \mathcal{A} must be near the bisector of two points in \mathcal{B}.

For a different point the slab has a different orientation:

And the translation vector must lie in this slab as well.

Proof: Part II Cont

But if the slabs are narrow, because of the perturbation their orientation will appear random.

Proof: Part II Cont

But if the slabs are narrow, because of the perturbation their orientation will appear random.

Intuitively, we do not expect a large $[\omega(d)$] number of slabs to have a common intersection.

Thus we can bound the minimum slab width from below.

PROOF: FINISH

Theorem. With probability $1-2 p$ ICP will finish after at most
$O\left(n^{11} d\left(\frac{D}{\sigma}\right)^{2} p^{-2 / d}\right)$ iterations.
Since ICP always runs in at most $O\left(d n^{2}\right)^{d}$ iterations, we can take
$p=O\left(d n^{2}\right)^{-d}$ to show that the smoothed complexity is polynomial.

PROOF: FINISH

Theorem. With probability $1-2 p$ ICP will finish after at most
$O\left(n^{11} d\left(\frac{D}{\sigma}\right)^{2} p^{-2 / d}\right)$ iterations.
Since ICP always runs in at most $O\left(d n^{2}\right)^{d}$ iterations, we can take
$p=O\left(d n^{2}\right)^{-d}$ to show that the smoothed complexity is polynomial.

Many union bounds $\Rightarrow \quad n^{11}$
But, linear in d !

Other Geometric Heuristics?

k-means method: Popular iterative clustering algorithm, similar in spirit to ICP.

Worst case upper bound: $O\left(n^{k d}\right)$ iterations.
Show a smoothed upper bound of $n^{O(k)}$: polynomial in the dimension, consistent with empirical evidence.

Big Open Question: Can we push this to $n^{O(1)}$? [Conjecture: Yes]

CONCLUSION

Showed worst-case ICP suffers from the curse of dimensionality.
But smoothed ICP is linear in the number of dimensions.
Similar results for the k-means [Lloyd's] method.

Techniques focus on analyzing the separation obtained by the smoothing perturbation.

Thank You

