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Matching Datasets

Problem: Given two point sets A and B, translate A to best match B.
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ICP: Iterative Closest Point

Problem: Given two point sets A and B, translate A to best match B.

Example:

Which is best?

B =A =

min
x

φ(x) =
∑

a∈A

‖a + x − NB(a + x)‖2

2



ICP: Iterative Closest Point

Given          ,  

1. Begin with some translation 

2. Compute                      for each 

3. Fix           , compute optimal 

A,B |A| = |B| = n
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Notes on ICP

Accuracy: Bad in worst case 

Time to converge:  Never repeat the             function

Better Bounds? [ESE SoCG 2006]:                    in 2d

We tighten the bounds and show:                   

But ICP runs very fast in practice, and the worst case bounds don’t do 
it justice.
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When Worst Case is Too Bad

The theoretician’s dilemma:

An algorithm with horrible worst case guarantees - unbounded 
competitive ratio, exponential running time ...

But: is widely used in practice

From Worst to ...?

Best-case? Average-case? 

Smoothed Analysis (Spielman & Teng ‘01)
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Smoothed Analysis

What is smoothed analysis:

Add some random noise to the input

Look at the worst case expected complexity

How do we add random noise?

Easy in geometric settings... perturb each point by  

“Let P be a set of n points in general position...”

N(0, σ)



Notes on ICP

Accuracy: Bad in worst case 

Time to converge:  Never repeat the             function

Better Bounds? [ESE SoCG 2006]:                    in 2d

We tighten the bounds and show:                   

But ICP runs very fast in practice, and the worst case bounds don’t do 
it justice.

Theorem: Smoothed complexity of ICP is

NB(·)

Ω(n log n)

O(dn
2)d

Ω(n2/d)d

n
O(1)

(

Diam

σ

)2

⇒ O(nn)



Proof of Theorem

Outline: bound the minimal potential drop that occurs in every step.

Two cases:

1. Small number of points change their NN assignments 
Bound the potential drop from recomputing the translation.

2. Large number of points change their NN assignments
Bound the potential drop from new nearest neighbor 
assignments.

In both cases, 
Quantify how “general” is the general position obtained after 
smoothing. 

⇒

⇒



Warm up: If every point is perturbed by                then the minimum 
distance between points is at least     with probability                      .

Proof: Part I
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ε

p q p

1 − (ε/σ)d
q ε

1 − n2(ε/σ)d

k

1 − n2k(ε/σ)d

P = {p1, p2, . . . , pk}, Q = {q1, q2, . . . , qk}
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Warm up: If every point is perturbed by                then the minimum 
distance between points is at least     with probability                      .

Proof: Consider two points     and    . Fix the position of   . The random 
perturbation of    will put it at least    away with probability                  .

Easy generalization: Consider sets of up to    points. 

Then:                                         with probability                           .

We will take                            and                   .

Proof: Part I

N(0, σ)
ε

p q p

1 − (ε/σ)d
q ε

1 − n2(ε/σ)d

k

1 − n2k(ε/σ)d

k = O(d)

P = {p1, p2, . . . , pk}, Q = {q1, q2, . . . , qk}

‖
∑

p∈P

pi −
∑

q∈Q

qi‖ ≥ ε

ε = σ/poly(n)



Proof: part I (cont)

Recall:

If only     points changed their NN assignments, then  with high 
probability                                  .

xi+1 =
∑

a∈A

NB(a + xi) − a

|A|

‖xi+1 − xi‖ ≥ ε/n
k



Proof: part I (cont)

Recall:

If only     points changed their NN assignments, then  with high 
probability                                  .

Fact. For any set      with          as its mean, and any point     .

Thus the total potential dropped by at least:

 

xi+1 =
∑

a∈A

NB(a + xi) − a

|A|

S y

‖xi+1 − xi‖ ≥ ε/n

n · (ε/n)2 = ε2/n

k

c(S)

∑

s∈S

‖s − y‖2 = |S| · ‖c(S) − y‖2 +
∑

s∈S

‖s − c(S)‖2



Proof: part II

Suppose many points change their NN assignments. What could go 
wrong?
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What can we say about the points? Every active point in      must be 
near the bisector of two points in    .

Proof: Part II Cont

Then the translation vector must lie in this slab.

A

B



Proof: Part II Cont

What can we say about the points? Every active point in      must be 
near the bisector of two points in    .

For a different point the slab has a different orientation:

And the translation vector must lie in this slab as well.

A

B



Proof: Part II Cont

But if the slabs are narrow, because of the perturbation their 
orientation will appear random.



Proof: Part II Cont

But if the slabs are narrow, because of the perturbation their 
orientation will appear random.

Intuitively, we do not expect a large (        ) number of slabs to have a 
common intersection.

Thus we can bound the minimum slab width from below.

ω(d)



Proof: Finish

Theorem. With probability               ICP will finish after at most 

                                       iterations.

Since ICP always runs in at most                 iterations, we can take  

                           to show that the smoothed complexity is polynomial. 
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σ
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Proof: Finish

Theorem. With probability               ICP will finish after at most 

                                       iterations.

Since ICP always runs in at most                 iterations, we can take  

                           to show that the smoothed complexity is polynomial. 

Many union bounds     

But, linear in     !

1 − 2p

O(n11d

(

D

σ

)2

p−2/d)

O(dn
2)d

p = O(dn2)−d

⇒ n
11

d



Other Geometric Heuristics?

k-means method: Popular iterative clustering algorithm,  similar in 
spirit  to ICP. 

Worst case upper bound:                iterations.

Show a smoothed upper bound of             : polynomial in the 
dimension, consistent with empirical evidence. 

Big Open Question: Can we push this to           ? (Conjecture: Yes)

O(nkd)

n
O(k)

n
O(1)



Conclusion

Showed worst-case ICP suffers from the curse of dimensionality.

But smoothed ICP is linear in the number of dimensions.

Similar results for the k-means (Lloyd’s) method.

Techniques focus on analyzing the separation obtained by the 
smoothing perturbation. 



Thank You


