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Overview

What we will cover
A few of the recent theory results on clustering:

Practical algorithms that have strong theoretical guarantees

Models to explain behavior observed in practice
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Overview

What we will not cover
The rest:

Recent strands of theory of clustering such as metaclustering
and privacy preserving clustering

Clustering with distributional data assumptions

Proofs
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Outline

Outline
I Euclidean Clustering and k-means algorithm

What to do to select initial centers (and what not to do)
How long does k-means take to run in theory, practice and
theoretical practice
How to run k-means on large datasets

II Bregman Clustering and k-means

Bregman Clustering as generalization of k-means
Performance Results

III Stability

How to relate closeness in cost function to closeness in
clusters.
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Euclidean Clustering and k-means
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Introduction

What does it mean to cluster?

Given n points in Rd find the best way to split them into k groups.
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Introduction

How do we define “best" ?
Example:

Given    points in       split them into     similar groups. 

Clustering
n Rd k

3
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Introduction

How do we define “best" ?
Minimize the maximum radius of a cluster

Given    points in       split them into     similar groups. 

Clustering
n Rd k

Objective: minimize maximum radius

4
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Introduction

How do we define “best" ?
Maximize the average inter-cluster distance

                 maximize inter-cluster distance
Objective: minimize maximum radius

Given    points in       split them into     similar groups. 

Clustering
n Rd k

5
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Introduction

How do we define “best" ?
Minimize the variance within each cluster.

                 maximize inter-cluster distance
Objective: minimize maximum radius

Given    points in       split them into     similar groups. 

Clustering
n Rd k

6
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Introduction

How do we define “best" ?
Minimize the variance within each cluster.

Minimizing total variance

For each cluster Ci ∈ C , ci =
1
|Ci|

∑

x∈Ci
x is the expected location of

a point in a cluster.
Then the variance of each cluster is:

∑

x∈Ci

= ‖x− ci‖2

And the total objective is:

φ =
∑

ci

∑

x∈Ci

‖x− ci‖2
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Approximations

Minimizing Variance
Given X and k, find a clustering C = {C1, C2, . . . , Ck} that
minimizes: φ(X,C ) =

∑

ci

∑

x∈Ci
‖x− ci‖2

Definition
Let φ∗ denote the value of the optimum solution above. We say that a
clustering C ′ is α-approximate if:

φ∗ ≤ φ(X,C ′)≤ α ·φ∗
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Approximations

Minimizing Variance
Given X and k, find a clustering C = {C1, C2, . . . , Ck} that
minimizes: φ(X,C ) =

∑

ci

∑

x∈Ci
‖x− ci‖2

Solving this problem
This problem is NP-complete, even when the pointset X lies in two
dimensions...

...but we’ve been solving it for over 50 years! [S56][L57][M67]
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k-means

Example
Given a set of data points

Lloyd’s Method: k-means

Initialize with random clusters

15
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k-means

Example
Given a set of data points

Lloyd’s Method: k-means

Initialize with random clusters

15
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k-means

Example
Select initial centers at random

Lloyd’s Method: k-means

Initialize with random clusters
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k-means

Example
Assign each point to nearest center

Lloyd’s Method: k-means

Assign each point to nearest center
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k-means

Example
Recompute optimum centers given a fixed clustering

Lloyd’s Method: k-means

Recompute optimum centers (means)

18
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k-means

Example
Repeat

Lloyd’s Method: k-means

Repeat: Assign points to nearest center
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k-means

Example
Repeat

Lloyd’s Method: k-means

Repeat: Recompute centers
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k-means

Example
Repeat

Lloyd’s Method: k-means

Repeat...
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k-means

Example
Until the clustering doesn’t change

Lloyd’s Method: k-means

Repeat...Until clustering does not change
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Performance

This algorithm terminates!
Recall the total error:

φ(X,C ) =
∑

ci

∑

x∈Ci

‖x− ci‖2

In every iteration φ is reduced:

Assigning each point to the nearest center reduces φ

Given a fixed cluster, the mean is the optimal location for the
center (requires proof)
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Performance

The algorithm finds a local minimum . . .

k-means Accuracy

How good is this algorithm?

Finds a local optimum

That is potentially arbitrarily worse than optimal solution

32
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Performance

. . . that’s potentially arbitrarily worse than optimum solution

k-means Accuracy

How good is this algorithm?

Finds a local optimum

That is potentially arbitrarily worse than optimal solution
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Performance

But does this really happen?
k-means Accuracy

But does this really happen?
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Performance

But does this really happen? YES!
k-means Accuracy

But does this really happen? YES

Even with many random restarts!
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Performance

Finding a good set of initial points is a black art

Try many times with different random seeds
Most common method
Has limited benefit even in case of Gaussians

Find a different way to initialize centers
Hundreds of heuristics
Including pre & post processing ideas

There exists a fast and simple initialization scheme with provable
performance guarantees
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Random Initializations on Gaussians

Some Gaussians are combined

k-means on Gaussians

45
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Random Initializations on Gaussians

Some Gaussians are combined

k-means on Gaussians
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Seeding on Gaussians

But the Gaussian case has an easy fix: use a furthest point heuristic
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Seeding on Gaussians

But the Gaussian case has an easy fix: use a furthest point heuristic

Simple Fix

Select centers using a furthest point algorithm (2-approximation 
to k-Center clustering).
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Seeding on Gaussians

But this fix is overly sensitive to outliers

Sensitive to Outliers
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Seeding on Gaussians
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Seeding on Gaussians

But this fix is overly sensitive to outliers

Sensitive to Outliers
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k-means++

What if we interpolate between the two methods?

Let D(x) be the distance between a point x and its nearest cluster
center. Chose the next point proportionally to Dα(x).

α= 0 −→ Random initialization

α=∞ −→ Furthest point heuristic

α= 2 −→ k-means++

More generally
Set the probability of selecting a point proportional to its
contribution to the overall error.

If minimizing
∑

ci

∑

x∈Ci
‖x− ci‖, sample according to D.

If minimizing
∑

ci

∑

c∈Ci
‖x− ci‖∞, sample according to D∞

(take the furthest point).

Sergei V. and Suresh V. Theory of Clustering



k-means++

What if we interpolate between the two methods?

Let D(x) be the distance between a point x and its nearest cluster
center. Chose the next point proportionally to Dα(x).

α= 0 −→ Random initialization

α=∞ −→ Furthest point heuristic

α= 2 −→ k-means++

More generally
Set the probability of selecting a point proportional to its
contribution to the overall error.

If minimizing
∑

ci

∑

x∈Ci
‖x− ci‖, sample according to D.

If minimizing
∑

ci

∑

c∈Ci
‖x− ci‖∞, sample according to D∞

(take the furthest point).

Sergei V. and Suresh V. Theory of Clustering



k-means++

What if we interpolate between the two methods?

Let D(x) be the distance between a point x and its nearest cluster
center. Chose the next point proportionally to Dα(x).

α= 0 −→ Random initialization

α=∞ −→ Furthest point heuristic

α= 2 −→ k-means++

More generally
Set the probability of selecting a point proportional to its
contribution to the overall error.

If minimizing
∑

ci

∑

x∈Ci
‖x− ci‖, sample according to D.

If minimizing
∑

ci

∑

c∈Ci
‖x− ci‖∞, sample according to D∞

(take the furthest point).

Sergei V. and Suresh V. Theory of Clustering



k-means++

What if we interpolate between the two methods?

Let D(x) be the distance between a point x and its nearest cluster
center. Chose the next point proportionally to Dα(x).

α= 0 −→ Random initialization

α=∞ −→ Furthest point heuristic

α= 2 −→ k-means++

More generally
Set the probability of selecting a point proportional to its
contribution to the overall error.

If minimizing
∑

ci

∑

x∈Ci
‖x− ci‖, sample according to D.

If minimizing
∑

ci

∑

c∈Ci
‖x− ci‖∞, sample according to D∞

(take the furthest point).

Sergei V. and Suresh V. Theory of Clustering



k-means++

What if we interpolate between the two methods?

Let D(x) be the distance between a point x and its nearest cluster
center. Chose the next point proportionally to Dα(x).

α= 0 −→ Random initialization

α=∞ −→ Furthest point heuristic

α= 2 −→ k-means++

More generally
Set the probability of selecting a point proportional to its
contribution to the overall error.

If minimizing
∑

ci

∑

x∈Ci
‖x− ci‖, sample according to D.

If minimizing
∑

ci

∑

c∈Ci
‖x− ci‖∞, sample according to D∞

(take the furthest point).

Sergei V. and Suresh V. Theory of Clustering



k-means++

What if we interpolate between the two methods?

Let D(x) be the distance between a point x and its nearest cluster
center. Chose the next point proportionally to Dα(x).

α= 0 −→ Random initialization

α=∞ −→ Furthest point heuristic

α= 2 −→ k-means++

More generally
Set the probability of selecting a point proportional to its
contribution to the overall error.

If minimizing
∑

ci

∑

x∈Ci
‖x− ci‖, sample according to D.

If minimizing
∑

ci

∑

c∈Ci
‖x− ci‖∞, sample according to D∞

(take the furthest point).

Sergei V. and Suresh V. Theory of Clustering



Example of k-means++

If the data set looks Gaussian. . .k-Means++

56
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Example of k-means++

If the data set looks Gaussian. . .k-Means++
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Example of k-means++

If the outlier should be its own cluster . . .k-Means++
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Example of k-means++

If the outlier should be its own cluster . . .k-Means++
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Analyzing k-means++

What can we say about performance of k-means++?

Theorem (AV07)
This algorithm always attains an O(log k) approximation in
expectation

Theorem (ORSS06)
A slightly modified version of this algorithm attains an O(1)
approximation if the data is ‘nicely clusterable’ with k clusters.
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Nice Clusterings

What do we mean by ‘nicely clusterable’?

Intuitively, X is nicely clusterable if going from k− 1 to k clusters
drops the total error by a constant factor.

Definition

A pointset X is (k,ε)-separated if φ∗k(X)≤ ε
2φ∗k−1(X).
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Why does this work?

Intuition
Look at the optimum clustering. In expectation:

1 If the algorithm selects a point from a new OPT cluster, that
cluster is covered pretty well

2 If the algorithm picks two points from the same OPT cluster,
then other clusters must contribute little to the overall error

As long as the points are reasonably well separated, the first
condition holds.

Two theorems
Assume the points are (k,ε)-separated and get an O(1)
approximation.

Make no assumptions about separability and get an O(log k)
approximation.
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Summary

k-means++ Summary:
To select the next cluster, sample a point in proportion to its
current contribution to the error

Works for k-means, k-median, other objective functions

Universal O(log k) approximation, O(1) approximation under
some assumptions

Can be implemented to run in O(nkd) time (same as a single
k-means step)

But does it actually work?
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Large Evaluation
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Typical Run

KM++ v. KM v. KM-Hybrid

600

700

800

900

1000

1100

1200

1300

0 50 100 150 200 250 300 350 400 450 500

Stage

E
r
r
o

r LLOYD

HYBRID

KM++

Sergei V. and Suresh V. Theory of Clustering



Other Runs

KM++ v. KM v. KM-Hybrid
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Convergence

How fast does k-means converge?
It appears the algorithm converges in under 100 iterations (even
faster with smart initialization).
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Convergence

How fast does k-means converge?
It appears the algorithm converges in under 100 iterations (even
faster with smart initialization).

Theorem (V09)

There exists a pointset X in R2 and a set of initial centers C so that
k-means takes 2Ω(k) iterations to converge when initialized with C .
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Theory vs. Practice

Finding the disconnect
In theory:

k-means might run in exponential time

In practice:

k-means converges after a handful of iterations

It works in practice but it does not work in theory!
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Finding the disconnect

Robustness of worst case examples
Perhaps the worst case examples are too precise, and can never
arise out of natural data

Quantifying the robustness
If we slightly perturb the points of the example:

The optimum solution shouldn’t change too much

Will the running time stay exponential?
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Small Perturbations

k-Means Convergence

Huge gap between worst-case and observed results.

     Check how fragile the worst case is. 

Add a little bit of noise to the data before running the 
algorithm

28
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Small Perturbations

k-Means Convergence

Huge gap between worst-case and observed results.

     Check how fragile the worst case is. 

Add a little bit of noise to the data before running the 
algorithm

Optimum solution barely changes
29
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Smoothed Analysis

Perturbation

To each point x ∈ X add independent noise drawn from N(0,σ2).

Definition
The smoothed complexity of an algorithm is the maximum expected
running time after adding the noise:

max
X
Eσ[Time(X +σ)]
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Smoothed Analysis

Theorem (AMR09)
The smoothed complexity of k-means is bounded by

O

�

n34k34d8D6 log4 n

σ6

�

Notes

While the bound is large, it is not exponential (2k� k34 for
large enough k)

The (D/σ)6 factor shows the bound is scale invariant
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Smoothed Analysis

Comparing bounds
The smoothed complexity of k-means is polynomial in n, k and D/σ

where D is the diameter of X, whereas the worst case complexity of
k-means is exponential in k

Implications
The pathological examples:

Are very brittle

Can be avoided with a little bit of random noise
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k-means Summary

Running Time
Exponential worst case running time

Polynomial typical case running time

Solution Quality
Arbitrary local optimum, even with many random restarts

Simple initialization leads to a good solution
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Large Datasets

Implementing k-means++

Initialization:

Takes O(nd) time and one pass over the data to select the next
center

Takes O(nkd) time total

Overall running time:

Each round of k-means takes O(nkd) running time

Typically finish after a constant number of rounds

Large Data
What if O(nkd) is too much, can we parallelize this algorithm?
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Parallelizing k-means

Approach
Partition the data:

Split X into X1, X2, . . . , Xm of roughly equal size.

In parallel compute a clustering on each partition:

Find C j = {Cj
1, . . . , Cj

k}: a good clustering on each partition,

and denote by wj
i the number of points in cluster Cj

i.

Cluster the clusters:

Let Y = ∪1≤j≤mC j. Find a clustering of Y, weighted by the

weights W = {wj
i}.
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Parallelization Example

Given X
Speed Up: Intuition

70
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Parallelization Example

Partition the dataset

Speed Up: Intuition
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Parallelization Example

Cluster each partition separately
Speed Up: Intuition
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Parallelization Example

Cluster the clusters

Speed Up: Intuition
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Parallelization Example

Cluster the clusters

Speed Up: Intuition
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Cluster the clusters

Speed Up: Intuition
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Parallelization Example

Final clustering:
Speed Up: Intuition
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Parallelization Example

Final clustering:
Speed Up: Intuition
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Analysis

Quality of the solution
What happens when we approximate the approximation?

Suppose the algorithm in phase 1 gave a β-approximate
solution to its input

Algorithm in phase 2 gave a γ-approximate solution to its
(smaller) input

Theorem (GNMO00, AJM09)
The two phase algorithm gives a 4γ(1+ β) + 2β approximate
solution.
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Analysis

Running time
Suppose we partition the input across m different machines.

First phase running time: O(nkd
m
).

Second phase running time O(mk2d).

Sergei V. and Suresh V. Theory of Clustering



Improving the algorithm

Approximation Guarantees

Using k-means++ sets β = γ= O(log k) and leads to a O(log2 k)
approximation.

Improving the Approximation
Must improve the approximation guarantee of the first round, but
can use a larger k to ensure every cluster is well summarized.

Theorem (ADK09)
Running k-means++ initialization for O(k) rounds leads to a O(1)
approximation to the optimal solution (but uses more centers than
OPT).
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Two round k-means++

Final Algorithm
Partition the data:

Split X into X1, X2, . . . , Xm of roughly equal size.

Compute a clustering using `= O(k) centers each partition:

Find C j = {Cj
1, . . . , Cj

`
} using k-means++ on each partition,

and denote by wj
i the number of points in cluster Cj

i.

Cluster the clusters.

Let Y = ∪1≤j≤mC j be a set of O(`m) points. Use k-means++

to cluster Y, weighted by the weights W = {wj
i}.

Theorem
The algorithm achieves an O(1) approximation in time
O(nkd

m
+mk2d)
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Summary

Before...
k-means used to be a prime example of the disconnect between
theory and practice – it works well, but has horrible worst case
analysis

...and after
Smoothed analysis explains the running time and rigorously
analyzed initializations routines help improve clustering quality.

Sergei V. and Suresh V. Theory of Clustering



Outline

Outline
I Euclidean Clustering and k-means algorithm

What to do to select initial centers (and what not to do)
How long does k-means take to run in theory, practice and
theoretical practice
How to run k-means on large datasets

II Bregman Clustering and k-means

Bregman Clustering as generalization of k-means
Performance Results

III Stability

How to relate closeness in cost function to closeness in
clusters.
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Clustering With Non-Euclidean Metrics
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Application I: Clustering Documents

Kullback-Leibler distance:

D(p, q) =
∑

i

pi log
pi

qi
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Application II: Image Analysis

Kullback-Leibler distance:

D(p, q) =
∑

i

pi log
pi

qi
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Application III: Speech Analysis

Itakuro-Saito distance:

D(p, q) =
∑

i

pi

qi
− log

pi

qi
− 1
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Bregman Divergences

Definition

Let φ : Rd→ R be a strictly convex function. The Bregman
divergence dφ is defined as

Dφ(x ‖ y) = φ(x)−φ(y)− 〈∇φ(y), x− y〉

Examples:

Kullback-Leibler: φ(x) =
∑

xi ln xi− xi, Dφ(x ‖ y) =
∑

xi ln
xi

yi

Itakura-Saito: φ(x) =−
∑

ln xi, Dφ(x ‖ y) =
∑

i
xi

yi
− log xi

yi
− 1

`2
2: φ(x) = 1

2
‖x‖2, Dφ(x ‖ y) = ‖x− y‖2
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Overview

k-means clustering ≡ Bregman clustering

The algorithm works the same way.

Same (bad) worst-case behavior

Same (good) smoothed behavior

Same (good) quality guarantees, with correct initialization

Sergei V. and Suresh V. Theory of Clustering



Properties

p

q

D(q‖p)

D(p‖q)

Dφ(x ‖ y) = φ(x)−φ(y)− 〈∇φ(y), x− y〉

Asymmetry: In general, Dφ(p ‖ q) 6= Dφ(q ‖ p)
No triangle inequality: Dφ(p ‖ q) +Dφ(q ‖ r) can be less than
Dφ(p ‖ r) !

How can we now do clustering ?
Sergei V. and Suresh V. Theory of Clustering



Breaking down k-means

Initialize cluster centers
while not converged do

Assign points to nearest cluster center

Find new cluster center by averaging points assigned together
end while

Key Point
Setting cluster center as centroid minimizes the average squared
distance to center
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Bregman Centroids

Problem

Given points x1, . . . xn ∈ Rd, find c such that
∑

i

Dφ(xi ‖ c)

is minimized.

Answer

c=
1

n

∑

xi

Independent of φ[BMDG05] !
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Bregman k-means

Initialize cluster centers
while not converged do

Assign points to nearest cluster center (by measuring
Dφ(x ‖ c))
Find new cluster center by averaging points assigned together

end while

Key Point
Setting cluster center as centroid minimizes average Bregman
divergence to center
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Convergence

Lemma ([BMDG05])
The (Bregman) k-means algorithm converges in cost.

Euclidean distance:
The quantity

∑

C

∑

x∈C

‖x− center(C)‖2

decreases with each iteration of
k-means

Bregman divergence: Bregman
Information:

∑

C

∑

x∈C

Dφ(x ‖ center(C))

decreases with each iteration of
the Bregman k-means algorithm.
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EM and Soft Clustering

Expectation maximization:
Initialize density parameters and means for k distributions
while not converged do

For distribution i and point x, compute conditional probability
p(i|x) that x was drawn from i (by Bayes rule)
For each distribution i, recompute new density parameters
and means (via maximum likelihood)

end while

This yields a soft clustering of points to “clusters”

Originally used for mixtures of Gaussians.

Sergei V. and Suresh V. Theory of Clustering



Exponential Families And Bregman Divergences

Definition (Exponential Family)
Parametric family of distributions pΨ,θ is an exponential family if
each density is of the form

pΨ,θ = exp(〈x,θ 〉 −Ψ(θ))p0(x)

with Ψ convex.

Let φ(t) = Ψ∗(t) be the Legendre-Fenchel dual of Ψ(x):

φ(t) = sup
x

�

〈x, t〉 −Ψ(x)
�

Theorem ([BMDG05])

pΨ,θ = exp(−Dφ(x ‖ µ))bφ(x)

where µ is the expectation parameter ∇Ψ(θ)
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EM: Euclidean and Bregman

Expectation maximization:
Initialize density parameters and means for k distributions
while not converged do

For distribution i and point x, compute conditional probability
p(i|x) that x was drawn from i (by Bayes rule)
For each distribution i, recompute new density parameters
and means (via maximum likelihood)

end while

Choosing the corresponding Bregman divergence Dφ(· ‖ ·),φ =Ψ∗

gives mixture density estimation for any exponential family pΨ,θ .

Sergei V. and Suresh V. Theory of Clustering



Performance Analysis
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Performance Analysis

Two questions:

Problem (Rate of convergence)
Given an arbitrary set of n points in d dimensions, how long does it
take for (Bregman) k-means to converge ?

Problem (Quality of Solution)
Let OPT denote the optimal clustering that minimizes the average
sum of (Bregman) distances to cluster centers. How close to OPT is
the solution returned by (Bregman) k-means ?
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Convergence of k-means

Parameters: n, k, d.

, Good news

k-means always converges in O(nkd) time.

/ Bad news

k-means can take time 2Ω(k) to converge:

Even if d= 2, i.e in the plane

Even if centers are chosen from the initial data
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Convergence of Bregman k-means

Euclidean distance:
k-means can take time 2Ω(k) to
converge:

Even if d= 2, i.e in the
plane

Even if centers are chosen
from the initial data

Bregman divergence:
For some Bregman divergences,
k-means can take time 2Ω(k) to
converge[MR09]:

Even if d= 2, i.e in the
plane

Even if centers are chosen
from the initial data
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Proof Idea

"Well behaved" Bregman divergences look "locally Euclidean":

{x|‖x− c‖2 ≤ 1}

c

{x | Dφ(x, c) ≤ 1}

c

Take a bad Euclidean instance and shrink it to make it local.

Sergei V. and Suresh V. Theory of Clustering



Smoothed Analysis

Real inputs aren’t worst-case!

k-Means Convergence

Huge gap between worst-case and observed results.

     Check how fragile the worst case is. 

Add a little bit of noise to the data before running the 
algorithm

28
Analyze expected run-time over perturbations.
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Smoothed Analysis

Real inputs aren’t worst-case!

k-Means Convergence

Huge gap between worst-case and observed results.

     Check how fragile the worst case is. 

Add a little bit of noise to the data before running the 
algorithm

Optimum solution barely changes
29

Analyze expected run-time over perturbations.
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k-means: Worst-case vs Smoothed

Theorem
Smoothed complexity of k-means using Gaussian noise with variance
σ is polynomial in n and 1/σ.

Compare this to worst-case lower bound of 2Θ(n)
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Bregman Smoothing

Normal smoothing doesn’t work !

∆n = {(x1, . . . xn) | ∑xi = 1}
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Bregman smoothing

More general notion of smoothing:

perturbation should stay close to a hyperplane

density of perturbation is proportional to 1/σd
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Bregman smoothing: Results

Theorem ([MR09])
For “well-behaved” Bregman divergences, smoothed complexity is
bounded by poly(n

p
k, 1/σ) and kkdpoly(n, 1/σ).

This is in comparison to worst-case bound of 2Ω(n).
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Performance Analysis

Two questions:

Problem (Rate of convergence)
Given an arbitrary set of n points in d dimensions, how long does it
take for (Bregman) k-means to converge ?
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Optimality and Approximations

Problem
Given x1, . . . , xn, and parameter k, find k centers c1, . . . , ck such that

n
∑

x=1

k
min
j=1

d(xi, cj)

is minimized.

Problem (c-approximation)
Let OPT be the optimal solution above. Fix c> 0. Find centers
c′1, . . . c′k such that if A=

∑n
x=1 mink

j=1 d(xi, c′j), then

OPT≤ A≤ c ·OPT

Sergei V. and Suresh V. Theory of Clustering



Optimality and Approximations

Problem
Given x1, . . . , xn, and parameter k, find k centers c1, . . . , ck such that

n
∑

x=1

k
min
j=1

d(xi, cj)

is minimized.

Problem (c-approximation)
Let OPT be the optimal solution above. Fix c> 0. Find centers
c′1, . . . c′k such that if A=

∑n
x=1 mink

j=1 d(xi, c′j), then

OPT≤ A≤ c ·OPT

Sergei V. and Suresh V. Theory of Clustering



k-means++: Initialize carefully!

Initialization
Let distance from x to nearest cluster center be D(x)

Pick x as new center with probability

p(x)∝ D2(x)

Properties of solution:

For arbitrary data, this gives O(log n)-approximation

For “well-separated data”, this gives constant
(O(1))-approximation.
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What is ’well-separated’

Informally, data is (k,α)-well separated if the best clustering that
uses k− 1 clusters has cost that is ≥ 1/α ·OPT.
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Bregman k-means++

Initialization
Let Bregman divergence from x to nearest cluster center be
D(x)

Pick x as new center with probability

p(x)∝ D(x)

Run algorithm as before.

Theorem ([AB09, AB10])
O(1)-approximation for (k,α)-separated sets.

O(log n) approximation in general.
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Stability in clustering
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Target and Optimal clustering

C∗OPT

C

d(OPT, C∗)

dq(OPT, C)

Two measures of cost:

Distance between clusterings C ,C ∗:

d(C ,C ∗) = fraction of points on which they disagree

(Quality) distance from C to OPT:

dq(C , OPT) =
cost(C )

cost(OPT)

Can closeness in dq imply closeness in d ?

Sergei V. and Suresh V. Theory of Clustering



NP-hardness

NP-hardness is an obstacle to finding good clusterings.

k-means and k-median are NP-hard, and hard to approximate
in general graphs

k-means, k-median can be approximated in Rd but seem to
need time exponential in d

Same is true for Bregman clustering[CM08]
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Target And Optimal Clusterings

What happens if target clustering and optimal clustering are not
the same ?

C∗OPT

C

Measuring dq

The two distance functions might be incompatible.
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Stability Of Clusterings

An instance is stable if approximating the cost function gives us a
solution close to the target clustering.

View 1: If we perturb inputs, the output should not change.

View 2: If we change the distance function, output should not
change.

View 3: If we change the cost quality of solution, then output
should not change.
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Stability I: Perturbing Inputs

Well separated sets:

Data is (k,α)-well separated if the best clustering that uses k− 1
clusters has cost that is ≥ 1/α ·OPT.

Two interesting properties[ORSS06]:

All optimal clusterings mostly look the same: dq small⇒ d
small.

Small perturbations of the data don’t change this property.

Computationally, well-separatedness makes k-means work well
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Stability II: Perturbing Distance Function

Definition (α-perturbations[BL09])
A clustering instance (P, d) is α-perturbation-resilient if the optimal
clustering is identical to the optimal clustering for any (P, d′), where

d(x, y)/α≤ d′(x, y)≤ d(x, y) ·α

The smaller the α, the more resilient the instance (and the
more “stable”)

Center-based clustering problems (k-median, k-means,
k-center) can be solved optimally forp

3-perturbation-resilient inputs[ABS10]

Sergei V. and Suresh V. Theory of Clustering



Stability III: Perturbing Quality of Solution

Definition ((c,ε)-property[BBG09])
Given an input, all clusterings that are c-approximate are also
ε-close.

Surprising facts:

Finding a c-approximation in general might be NP-hard.

Finding a c-approximation here is easy !
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Proof Idea

If near-optimal clusters are close to true answer, then clusters
must be well-separated.

If clusters are well-separated, then choosing the right
threshold separates them cleanly.

Important that ALL near-optimal clusterings are close to true
answer.
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Main Result

Theorem
In polynomial time, we can find a clustering that is O(ε)-close to the
target clustering, even if finding a c-approximation is NP-hard.
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Generalization

Strong assumption: ALL near-optimal clusterings are close to true
answer.
Variant[ABS10]: Only consider Voronoi-based clusterings, where
each point is assigned to nearest cluster center.

Same results hold as for previous case.
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Wrap Up
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We understand much more about the behavior of k-means,
and why it does well in practice.

A simple initialization procedure for k-means is both effective
and gives provable guarantees

Much of the theoretical machinery around k-means works for
the generalization to Bregman divergences.

New and interesting questions on the relationship between
the target clustering and cost measures used to get near it:
ways of subverting NP-hardness.
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Thank You

Slides for this tutorial can be found at

http://www.cs.utah.edu/~suresh/web/2010/05/08/
new-developments-in-the-theory-of-clustering-tutorial/

Research on this tutorial was partially supported by NSF CCF-0953066
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