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INTRODUCTION

e \Web search is a non-interactive system.

e Exceptions are spell checking and query
suggestions

e By design search engines are stateless

e But many searches become interactive:
® query, get results back, reformulate query...

e (Can use interaction to retrieve user intent




RELEVANCE FEEDBACK
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USING THIS INFORMATION

e (lassical methods: e.g. Rocchio’s term reweighing
[TFIDF) + cosine similarity scores.

e There is more information here: what can the
structure of the web tell us?




HYPOTHESIS

e For a given query:

e Relevant pages tend to point to other relevant
pages.

= Similar to Pagerank.




HYPOTHESIS

e For a given query:

e Relevant pages tend to point to other relevant
pages.

= Similar to Pagerank.

* |rrelevant pages tend to be pointed to by other
Irrelevant pages.

= “Reverse Pagerank”

= Those who point to web spam are likely to be
spammers.




DATASET

e Dataset
e 9500 queries
* For each query 5 - 30 result URLs

e each URL rated on a scale of 1 (poor) to 5
(perfect)

e Total 130,000 [query, url, rating] triples

e \WiIll use this data to simulate relevance feedback

e (Only reveal the ratings for some URLs




HYPOTHESIS VALIDATION

* Relevance distribution B Baseline

of all URLs in the

dataset -

0.3
0.2
Gt
0 I =
1 2 3 4 5




HYPOTHESIS VALIDATION
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PERCOLATING THE RATINGS

e (alculate the effect on u«

e Begin with a probability distribution on
relevance of u (Baseline histogram]

e For all highly rated documents v
e [f there exists a short v — u path, update w .
e For all irrelevant documents v
e [f there exists a short © — v path, update u .

e Combine the static score together with the
relevance information




ALGORITHM PARAMETERS

e [f there exists a "short” path...
e Strength of signal decreases with length
e Recall of the system increases with length
e Computational considerations

* | ooked at paths of 4 hops or less




ALGORITHM PARAMETERS

e [f there exists a "short” path...
e Strength of signal decreases with length
e Recall of the system increases with length
e Computational considerations
* | ooked at paths of 4 hops or less
® ..update u.

* Maintain a probability distribution on the
relevance of .




EXPERIMENTAL SETUP

e For each query in the dataset split the URLs into
* Train: the relevance is revealed to the algorithm

e Test: Only the static score is revealed

e Compare the ranking of the test URLs by their
static score vs. static + RF scores.




EVALUATION MEASURE

Measure: NDCG (Normalized Discounted
Cumulative Gain):
27"el(fi) Sk

e ; log(1 + )

\Why NDCG?
® sensitive to the position of highest rated page

® [og-discounting of results

* Normalized for different lengths lists




RESULT SUMMARY

e NDCG change for H Al W Rocchio
three subsets of
pages. 4

e Complete Dataset 3

.

Roccio; Demotes the best result




RESULT SUMMARY
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RESULT SUMMARY

NDCG change for m Al B Rocchio
three subsets of

pages. 4

Complete Dataset 3

Only queries with 2

NDCG < 100 :

Only queries with =

NDCG < 85 " IR

Increased performance for
harder queries




RESULT SUMMARY (2)

Recall for the three
datasets.
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RESULTS SUMMARY (3)

e Many more experiments:

e How does the number of URLs rated affect the
results?

e Are some URLs better to rate than others?

e (Can we predict when recall will be low?




FUTURE WORK

Hybrid Systems: Combining text based and link
based RF approaches

Learning feedback based on clickthrough data

Large scale experimental evaluation of different
RF approaches




THANK YOU

ANY QUESTIONS?




