
Top-k Aggregation
Using Intersections

Ravi Kumar

Kunal Punera

Torsten Suel

Sergei Vassilvitskii

Yahoo! Research

Yahoo! Research

Yahoo! Research / Brooklyn Poly

Yahoo! Research

Top-k retrieval

Given a set of documents:

And a query: “New York City”

Find the k documents best matching the query.

2

Doc 1

Doc 2
Doc 4

Doc 3
Doc 5

Doc 6

Top-k retrieval

Given a set of documents:

And a query: “New York City”

Find the k documents best matching the query.

Assume: decomposable scoring function:

Score(“New York City”) = Score(“New”) + Score(“York”)+Score(“City”).

3

Doc 1

Doc 2
Doc 4

Doc 3
Doc 5

Doc 6

Introduction: Postings Lists

Data Structures behind top-k retrieval.

Create posting lists:

4

Doc ID Score

Introduction: Postings Lists

Data Structures behind top-k retrieval.

Create posting lists:

Query: New York City

New...

York...

City...

5

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

Doc ID Score

Introduction: Postings Lists

(Offline) Sort each list by decreasing score.

Query: New York City

New...

York...

City...

Retrieval: Start with document with highest score in any list.

 Look up its score in other lists.

Top:

6

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 5.2+3.1+0.2=8.5

Introduction: Postings Lists

Data Structures behind top-k retrieval:

Arrange each list by decreasing score.

Query: New York City

New...

York...

City...

Continue with next highest score.

Top: Candidate:

7

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.5 10 4.1+2.0+0.0 = 6.1

Introduction: Postings Lists

Data Structures behind top-k retrieval:

Arrange each list by decreasing score.

Query: New York City

New...

York...

City...

Continue with next highest score.

Top: Candidate:

7

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.5 10 4.1+2.0+0.0 = 6.1

Introduction: Postings Lists

Data Structures behind top-k retrieval:

Arrange each list by decreasing score.

Query: New York City

New...

York...

City...

Continue with next highest score.

Top: Candidate:

8

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.5 5 4.0+0.5+0.1=4.6

Introduction: Postings Lists

Data Structures behind top-k retrieval:

Arrange each list by decreasing score.

Query: New York City

New...

York...

City...

Continue with next highest score.

Top: Candidate:

8

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.5 5 4.0+0.5+0.1=4.6

Introduction: Postings Lists

Data Structures behind top-k retrieval:

Arrange each list by decreasing score.

Query: New York City

New...

York...

City...

When can we stop?

Top: Best Possible Remaining:

9

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.5 * 3.3+1.5+1.0=5.8

Introduction: Postings Lists

Data Structures behind top-k retrieval:

Arrange each list by decreasing score.

Query: New York City

New...

York...

City...

When can we stop?

Top: Best Possible Remaining:

9

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.5 * 3.3+1.5+1.0=5.8

Threshold Algorithm

10

Threshold Algorithm (TA)

– Instance optimal (in # of accesses) [Fagin et al]

– Performs random accesses

No-Random-Access Algorithm (NRA)

– Similar to TA

– Keep a list of all seen results

– Also instance optimal

Introducing bi-grams

11

Introducing bi-grams

Certain words often occur as phrases. Word association:

11

Introducing bi-grams

Certain words often occur as phrases. Word association:

– Sagrada ...

11

Introducing bi-grams

Certain words often occur as phrases. Word association:

– Sagrada ...

– Barack ...

11

Introducing bi-grams

Certain words often occur as phrases. Word association:

– Sagrada ...

– Barack ...

– Latent Semantic...

11

Introducing bi-grams

Certain words often occur as phrases. Word association:

– Sagrada ...

– Barack ...

– Latent Semantic...

Pre-compute posting lists for intersections

– Note, this is not query-result caching

Tradeoffs:

– Space: extra space to store the intersection (though it’s smaller)

– Time: Less time upon retrieval

12

Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.

[New] [York] [City] [New York] [New City] [York City]

13

Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.

[New] [York] [City] [New York] [New City] [York City]

New

York

City

NY

NC

YC

14

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 2.5

3 1.5

3 1.0

10 2.0

5 0.6

Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.

[New] [York] [City] [New York] [New City] [York City]

New

York

City

NY

NC

YC

Top:

15

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 2.5

3 1.5

3 1.0

10 2.0

5 0.6

9 8.5

Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.

[New] [York] [City] [New York] [New City] [York City]

New

York

City

NY

NC

YC

Top:

16

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 2.5

3 1.5

3 1.0

10 2.0

5 0.6

9 8.5 Can we stop now?

TA Bounds Informal

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element:

 N + Y + C = 10.1

17

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 2.5

3 1.5

3 1.0

10 2.0

5 0.6

9 8.5

TA Bounds Informal

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element:

 N + Y + C = 10.1
 NY + C = 6.5

18

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 2.5

3 1.5

3 1.0

10 2.0

5 0.6

9 8.5

TA Bounds Informal

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element:

 N + Y + C = 10.1
 NY + C = 6.5
 NC + Y = 8.4
 YC + N = 10.1

19

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 2.5

3 1.5

3 1.0

10 2.0

5 0.6

9 8.5

TA Bounds Informal

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element:

 N + Y + C = 10.1
 NY + C = 6.5
 NC + Y = 8.4
 YC + N = 10.1
 1/2 (NY + YC + NC) = 7.45

20

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 2.5

3 1.5

3 1.0

10 2.0

5 0.6

9 8.5

TA Bounds Informal

21

9 5.2

10 4.1

10 2.0

5 4.0

9 3.1

3 1.5

7 3.3

7 1.0

7 1.0

3 1.0

5 0.5

9 0.2

10 0.0

1 0.2

5 0.1

9 8.3

9 5.4

10 6.1

5 4.5

7 4.3

9 3.3

7 4.3

5 4.1

7 2.0

10 4.1

3 1.5

3 1.0

5 0.6

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element:

 N + Y + C = 10.1
 NY + C = 6.5
 NC + Y = 8.4
 YC + N = 10.1
 1/2 (NY + YC + NC) = 7.45

Thus best element has score < 6.5. So we are done!

9 8.5

3 2.5 10 2.0

TA: Bounds Formal

Can we write the bounds on the next element?

 : score of document x in list i.

 : bound on the score in list i (score of next unseen document)

Combinations: bound on

Simple LP for bound on unseen elements:

In theory: Easy! Just solve an LP every time.

In reality: You’re kidding, right?

22

xi

bi

bij xi + xj

max

∑

i

xi

xi ≤ bi

xi + xj ≤ bij

Solving the LP

Need to solve the LP: Same as solving the dual

23

max

∑

i

xi

xi ≤ bi

xi + xj ≤ bij

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

The dual as a graph

24

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

Add one node for each with weight yi

Add one edge for each with weight yij

5.2

5.1

3.3
1.2

3.7

6.1

bij

bi

1.2

5.4

3.3

4.2

The dual as a graph

24

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

Add one node for each with weight yi

Add one edge for each with weight yij

5.2

5.1

3.3
1.2

3.7

6.1

bij

bi

1.2

5.4

3.3

4.2
Single Lists

The dual as a graph

24

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

Add one node for each with weight yi

Add one edge for each with weight yij

5.2

5.1

3.3
1.2

3.7

6.1

bij

bi

1.2

5.4

3.3

4.2

Paired Lists

The dual as a graph

24

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

Add one node for each with weight yi

Add one edge for each with weight yij

Goal: select a (fractional) subset of edges and vertices, so that each vertex
has (in total) a weight of 1 selected.

5.2

5.1

3.3
1.2

3.7

6.1

bij

bi

1.2

5.4

3.3

4.2

The dual as a graph

25

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

Add one node for each with weight yi

Add one edge for each with weight yij

Goal: select a (fractional) subset of edges and vertices, so that each vertex
has (in total) a weight of 1 selected.

5.2

5.1

3.3
1.2

3.7

6.1

bij

bi

1.2

5.4

3.3

4.2

Solving the problem...

Goal: select a subset of edges and vertices, so that each vertex has a
weight of 1 selected.

This looks like the classical edge cover problem only with vertices.

26

5.2

5.1

3.3
1.2

3.7

6.1

1.2

5.4

3.3

4.2

Solving the problem...

Goal: select a subset of edges and vertices, so that each vertex has a
weight of 1 selected.

This looks like the classical edge cover problem only with vertices.

We show how to solve this problem by computing min cost matching.

Running time: O(nm)

Checking all combinations: O(n!)

27

5.2

5.1

3.3
1.2

3.7

6.1

1.2

5.4

3.3

4.2

Outline

Introduction to TA

Solving the ‘upper bound’ problem

Empirical Results

Conclusion

28

Empirical Analysis

Datasets:

– Trec (25M pages), 100k queries

– Yahoo! (16M pages), 10k queries (random subset in each)
• result caching enabled

Metrics:

– Number of Random and Sequential Accesses

– Index size

Which bigrams to select?

– Query oblivious manner

– Greedily based on size of intersection versus size of original lists

29

Empirical Results

Baseline: traverse full list

INT: Use intersection lists, but still no Early Termination

ET: Use early termination, but without intersection lists

ET + INT: Use both early termination & intersection lists

Total index growth: 25%

30

0

15,000

30,000

45,000

60,000

Number of sequential accesses vs. Algorithm

Baseline INT ET ET + INT

Accesses

Empirical Results (2)

Immediate benefit, but diminishing returns as extra intersections added.

31

0

4,500

9,000

13,500

18,000

Number of sequential accesses vs. Index size

0% 25% 50% 100%
Index size increase

Accesses

Results (2)

We prove that in worst case we must examine all of the lists to find the
bound. (Otherwise not instance-optimal)

But is this just a theoretical result?

What if you use a simpler heuristics that focus only on intersection lists?

– For 89% of the queries:
• Average savings 4500 random accesses

– For the 11% of the remaining queries
• Average cost 127,000 random accesses

So the worst case does occur in practice.

32

Conclusions

Give a formal analysis of how to use pre-aggregated posting lists

– Solving an LP is unreasonable

Show empirically that a simple selection rule for intersections gives
performance improvements.

Many questions remain:

– Extending results to tri-grams (Solving hyperedge cover)

– Better ways of selecting intersections

– ...

33

Thank you

