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Top-k retrieval

Given a set of documents:

And a query: “New York City”

Find the k documents best matching the query. 
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Top-k retrieval

Given a set of documents:

And a query: “New York City”

Find the k documents best matching the query. 

Assume: decomposable scoring function:

Score(“New York City”) = Score(“New”) + Score(“York”)+Score(“City”). 
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Introduction: Postings Lists 

Data Structures behind top-k retrieval. 

Create posting lists: 
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Data Structures behind top-k retrieval. 

Create posting lists: 

Query: New York City 

New...

York...

City...
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Introduction: Postings Lists 

(Offline) Sort each list by decreasing score. 

Query: New York City 

New...

York...

City...

Retrieval: Start with document with highest score in any list. 

                 Look up its score in other lists. 

Top:
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Introduction: Postings Lists 

Data Structures behind top-k retrieval:

Arrange each list by decreasing score. 

Query: New York City 

New...

York...

City...

Continue with next highest score. 

Top:                      Candidate:  
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Introduction: Postings Lists 

Data Structures behind top-k retrieval:

Arrange each list by decreasing score. 

Query: New York City 

New...

York...

City...

When can we stop?

Top:                      Best Possible Remaining:  
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Threshold Algorithm

10

Threshold Algorithm (TA) 

– Instance optimal (in # of accesses) [Fagin et al]

– Performs random accesses

No-Random-Access Algorithm (NRA)

– Similar to TA

– Keep a list of all seen results 

– Also instance optimal



Introducing bi-grams
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Introducing bi-grams

Certain words often occur as phrases. Word association:

– Sagrada ...

– Barack ... 

– Latent Semantic... 

Pre-compute posting lists for intersections

– Note, this is not query-result caching

Tradeoffs:

– Space: extra space to store the intersection (though it’s smaller)

– Time: Less time upon retrieval
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Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.

[New] [York] [City] [New York] [New City] [York City]
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Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.

[New] [York] [City] [New York] [New City] [York City]

New
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City

NY

NC

YC
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Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.
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Bi-grams & TA

Query: New York City

All aggregations -- 6 lists.

[New] [York] [City] [New York] [New City] [York City]

New

York

City

NY

NC

YC

Top:                       
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TA Bounds Informal

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element: 

   N + Y + C = 10.1
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TA Bounds Informal

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element: 

   N + Y + C = 10.1
   NY + C = 6.5
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TA Bounds Informal

New

York

City

NY

NC

YC

Top:

Bounds on any unseen element: 

   N + Y + C = 10.1
   NY + C = 6.5
   NC + Y = 8.4
   YC + N = 10.1
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Top:

Bounds on any unseen element: 

   N + Y + C = 10.1
   NY + C = 6.5
   NC + Y = 8.4
   YC + N = 10.1
   1/2 (NY + YC + NC) = 7.45
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TA Bounds Informal
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Thus best element has score < 6.5. So we are done!
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TA: Bounds Formal

Can we write the bounds on the next element? 

         : score of document x in list i. 

         : bound on the score in list i (score of next unseen document)

Combinations:      bound on 

Simple LP for bound on unseen elements:

In theory: Easy! Just solve an LP every time. 

In reality: You’re kidding, right? 
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Solving the LP 

Need to solve the LP:                         Same as solving the dual      
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The dual as a graph

24

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

Add one node for each      with weight       yi

Add one edge for each      with weight       yij

5.2

5.1

3.3
1.2

3.7

6.1

bij

bi

1.2

5.4

3.3

4.2



The dual as a graph

24

min
∑

yijbij +
∑

yibi

yi +
∑

j

yij ≥ 1

yi, yij ≥ 0

Add one node for each      with weight       yi

Add one edge for each      with weight       yij

5.2

5.1

3.3
1.2

3.7

6.1

bij

bi

1.2

5.4

3.3

4.2
Single Lists



The dual as a graph
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The dual as a graph
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The dual as a graph
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Solving the problem...

Goal: select a subset of edges and vertices, so that each vertex has a 
weight of 1 selected.

This looks like the classical edge cover problem only with vertices. 
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Solving the problem...

Goal: select a subset of edges and vertices, so that each vertex has a 
weight of 1 selected.

This looks like the classical edge cover problem only with vertices. 

We show how to solve this problem by computing min cost matching.  

Running time: O(nm)

Checking all combinations:  O(n!) 
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Outline

Introduction to TA

Solving the ‘upper bound’ problem

Empirical Results

Conclusion
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Empirical Analysis

Datasets:

– Trec (25M pages), 100k queries 

– Yahoo! (16M pages), 10k queries (random subset in each)
• result caching enabled 

Metrics:

– Number of Random and Sequential Accesses

– Index size

Which bigrams to select?

– Query oblivious manner

– Greedily based on size of intersection versus size of original lists
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Empirical Results

Baseline: traverse full list

INT: Use intersection lists, but still no Early Termination

ET: Use early termination, but without intersection lists

ET + INT: Use both early termination & intersection lists

Total index growth: 25%
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Empirical Results (2)

Immediate benefit, but diminishing returns as extra intersections added.
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Results (2)

We prove that in worst case we must examine all of the lists to find the 
bound. (Otherwise not instance-optimal)

But is this just a theoretical result?

What if you use a simpler heuristics that focus only on intersection lists?

– For 89% of the queries:
• Average savings 4500 random accesses

– For the 11% of the remaining queries
• Average cost 127,000 random accesses

So the worst case does occur in practice. 
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Conclusions

Give a formal analysis of how to use pre-aggregated posting lists

– Solving an LP is unreasonable

Show empirically that a simple selection rule for intersections gives 
performance improvements. 

Many questions remain:

– Extending results to tri-grams (Solving hyperedge cover)

– Better ways of selecting intersections

– ...
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Thank you


