Counting Triangles & The Curse of the Last Reducer

Siddharth Suri Sergei Vassilvitskii Yahoo! Research

Clustering Coefficient:

Given an undirected graph G = (V, E)

cc(v) = fraction of v's neighbors who are neighbors themselves

$$=\frac{|\{(u,w)\in E|u\in\Gamma(v)\wedge w\in\Gamma(v)\}|}{\binom{d_v}{2}}$$

Clustering Coefficient:

Given an undirected graph G = (V, E)

cc(v) = fraction of v's neighbors who are neighbors themselves

$$=\frac{|\{(u,w)\in E|u\in\Gamma(v)\wedge w\in\Gamma(v)\}|}{\binom{d_v}{2}}$$

$$cc() = N/A$$

$$cc () = 1/3$$

Clustering Coefficient:

Given an undirected graph G = (V, E)

cc(v) = fraction of v's neighbors who are neighbors themselves

$$= \frac{|\{(u,w) \in E | u \in \Gamma(v) \land w \in \Gamma(v)\}|}{\binom{d_v}{2}} = \frac{\#\Delta s \text{ incident on } v}{\binom{d_v}{2}}$$

$$cc() = N/A$$

$$cc () = 1/3$$

$$cc() = 1$$

$$cc() = 1$$

Why Clustering Coefficient?

Captures how tight-knit the network is around a node.

Why Clustering Coefficient?

Captures how tight-knit the network is around a node.

Network Cohesion:

- Tightly knit communities foster more trust, social norms. [Coleman '88, Portes '88]

Structural Holes:

- Individuals benefit form bridging [Burt '04, '07]

Why MapReduce?

De facto standard for parallel computation on large data

- Widely used at: Yahoo!, Google, Facebook,
- Also at: New York Times, Amazon.com, Match.com, ...
- Commodity hardware
- Reliable infrastructure
- Data continues to outpace available RAM!

Sequential Version:

```
foreach v in V
    foreach u,w in Adjacency(v)
    if (u,w) in E
        Triangles[v]++
```


Triangles[v]=0

Sequential Version:

```
foreach v in V
    foreach u,w in Adjacency(v)
    if (u,w) in E
        Triangles[v]++
```


Triangles[v]=1

Sequential Version:

```
foreach v in V
    foreach u,w in Adjacency(v)
    if (u,w) in E
        Triangles[v]++
```


Triangles[v]=1

Sequential Version:

```
foreach v in V
    foreach u,w in Adjacency(v)
    if (u,w) in E
        Triangles[v]++
```

Running time: $\sum_{v \in V} d_v^2$

Even for sparse graphs can be quadratic if one vertex has high degree.

Parallel Version

Parallelize the edge checking phase

Parallel Version

Parallelize the edge checking phase

- Map 1: For each v send $(v, \Gamma(v))$ to single machine.
- Reduce 1: Input: $\langle v; \Gamma(v) \rangle$ Output: all 2 paths $\langle (v_1, v_2); u \rangle$ where $v_1, v_2 \in \Gamma(u)$ $(\bullet, \bullet); \bullet$ $(\bullet, \bullet); \bullet$

Parallel Version

Parallelize the edge checking phase

- Map 1: For each v send $(v, \Gamma(v))$ to single machine.
- Reduce 1: Input: $\langle v; \Gamma(v) \rangle$ Output: all 2 paths $\langle (v_1, v_2); u \rangle$ where $v_1, v_2 \in \Gamma(u)$

- Map 2: Send $\langle (v_1,v_2);u\rangle$ and $\langle (v_1,v_2);\$\rangle$ for $(v_1,v_2)\in E$ to same machine.
- Reduce 2: input: $\langle (v, w); u_1, u_2, \dots, u_k, \$? \rangle$
 - Output: if \$\\$ part of the input, then: $u_i = u_i + 1/3$

$$(\bullet, \bullet); \bullet, \$ \longrightarrow \bullet + 1/3 \bullet + 1/3 \bullet + 1/3$$
 $(\bullet, \bullet); \bullet \longrightarrow$

Data skew

How much parallelization can we achieve?

- Generate all the paths to check in parallel
- The running time becomes $\max_{v \in V} d_v^2$

Data skew

How much parallelization can we achieve?

- Generate all the paths to check in parallel
- The running time becomes $\max_{v \in V} d_v^2$

Naive parallelization does not help with data skew

- Some nodes will have very high degree
- Example. 3.2 Million followers, must generate 10 Trillion (10^13) potential edges to check.
- Even if generating 100M edges per second, 100K seconds ~ 27 hours.

"Just 5 more minutes"

Running the naive algorithm on LiveJournal Graph

- 80% of reducers done after 5 min
- 99% done after 35 min

Adapting the Algorithm

Approach 1: Dealing with skew directly

- currently every triangle counted 3 times (once per vertex)
- Running time quadratic in the degree of the vertex
- Idea: Count each once, from the perspective of lowest degree vertex
- Does this heuristic work?

Adapting the Algorithm

Approach 1: Dealing with skew directly

- currently every triangle counted 3 times (once per vertex)
- Running time quadratic in the degree of the vertex
- Idea: Count each once, from the perspective of lowest degree vertex
- Does this heuristic work?

Approach 2: Divide & Conquer

- Equally divide the graph between machines
- But any edge partition will be bound to miss triangles
- Divide into overlapping subgraphs, account for the overlap

How to Count Triangles Better

Sequential Version [Schank '07]:

Does it make a difference?

Dealing with Skew

Why does it help?

- Partition nodes into two groups:
 - Low: $\mathcal{L} = \{v : d_v \leq \sqrt{m}\}$
 - High: $\mathcal{H} = \{v : d_v > \sqrt{m}\}$
- There are at most n low nodes; each produces at most O(m) paths
- There are at most $2\sqrt{m}$ high nodes
 - Each produces paths to other high nodes: O(m) paths per node

Dealing with Skew

Why does it help?

- Partition nodes into two groups:
 - Low: $\mathcal{L} = \{v : d_v \leq \sqrt{m}\}$
 - High: $\mathcal{H} = \{v : d_v > \sqrt{m}\}$
- There are at most n low nodes; each produces at most O(m) paths
- There are at most $2\sqrt{m}$ high nodes
 - Each produces paths to other high nodes: O(m) paths per node
- These two are identical!
- Therefore, no mapper can produce substantially more work than others.
- Total work is $O(m^{3/2})$, which is optimal

Partitioning the nodes:

- Previous algorithm shows one way to achieve better parallelization
- But what if even O(m) is too much. Is it possible to divide input into smaller chunks?

Graph Split Algorithm:

- Partition vertices into p equal sized groups V_1, V_2, \ldots, V_p .
- Consider all possible triples (V_i, V_j, V_k) and the induced subgraph:

$$G_{ijk} = G\left[V_i \cup V_j \cup V_k\right]$$

- Compute the triangles on each G_{ijk} separately.

Some Triangles present in multiple subgraphs:

Can count exactly how many subgraphs each triangle will be in

Analysis:

- Each subgraph has $O(m/p^2)$ edges in expectation.
- Very balanced running times

Analysis:

- Very balanced running times
- p controls memory needed per machine

Analysis:

- Very balanced running times
- p controls memory needed per machine
- Total work: $p^3 \cdot O((m/p^2)^{3/2}) = O(m^{3/2})$, independent of p

Analysis:

- Very balanced running times
- p controls memory needed per machine
- Total work: $p^3 \cdot O((m/p^2)^{3/2}) = O(m^{3/2})$, independent of p

Shuffle time increases with duplication

Overall

Naive Parallelization Doesn't help with Data Skew

Related Work

Tsourakakis et al. [09]:

- Count global number of triangles by estimating the trace of the cube of the matrix
- Don't specifically deal with skew, obtain high probability approximations.

• Becchetti et al. [08]

- Approximate the number of triangles per node
- Use multiple passes to obtain a better and better approximation

Think about data skew.... and avoid the curse

Think about data skew.... and avoid the curse

- Get programs to run faster

Think about data skew.... and avoid the curse

- Get programs to run faster
- Publish more papers

Think about data skew.... and avoid the curse

- Get programs to run faster
- Publish more papers
- Get more sleep

Think about data skew.... and avoid the curse

- Get programs to run faster
- Publish more papers
- Get more sleep

- .

Think about data skew.... and avoid the curse

- Get programs to run faster
- Publish more papers
- Get more sleep
- .
- The possibilities are endless!

Thank You