
Counting Triangles &
The Curse of the Last Reducer

Siddharth Suri

Sergei Vassilvitskii

Yahoo! Research

WWW 2011 Sergei Vassilvitskii

Why Count Triangles?

2

WWW 2011 Sergei Vassilvitskii

Why Count Triangles?

3

G = (V,E)

=
|{(u, w) ∈ E|u ∈ Γ(v) ∧ w ∈ Γ(v)}|

�dv

2

�

Clustering Coefficient:
 Given an undirected graph

 cc(v) = fraction of v’s neighbors who are neighbors themselves

WWW 2011 Sergei Vassilvitskii

Why Count Triangles?

4

G = (V,E)

=
|{(u, w) ∈ E|u ∈ Γ(v) ∧ w ∈ Γ(v)}|

�dv

2

�

cc () = N/A

cc () = 1/3

cc () = 1

cc () = 1

Clustering Coefficient:
 Given an undirected graph

 cc(v) = fraction of v’s neighbors who are neighbors themselves

WWW 2011 Sergei Vassilvitskii

Why Count Triangles?

5

G = (V,E)

=
|{(u, w) ∈ E|u ∈ Γ(v) ∧ w ∈ Γ(v)}|

�dv

2

�

cc () = N/A

cc () = 1/3

cc () = 1

cc () = 1

Clustering Coefficient:
 Given an undirected graph

 cc(v) = fraction of v’s neighbors who are neighbors themselves

 =
#∆s incident on v

�dv

2

�

WWW 2011 Sergei Vassilvitskii

Why Clustering Coefficient?

6

Captures how tight-knit the network is around a node.

vs.

cc () = 0.1 cc () = 0.5

WWW 2011 Sergei Vassilvitskii

Why Clustering Coefficient?

7

Captures how tight-knit the network is around a node.

Network Cohesion:

 - Tightly knit communities foster more trust, social norms. [Coleman
’88, Portes ’88]

Structural Holes:

 - Individuals benefit form bridging [Burt ’04, ’07]

vs.

cc () = 0.1 cc () = 0.5

WWW 2011 Sergei Vassilvitskii

Why MapReduce?

De facto standard for parallel computation on
large data
– Widely used at: Yahoo!, Google, Facebook,

– Also at: New York Times, Amazon.com, Match.com, ...

– Commodity hardware

– Reliable infrastructure

– Data continues to outpace available RAM !

8

WWW 2011 Sergei Vassilvitskii

How to Count Triangles

Sequential Version:
 foreach v in V

 foreach u,w in Adjacency(v)

 if (u,w) in E

 Triangles[v]++

9

v

Triangles[v]=0

WWW 2011 Sergei Vassilvitskii

How to Count Triangles

Sequential Version:
 foreach v in V

 foreach u,w in Adjacency(v)

 if (u,w) in E

 Triangles[v]++

10

v

u

w
Triangles[v]=1

WWW 2011 Sergei Vassilvitskii

How to Count Triangles

Sequential Version:
 foreach v in V

 foreach u,w in Adjacency(v)

 if (u,w) in E

 Triangles[v]++

11

v

u

w

Triangles[v]=1

WWW 2011 Sergei Vassilvitskii

How to Count Triangles

Sequential Version:
 foreach v in V

 foreach u,w in Adjacency(v)

 if (u,w) in E

 Triangles[v]++

Running time:

Even for sparse graphs can be quadratic if one vertex has high
degree.

12

�

v∈V

d2
v

WWW 2011 Sergei Vassilvitskii

Parallel Version

Parallelize the edge checking phase

13

WWW 2011 Sergei Vassilvitskii

Parallel Version

Parallelize the edge checking phase
– Map 1: For each send to single machine.

– Reduce 1: Input:

Output: all 2 paths where

(,); (,); (,);

14

(v,Γ(v))v

�(v1, v2);u� v1, v2 ∈ Γ(u)
�v; Γ(v)�

WWW 2011 Sergei Vassilvitskii

Parallel Version

Parallelize the edge checking phase
– Map 1: For each send to single machine.

– Reduce 1: Input:

Output: all 2 paths where

(,); (,); (,);

– Map 2: Send and to same
machine.

– Reduce 2: input:

Output: if part of the input, then:

15

(v,Γ(v))v

�(v1, v2);u� v1, v2 ∈ Γ(u)

�(v1, v2);u� �(v1, v2); $� for (v1, v2) ∈ E

�v; Γ(v)�

�(v, w); u1, u2, . . . , uk, $?�
$ ui = ui + 1/3

(,); , $ −→
(,); −→

+1/3 +1/3 +1/3

WWW 2011 Sergei Vassilvitskii

Data skew

How much parallelization can we achieve?
- Generate all the paths to check in parallel

- The running time becomes

16

max
v∈V

d2
v

WWW 2011 Sergei Vassilvitskii

Data skew

How much parallelization can we achieve?
- Generate all the paths to check in parallel

- The running time becomes

Naive parallelization does not help with data skew
– Some nodes will have very high degree

– Example. 3.2 Million followers, must generate 10 Trillion (10^13)

potential edges to check.

– Even if generating 100M edges per second, 100K seconds ~ 27 hours.

17

max
v∈V

d2
v

WWW 2011 Sergei Vassilvitskii

“Just 5 more minutes”

Running the naive algorithm on LiveJournal Graph
– 80% of reducers done after 5 min

– 99% done after 35 min

18

WWW 2011 Sergei Vassilvitskii

Adapting the Algorithm

Approach 1: Dealing with skew directly
– currently every triangle counted 3 times (once per vertex)

– Running time quadratic in the degree of the vertex

– Idea: Count each once, from the perspective of lowest degree vertex

– Does this heuristic work?

19

WWW 2011 Sergei Vassilvitskii

Adapting the Algorithm

Approach 1: Dealing with skew directly
– currently every triangle counted 3 times (once per vertex)

– Running time quadratic in the degree of the vertex

– Idea: Count each once, from the perspective of lowest degree vertex

– Does this heuristic work?

Approach 2: Divide & Conquer
– Equally divide the graph between machines

– But any edge partition will be bound to miss triangles

– Divide into overlapping subgraphs, account for the overlap

20

WWW 2011 Sergei Vassilvitskii

How to Count Triangles Better

Sequential Version [Schank ’07]:

foreach v in V

 foreach u,w in Adjacency(v)

 if deg(u) > deg(v) && deg(w) > deg(v)

 if (u,w) in E

 Triangles[v]++

21

WWW 2011 Sergei Vassilvitskii

Does it make a difference?

22

WWW 2011 Sergei Vassilvitskii

Dealing with Skew

Why does it help?
– Partition nodes into two groups:

• Low:

• High:

– There are at most low nodes; each produces at most paths

– There are at most high nodes

• Each produces paths to other high nodes: paths per node

23

L = {v : dv ≤
√

m}
H = {v : dv >

√
m}

n O(m)

2
√

m

O(m)

WWW 2011 Sergei Vassilvitskii

Dealing with Skew

Why does it help?
– Partition nodes into two groups:

• Low:

• High:

– There are at most low nodes; each produces at most paths

– There are at most high nodes

• Each produces paths to other high nodes: paths per node

– These two are identical !

– Therefore, no mapper can produce substantially more work than
others.

– Total work is , which is optimal

24

L = {v : dv ≤
√

m}
H = {v : dv >

√
m}

n O(m)

2
√

m

O(m)

O(m3/2)

WWW 2011 Sergei Vassilvitskii

Approach 2: Graph Split

Partitioning the nodes:
- Previous algorithm shows one way to achieve better parallelization

- But what if even is too much. Is it possible to divide input into

smaller chunks?

Graph Split Algorithm:
– Partition vertices into equal sized groups .

– Consider all possible triples and the induced subgraph:

– Compute the triangles on each separately.

25

O(m)

p V1, V2, . . . , Vp

(Vi, Vj , Vk)

Gijk = G [Vi ∪ Vj ∪ Vk]

Gijk

WWW 2011 Sergei Vassilvitskii

Approach 2: Graph Split

Some Triangles present in multiple subgraphs:

Can count exactly how many subgraphs each triangle will be in

26

Vi Vj

Vk

in 1 subgraph

in p-2 subgraphs

in ~p2 subgraphs

WWW 2011 Sergei Vassilvitskii

Approach 2: Graph Split

Analysis:
– Each subgraph has edges in expectation.

– Very balanced running times

27

O(m/p2)

WWW 2011 Sergei Vassilvitskii

Approach 2: Graph Split

Analysis:
– Very balanced running times

– controls memory needed per machine

28

p

WWW 2011 Sergei Vassilvitskii

Approach 2: Graph Split

Analysis:
– Very balanced running times

– controls memory needed per machine

– Total work: , independent of

29

p

p
3 · O((m/p2)3/2) = O(m3/2) p

WWW 2011 Sergei Vassilvitskii

Approach 2: Graph Split

Analysis:
– Very balanced running times

– controls memory needed per machine

– Total work: , independent of

30

p

p
3 · O((m/p2)3/2) = O(m3/2) p

Input too big:
paging

Shuffle time
increases with
duplication

WWW 2011 Sergei Vassilvitskii

Overall

Naive Parallelization Doesn’t help with Data Skew

31

WWW 2011 Sergei Vassilvitskii

Related Work

• Tsourakakis et al. [09]:
– Count global number of triangles by estimating the trace of the cube

of the matrix

– Don’t specifically deal with skew, obtain high probability
approximations.

• Becchetti et al. [08]
– Approximate the number of triangles per node

– Use multiple passes to obtain a better and better approximation

32

WWW 2011 Sergei Vassilvitskii

Conclusions

33

WWW 2011 Sergei Vassilvitskii

Conclusions

Think about data skew.... and avoid the curse

33

WWW 2011 Sergei Vassilvitskii

Conclusions

Think about data skew.... and avoid the curse
– Get programs to run faster

33

WWW 2011 Sergei Vassilvitskii

Conclusions

Think about data skew.... and avoid the curse
– Get programs to run faster

– Publish more papers

33

WWW 2011 Sergei Vassilvitskii

Conclusions

Think about data skew.... and avoid the curse
– Get programs to run faster

– Publish more papers

– Get more sleep

33

WWW 2011 Sergei Vassilvitskii

Conclusions

Think about data skew.... and avoid the curse
– Get programs to run faster

– Publish more papers

– Get more sleep

– ..

33

WWW 2011 Sergei Vassilvitskii

Conclusions

Think about data skew.... and avoid the curse
– Get programs to run faster

– Publish more papers

– Get more sleep

– ..

– The possibilities are endless!

33

Thank You

