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G = (V,E)

=
|{(u, w) ∈ E|u ∈ Γ(v) ∧ w ∈ Γ(v)}|
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Clustering Coefficient:
   Given an undirected graph

   cc(v) = fraction of v’s neighbors who are neighbors themselves
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Captures how tight-knit the network is around a node.

 

vs.

cc (    ) = 0.1 cc (    ) = 0.5
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Captures how tight-knit the network is around a node.

Network Cohesion:

   - Tightly knit communities foster more trust, social norms. [Coleman 
’88, Portes ’88]

Structural Holes:

   - Individuals benefit form bridging [Burt ’04, ’07]

vs.

cc (    ) = 0.1 cc (    ) = 0.5
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Why MapReduce?

De facto standard for parallel computation on 
large data
– Widely used at: Yahoo!, Google, Facebook, 

– Also at: New York Times, Amazon.com, Match.com, ...

– Commodity hardware

– Reliable infrastructure

– Data continues to outpace available RAM !
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How to Count Triangles

Sequential Version:
  foreach v in V 

      foreach u,w in Adjacency(v)

         if (u,w) in E

            Triangles[v]++ 
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How to Count Triangles

Sequential Version:
  foreach v in V 

      foreach u,w in Adjacency(v)

         if (u,w) in E

            Triangles[v]++ 

Running time: 

Even for sparse graphs can be quadratic if one vertex has high 
degree.
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Parallel Version

Parallelize the edge checking phase
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Parallel Version

Parallelize the edge checking phase
– Map 1:  For each    send              to single machine.  

– Reduce 1:  Input:                                                                                                                          

Output: all 2 paths                   where                                                              

(   ,   );          (   ,   );             (   ,   ); 
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Parallel Version

Parallelize the edge checking phase
– Map 1:  For each    send              to single machine.  

– Reduce 1:  Input:                                                                                                                          

Output: all 2 paths                   where                                                              

(   ,   );          (   ,   );             (   ,   ); 

– Map 2: Send                  and                                          to same 
machine. 

– Reduce 2: input:                                                                                                    

Output: if    part of the input, then: 
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(v,Γ(v))v

�(v1, v2);u� v1, v2 ∈ Γ(u)

�(v1, v2);u� �(v1, v2); $� for (v1, v2) ∈ E

�v; Γ(v)�

�(v, w); u1, u2, . . . , uk, $?�
$ ui = ui + 1/3
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Data skew

How much parallelization can we achieve? 
- Generate all the paths to check in parallel 

- The running time becomes 
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Data skew

How much parallelization can we achieve? 
- Generate all the paths to check in parallel 

- The running time becomes 

Naive parallelization does not help with data skew
– Some nodes will have very high degree 

– Example. 3.2 Million followers, must generate 10 Trillion (10^13) 

potential edges to check. 

– Even if generating 100M edges per second, 100K seconds ~ 27 hours. 
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“Just 5 more minutes”

Running the naive algorithm on LiveJournal Graph
– 80% of reducers done after 5 min

– 99% done after 35 min
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Adapting the Algorithm

Approach 1: Dealing with skew directly
– currently every triangle counted 3 times (once per vertex)

– Running time quadratic in the degree of the vertex

– Idea: Count each once, from the perspective of lowest degree vertex

– Does this heuristic work? 
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Adapting the Algorithm

Approach 1: Dealing with skew directly
– currently every triangle counted 3 times (once per vertex)

– Running time quadratic in the degree of the vertex

– Idea: Count each once, from the perspective of lowest degree vertex

– Does this heuristic work? 

Approach 2: Divide & Conquer
– Equally divide the graph between machines

– But any edge partition will be bound to miss triangles

– Divide into overlapping subgraphs, account for the overlap
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How to Count Triangles Better

Sequential Version [Schank ’07]:

foreach v in V 

   foreach u,w in Adjacency(v)

     if deg(u) > deg(v) && deg(w) > deg(v)

         if (u,w) in E

            Triangles[v]++ 
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Does it make a difference?

22
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Dealing with Skew

Why does it help? 
– Partition nodes into two groups: 

• Low: 

• High: 

– There are at most    low nodes; each produces at most           paths

– There are at most          high nodes

• Each produces paths to other high nodes:          paths per node

23
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√
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√
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Dealing with Skew

Why does it help? 
– Partition nodes into two groups: 

• Low: 

• High: 

– There are at most    low nodes; each produces at most           paths

– There are at most          high nodes

• Each produces paths to other high nodes:          paths per node

– These two are identical !

– Therefore, no mapper can produce substantially more work than 
others. 

– Total work is               , which is optimal
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L = {v : dv ≤
√

m}
H = {v : dv >

√
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n O(m)

2
√

m

O(m)

O(m3/2)



WWW 2011 Sergei Vassilvitskii

Approach 2: Graph Split 

Partitioning the nodes:
- Previous algorithm shows one way to achieve better parallelization

- But what if even           is too much. Is it possible to divide input into 

smaller chunks? 

Graph Split Algorithm:
– Partition vertices into     equal sized groups                      .

– Consider all possible triples                 and the induced subgraph:

– Compute the triangles on each         separately. 
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O(m)

p V1, V2, . . . , Vp

(Vi, Vj , Vk)

Gijk = G [Vi ∪ Vj ∪ Vk]

Gijk
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Approach 2: Graph Split 

Some Triangles present in multiple subgraphs:

Can count exactly how many subgraphs each triangle will be in
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Vi Vj

Vk

in 1 subgraph

in p-2 subgraphs

in ~p2 subgraphs
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Approach 2: Graph Split 

Analysis:
– Each subgraph has              edges in expectation. 

– Very balanced running times 
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O(m/p2)
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Approach 2: Graph Split 

Analysis:
– Very balanced running times

–    controls memory needed per machine
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– Total work:                                         , independent of 
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Approach 2: Graph Split 

Analysis:
– Very balanced running times

–    controls memory needed per machine

– Total work:                                         , independent of 
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p

p
3 · O((m/p2)3/2) = O(m3/2) p

Input too big: 
paging

Shuffle time 
increases with 
duplication
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Overall 

Naive Parallelization Doesn’t help with Data Skew

31



WWW 2011 Sergei Vassilvitskii

Related Work  

• Tsourakakis et al. [09]: 
– Count global number of triangles by estimating the trace of the cube 

of the matrix 

– Don’t specifically deal with skew, obtain high probability 
approximations. 

• Becchetti et al. [08]
– Approximate the number of triangles per node 

– Use multiple passes to obtain a better and better approximation 
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Conclusions
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Conclusions

Think about data skew.... and avoid the curse
– Get programs to run faster

– Publish more papers 

– Get more sleep 

– ..

– The possibilities are endless!
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