
From Convex Optimization to Randomized Mechanisms:
Toward Optimal Combinatorial Auctions

[Extended Abstract]
∗

Shaddin Dughmi
†

shaddin@cs.stanford.edu
Tim Roughgarden

‡

tim@cs.stanford.edu
Qiqi Yan

§

qiqiyan@cs.stanford.edu
Department of Computer Science

Stanford University
Stanford, CA 94305

ABSTRACT
We design an expected polynomial time, truthful in expec-
tation, (1−1/e)-approximation mechanism for welfare max-
imization in a fundamental class of combinatorial auctions.
Our results apply to bidders with valuations that are ma-
troid rank sums (MRS), which encompass most concrete ex-
amples of submodular functions studied in this context, in-
cluding coverage functions and matroid weighted-rank func-
tions. Our approximation factor is the best possible, even
for known and explicitly given coverage valuations, assum-
ing P 6= NP . Ours is the first truthful-in-expectation and
polynomial-time mechanism to achieve a constant-factor ap-
proximation for an NP -hard welfare maximization problem
in combinatorial auctions with heterogeneous goods and re-
stricted valuations.

Our mechanism is an instantiation of a new framework
for designing approximation mechanisms based on random-
ized rounding algorithms. A typical such algorithm first
optimizes over a fractional relaxation of the original prob-
lem, and then randomly rounds the fractional solution to
an integral one. With rare exceptions, such algorithms can-
not be converted into truthful mechanisms. The high-level
idea of our mechanism design framework is to optimize di-
rectly over the (random) output of the rounding algorithm,
rather than over the input to the rounding algorithm. This

∗A full version of this paper is available at
http://arxiv.org/abs/1103.0040
†Supported by NSF Grant CCF-0448664 and a Siebel Foun-
dation Scholarship.
‡Supported in part by NSF CAREER Award CCF-0448664,
an ONR Young Investigator Award, an ONR PECASE
Award, an AFOSR MURI grant, and an Alfred P. Sloan
Fellowship.
§Supported by a Stanford Graduate Fellowship.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

approach leads to truthful-in-expectation mechanisms, and
these mechanisms can be implemented efficiently when the
corresponding objective function is concave. For bidders
with MRS valuations, we give a novel randomized rounding
algorithm that leads to both a concave objective function
and a (1− 1/e)-approximation of the optimal welfare.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Algorithms, Economics, Theory

Keywords
Algorithmic Mechanism Design, Combinatorial Auctions

1. INTRODUCTION
The overarching goal of algorithmic mechanism design is

to design computationally efficient algorithms that solve or
approximate fundamental optimization problems in which
the underlying data is a priori unknown to the algorithm.
A central example in both theory and practice is welfare-
maximization in combinatorial auctions. Here, there are m
goods for sale and n bidders vying for them. Each bid-
der i has a private valuation vi(S) for each subset S of the
goods.1 The welfare of an allocation S1, . . . , Sn of the goods
to the bidders is

∑n

i=1 vi(Si). Since valuations are initially
unknown to the seller, computing a near-optimal allocation
requires eliciting information from the (self-interested) bid-
ders, for example via a bid. A mechanism is a protocol that
extracts such information and computes an allocation of the
goods and payments.

The “holy grail” for a mechanism designer is to devise a
computationally efficient and incentive-compatible mecha-
nism with an approximation factor that matches the best
one known for the (easier) problem in which the underlying
data is provided up front.2 Such results are usually difficult
to obtain, and in some cases are provably impossible using

1Each bidder has an exponential number of private values;
we ignore the attendant representation issues for the mo-
ment.
2In this paper, by “incentive compatible” we generally mean
a (possibly randomized) mechanism such that every partic-



deterministic mechanisms [15, 22]. The space of randomized
mechanisms, however, is much more promising as shown re-
cently in [6, 9].3 This paper provides such a positive result
for a fundamental class of combinatorial auctions, via a novel
randomized mechanism design framework based on convex
optimization.

Algorithmic mechanism design is difficult because incen-
tive compatibility severely limits how the algorithm can com-
pute an outcome, which prohibits use of most of the inge-
nious approximation algorithms that have been developed
for different optimization problems. More concretely, the
only general approach known for designing (randomized)
truthful mechanisms is via maximal-in-distributional range
(MIDR) algorithms [6, 9]. An MIDR algorithm fixes a set
of distributions over feasible solutions — the distributional
range — independently of the valuations reported by the
self-interested participants, and outputs a random sample
from the distribution that maximizes expected (reported)
welfare. TheVickrey-Clarke-Groves (VCG) payment scheme
renders an MIDR algorithm truthful in expectation.

Most approximation algorithms are not MIDR algorithms.
Consider, as an example, a randomized rounding algorithm
for welfare maximization in combinatorial auctions (e.g. [11,
8]). We can view such an algorithm as the composition of
two algorithms, a relaxation algorithm and a rounding algo-
rithm. The relaxation algorithm is deterministic and takes
as input the problem data (players’ valuations v), and out-
puts the (fractional) solution to a linear programming re-
laxation of the welfare-maximization problem that is opti-
mal for the objective function defined by v. The round-
ing algorithm is randomized and takes as input this frac-
tional solution and outputs a feasible allocation of the goods
to the players. Taken together, these algorithms assign to
each input v a probability distribution Dv over integral al-
locations. For almost all known randomized rounding algo-
rithms, there is an input v such that the expected objective
function value Ey∼Dv [v

T y] with the distribution Dv is in-
ferior to that Ey∼Dw [v

T y] with a distribution Dw that the
algorithm would produce for a different input w — and this
is a violation of the MIDR property. Informally, such viola-
tions are inevitable unless a rounding algorithm is designed
explicitly to avoid them, on top of the usual approximation
requirements.

The exception that proves the rule is the important and
well-known mechanism design framework of Lavi and Swamy
[16]. Lavi and Swamy [16] begin with the foothold that
the fractional welfare maximization problem — the relax-
ation algorithm above — can be made truthful by charging
appropriate VCG payments. Further, they identify a very
special type of rounding algorithm that preserves truthful-
ness: if the expected allocation produced by the rounding
algorithm is always identical to the input to the rounding
algorithm, component-wise, up to some universal scaling
factor α, then composing the two algorithms easily yields
an α-approximate truthful-in-expectation mechanism (after

ipant maximizes its expected payoff by truthfully revealing
its information to the mechanism, no matter how the other
participants behave. Such mechanisms are called truthful in
expectation, and are defined formally in Section 2.2.
3We note that the impressively general positive results for
implementations in Bayes-Nash equilibria that were recently
obtained in [13, 12, 1] do not apply to the stronger incentive-
compatibility notions used in this paper and in most of the
algorithmic mechanism design literature.

scaling the fractional VCG payments by α). Perhaps sur-
prisingly, there are some interesting problems, such as wel-
fare maximization in combinatorial auctions with general
valuations, that admit such a rounding algorithm with a
best-possible approximation guarantee (assuming P 6= NP ).
However, most NP -hard welfare maximization problems do
not seem to admit good randomized rounding algorithms of
the rigid type required by this design framework.

1.1 Our Contributions
We introduce a new approach to designing truthful-in-

expectation approximation mechanisms based on random-
ized rounding algorithms; we outline it here for the spe-
cial case of welfare maximization in combinatorial auctions.
The high-level idea is to optimize directly on the outcome
of the rounding algorithm, rather than merely on the out-
come of the relaxation algorithm (the input to the round-
ing algorithm). In other words, let r(x) denote a random-
ized rounding algorithm, from fractional allocations to inte-
ger allocations. Given players’ valuations v, we compute a
fractional allocation x that maximizes the expected welfare
Ey∼r(x)[v

T y] over all fractional allocations x. This method-
ology evidently gives MIDR algorithms. This optimization
problem is often intractable, but when the rounding algo-
rithm r and the space of valuations v are such that the func-
tion Ey∼r(x)[v

T y] is always concave in x — in which case we
call r a convex rounding algorithm— it can be solved in poly-
nomial time using convex programming (modulo numerical
issues that we address later).

We use this design framework to give an expected polyno-
mial time, truthful in expectation, (1− 1/e)-approximation
mechanism for welfare maximization in combinatorial auc-
tions in which bidders’ valuations are matroid rank sums
(MRS) — non-negative linear combinations of matroid rank
functions on the goods. MRS valuations are submodular and
encompass most concrete examples of submodular functions
that have been studied in the combinatorial auctions litera-
ture, including all coverage functions and matroid weighted-
rank functions (see Section 2.4 for formal definitions). Our
approximation guarantee is optimal, assuming P 6= NP ,
even for the special case of the welfare maximization prob-
lem with known and explicitly presented coverage valua-
tions. Our mechanism is the first truthful-in-expectation
and polynomial-time mechanism to achieve a constant-factor
approximation for any NP -hard special case of combinato-
rial auctions that doesn’t assume that there are multiple
copies of every type of good. It works with “black-box” val-
uations, provided that they support a randomized analog of
a“value oracle”. We also give a (non-oracle-based) version of
the mechanism for explicitly represented coverage valuations
(see Appendix A).

1.2 Related Work
We discuss only the results most pertinent to this work;

see [4] for an introduction to combinatorial auctions, and [3]
for a survey of truthful approximation mechanisms for com-
binatorial auctions.

For the welfare maximization problem in combinatorial
auctions with general valuations (assuming only that vi(∅) =
0 and that vi(S) ≤ vi(T ) whenever S ⊆ T ), the best ap-
proximation factor possible by a polynomial-time approxi-
mation algorithm is roughly min{√m,n}, where n and m
are the number of bidders and goods. There are compara-



ble unconditional lower bounds in various oracle models, as-
suming polynomial communication and unbounded compu-
tation [19]; and, assuming that P 6= NP , for various classes
of succinctly represented valuations [18].

These strong negative results for welfare maximization
with general valuations motivate the study of important
special cases. Numerous special cases have been consid-
ered (see [3, Fig 1.2]), and the most well-studied one is for
bidders with valuations that are submodular, meaning that
vi(S ∩ T ) + vi(S ∪ T ) ≤ vi(S) + vi(T ) for every bidder i
and bundles S, T of goods. Submodular functions play a
fundamental role in combinatorial optimization, and have
a natural economic interpretation in terms of diminishing
marginal returns.

Without incentive-compatibility constraints, the welfare
maximization problem with submodular bidder valuations is
completely solved. Vondrák [24] gave a (1− 1

e
)-approximation

algorithm for the problem, improving over the 1
2
-approximation

given in [17]. The algorithm in [24] works in the value oracle
model, where each valuation v is modeled as a “black box”
that returns the value v(S) of a queried set S in a single
operation. The approximation factor of 1 − 1

e
is uncondi-

tionally optimal in the value-oracle model (for polynomial
communication) [19], and is also optimal (for polynomial
time) for certain succinctly represented submodular valua-
tions, assuming P 6= NP [14].

Despite intense study, prior to this work, there were no
truthful-in-expectation and polynomial-time constant-factor
approximation mechanisms for welfare maximization with
any non-trivial subclass of submodular bidder valuations.
The best previous results, which apply to all submodular

valuations, are an O
(

logm

log logm

)
approximation mechanism in

the communication complexity model due to Dobzinski, Fu
and Kleinberg [7], and an O(logm log logm) approximation
mechanism in the demand oracle model due to Dobzinski [5].

The aforementioned works [7, 16] are precursors to our
general design framework that optimizes directly over the
output of a randomized rounding algorithm. In the frame-
work of Lavi and Swamy [16], the input to and output of the
rounding algorithm are assumed to coincide up to a scaling
factor, so optimizing over its input (as they do) is equiva-
lent to optimizing over its output (as we do). In the result of
Dobzinski et al. [7], optimizing with respect to their ”proxy
bidders” is equivalent to optimizing over the output of a
particular randomized rounding algorithm.

2. PRELIMINARIES

2.1 Optimization Problems
We consider optimization problems Π of the following gen-

eral form. Each instance of Π consists of a feasible set S ,
and an objective function w : S → R. The solution to an
instance of Π is given by the following optimization problem.

maximize w(x)
subject to x ∈ S . (1)

2.2 Mechanism Design Basics
We consider mechanism design optimization problems of

the form in (1). In such problems, there are n players, where
each player i has a valuation function vi : S → R. We are

concerned with welfare maximization problems, where the
objective is w(x) =

∑n

i=1 vi(x).
We consider direct-revelation mechanisms for optimiza-

tion mechanism design problems. Such a mechanism com-
prises an allocation rule, which is a function from (hopefully
truthfully) reported valuation functions v1, . . . , vn to an out-
come x ∈ S , and a payment rule, which is a function from re-
ported valuation functions to a required payment from each
player. We allow the allocation and payment rules to be
randomized.

A mechanism with allocation and payment rules A and
p is truthful in expectation if every player always maximizes
its expected payoff by truthfully reporting its valuation func-
tion, meaning that

E[vi(A(v))− pi(v)] ≥ E[vi(A(v′i, v−i))− pi(v
′
i, v−i)] (2)

for every player i, (true) valuation function vi, (reported)
valuation function v′i, and (reported) valuation functions v−i

of the other players. The expectation in (2) is over the coin
flips of the mechanism.

The mechanisms that we design can be thought of as ran-
domized variations on the classical VCG mechanism, as we
explain next. Recall that the VCG mechanism is defined by
the (generally intractable) allocation rule that selects the
welfare-maximizing outcome with respect to the reported
valuation functions, and the payment rule that charges each
player i a bid-independent “pivot term” minus the reported
welfare earned by other players in the selected outcome.
This (deterministic) mechanism is truthful; see e.g. [20].

Now let dist(S) denote the probability distributions over
a feasible set S , and let D ⊆ dist(S) be a compact sub-
set of them. The corresponding Maximal in Distributional
Range (MIDR) allocation rule is defined as follows: given
reported valuation functions v1, . . . , vn, return an outcome
that is sampled randomly from a distribution D∗ ∈ D that
maximizes the expected welfare Ex∼D[

∑
i
vi(x)] over all dis-

tributions D ∈ D. Analogous to the VCG mechanism, there
is a (randomized) payment rule that can be coupled with this
allocation rule to yield a truthful-in-expectation mechanism
(see [6]).

2.3 Combinatorial Auctions
InCombinatorial Auctions there is a set [m] = {1, 2, . . . ,m}

of items, and a set [n] = {1, 2, . . . , n} of players. Each player

i has a valuation function vi : 2[m] → R
+ that is normal-

ized (vi(∅) = 0) and monotone (vi(A) ≤ vi(B) whenever
A ⊆ B). A feasible solution is an allocation (S1, . . . , Sn),
where Si denotes the items assigned to player i, and {Si}i
are mutually disjoint subsets of [m]. Player i’s value for out-
come (S1, . . . , Sn) is equal to vi(Si). The goal is to choose
the allocation maximizing social welfare:

∑
i
vi(Si).

2.4 Matroid Rank Sum Valuations
We now define matroid rank sum valuations. Relevant

concepts from matroid theory are reviewed in Appendix C.1.

Definition 2.1. A set function v : 2[m] → R
+ is a ma-

troid rank sum (MRS) function if there exists a family of ma-

troid rank functions u1, . . . , uκ : 2[m] → N, and associated
non-negative weights w1, . . . , wκ ∈ R

+, such that v(S) =∑κ

ℓ=1 wℓuℓ(S) for all S ⊆ [m].

We do not assume any particular representation of MRS



valuations, and require only oracle access to their (expected)
values on certain distributions (see Section 2.5).

MRS functions include most concrete examples of mono-
tone submodular functions that appear in the literature –
this includes coverage functions4, matroid weighted-rank func-
tions5, and all convex combinations thereof. Moreover, as
shown in [14], 1− 1/e is the best approximation possible for
MRS valuations in polynomial time, even ignoring strategic
considerations.

2.5 Lotteries and Value Oracles
A value oracle for a valuation v : 2[m] → R takes as input

a set S ⊆ [m], and returns v(S). We define an analogous
oracle that takes in a description of a simple lottery (where
each good is included independently with some probability)
over sets S ⊆ [m], and outputs the expectation of v over
this lottery. For a vector x ∈ [0, 1]m of probabilities on the
goods, we use Fv(x) to denote the expected value of v(S)
over draws S ∼ Dx from this lottery.

Definition 2.2. A lottery-value oracle for set function
v : 2[m] → R takes as input a vector x ∈ [0, 1]m, and outputs

Fv(x) = E
S∼Dx

[v(S)] =
∑

S⊆[m]

v(S)
∏

j∈S

xj

∏

j 6=S

(1− xj). (3)

In addition to being the natural randomized analog of a
value oracle, a lottery-value oracle is easily implemented for
various succinctly represented examples of MRS valuations,
like explicit coverage functions (see Appendix A).

3. CONVEX ROUNDING FRAMEWORK

3.1 Relaxations and Rounding Schemes
Let Π be an optimization problem. A relaxation Π′ of Π

defines for every (S , w) ∈ Π a convex and compact relaxed
feasible set R ⊆ R

m that is independent of w (we suppress
the dependence on S); and an extension wR : R → R of
the objective w to the relaxed feasible set R. This gives the
following relaxed optimization problem.

maximize wR(x)
subject to x ∈ R.

(4)

Generally, the extension is defined so that it is computation-
ally tractable to find a point x ∈ R that maximizes wR(x)
(possibly approximately).

For example, S could be the allocations of m goods to n
bidders in a combinatorial auction, w(x) the welfare of an
allocation, R the feasible region of a linear programming re-
laxation, and wR the natural linear extension of w to frac-
tional allocations.

4A coverage function f on ground set [m] designates some
set L of elements, and m subsets A1, . . . , Am ⊆ L, such that
f(S) = | ∪j∈S Aj |. We note that L may be an infinite,
yet measurable, space. Coverage functions are arguably the
canonical example of a submodular function, particularly for
combinatorial auctions.
5This is a generalization of matroid rank functions, where
weights are placed on elements of the matroid. It is true,
though not immediately obvious, that a matroid weighted-
rank function can be expressed as a weighted combination
of matroid (unweighted) rank functions – see e.g. [10].

The solution x ∈ R to the relaxed problem need not
be in S . A rounding scheme for relaxation Π′ of Π de-
fines for each feasible set S of Π, and its corresponding re-
laxed set R, a (possibly randomized) function r : R → S .
Since our rounding scheme will be randomized, we will fre-
quently use r(x) to denote the distribution over S resulting
from rounding the point x ∈ R. Commonly, the round-
ing scheme satisfies the following approximation guarantee:
Ey∼r(x)[w(y)] ≥ α · wR(x) for every x ∈ R. In this case, if
x∗ maximizes wR over R and wR agrees with w on S , then
Ey∼r(x∗)[w(y)] ≥ α ·maxy∈S w(y).

3.2 Convex Rounding Schemes and MIDR
Our technique is motivated by the following observation:

instead of solving the relaxed problem and subsequently
rounding the solution, why not optimize directly on the out-
come of the rounding scheme? In particular, consider the
following relaxation of Π that “absorbs” rounding scheme r
into the objective.

maximize Ey∼r(x)[w(y)]
subject to x ∈ R.

(5)

The solution to this problem rounds to the best possible
distribution in the range of the rounding scheme, over all
possible fractional solutions in R. While this problem is
often intractable, it always leads to an MIDR allocation rule.

Algorithm 1 MIDR Allocation Rule via Optimizing over
Output of Rounding Scheme

Parameter: Feasible set S of Π.
Parameter: Relaxed feasible set R ⊆ R

m.
Parameter: (Randomized) rounding scheme r : R → S .
Input: Objective w : S → R satisfying (S , w) ∈ Π.
Output: Feasible solution z ∈ S .
1: Let x∗ maximize Ey∼r(x)[w(y)] over x ∈ R.
2: Let z ∼ r(x∗)

Lemma 3.1. Algorithm 1 is an MIDR allocation rule.

We say a rounding scheme r : R → S is α-approximate
for α ≤ 1 if w(x) ≥ Ey∼r(x)[w(y)] ≥ α · w(x) for every
x ∈ S . When r is α-approximate, so is the allocation rule of
Algorithm 1.

Lemma 3.2. If r is an α-approximate rounding scheme,
then Algorithm 1 returns an α-approximate solution (in ex-
pectation) to the original optimization problem (1).

For most rounding schemes in the approximation algo-
rithms literature, the optimization problem (5) cannot be
solved in polynomial time (assuming P 6= NP ). The reason
is that for any rounding scheme that always rounds a feasible
solution to itself – i.e., r(x) = x for all x ∈ S — an optimal
solution to (5) is also optimal for (1). Thus, in this case,
hardness of the original problem (1) implies hardness of (5).
We conclude that we need to design rounding schemes with
the unusual property that r(x) 6= x for some x ∈ S .

We call a (randomized) rounding scheme r : R → S con-
vex if Ey∼r(x)[w(y)] is concave function of x ∈ R.

Lemma 3.3. When r is a convex rounding scheme for Π′,
(5) is a convex optimization problem.



Under additional technical conditions, discussed in the
context of combinatorial auctions in Appendix B, the convex
program (5) can be solved efficiently (e.g., using the ellip-
soid method). This reduces the design of a polynomial-time
α-approximate MIDR algorithm to designing a polynomial-
time α-approximate convex rounding scheme.

Summarizing, Lemmas 3.1, 3.2, and 3.3 give the following
informal theorem.

Theorem 3.4. (Informal) Let Π be a welfare-maximization
optimization problem, and let Π′ be a relaxation of Π. If
there exists a polynomial-time, α-approximate, convex round-
ing scheme for Π′, then there exists a truthful-in-expectation,
polynomial-time, α-approximate mechanism for Π.

Of course, there is no reason a priori to believe that useful
convex rounding schemes – let alone ones computable in
polynomial time – exist for any important problems. We
show in Section 4 that they do in fact exist and yield new
results for an interesting class of combinatorial auctions.

4. COMBINATORIAL AUCTIONS
In this section, we use the framework of Section 3 to prove

our main result.

Theorem 4.1. There is a (1−1/e)-approximate, truthful-
in-expectation mechanism for combinatorial auctions with
matroid rank sum valuations in the lottery-value oracle model,
running in expected poly(n,m) time.

We formulate welfare maximization in combinatorial auc-
tions as an optimization problem Π. An instance (S , w) ∈ Π
is given by the following integer program with feasible set S
contained in {0, 1}n×m. Variable xij indicates whether item
j is allocated to player i, and w(x) denotes the social welfare
of allocation x.

maximize w(x) =
∑

i vi({j : xij = 1})
subject to

∑
i
xij ≤ 1, for j ∈ [m].

xij ∈ {0, 1} , for i ∈ [n], j ∈ [m].
(6)

We let the relaxed feasible set R = R(S) be the result of
relaxing the constraints xij ∈ {0, 1} of (6) to 0 ≤ xij ≤ 1.

We structure the proof of Theorem 4.1 as follows. We de-
fine the Poisson rounding scheme, which we denote by rpoiss,
in Section 4.1. We prove that rpoiss is (1−1/e)-approximate
(Lemma 4.2), and convex (Lemma 4.3). Lemmas 3.1, 3.2
and 4.2, taken together, imply that Algorithm 1 when in-
stantiated for combinatorial auctions with r = rpoiss, is a
(1 − 1/e)-approximate MIDR allocation rule. Lemma 4.3
reduces implementing this allocation rule to solving a con-
vex program.

In Appendix B, we handle the technical and numerical
issues related to solving convex programs. First, we prove
that our instantiation of Algorithm 1 for combinatorial auc-
tions can be implemented in expected polynomial time using
the ellipsoid method under a simplifying assumption on the
numerical conditioning of our convex program (Lemma B.2).
Then we show in Section B.3 that the previous assumption
can be removed by slightly modifying our algorithm.

Finally, we prove that truth-telling VCG payments can be
computed efficiently in Lemma D.1. Taken together, these
lemmas complete the proof of Theorem 4.1.

4.1 The Poisson Rounding Scheme
In this section we define the Poisson rounding scheme,

which we denote by rpoiss. The random map rpoiss : R → S
renders the the following optimization problem over R a
convex optimization problem.

maximize f(x) = Ey∼rpoiss(x)[w(y)]
subject to

∑
i
xij ≤ 1, for j ∈ [m].

0 ≤ xij ≤ 1, for i ∈ [n], j ∈ [m].
(7)

We define the Poisson rounding scheme as follows. Given a
fractional solution x to (7), do the following independently
for each item j: assign j to player i with probability 1−e−xij .
(This is well defined since 1−e−xij ≤ xij for all players i and
items j, and

∑
i
xij ≤ 1 for all items j.) We make this more

precise in Algorithm 2. For clarity, we represent an alloca-
tion as a function from items to players, with an additional
null player ∗ reserved for items that are left unassigned.

Algorithm 2 The Poisson Rounding Scheme rpoiss

Input: Fractional allocation x with
∑

i
xij ≤ 1 for all j,

and 0 ≤ xij ≤ 1 for all i, j.
Output: Feasible allocation a : [m] → [n] ∪ {∗}.
1: for j = 1, . . . ,m do

2: Draw pj uniformly at random from [0, 1].
3: if

∑
i
(1− e−xij ) ≥ pj then

4: Let a(j) be the minimum index such that∑
i≤a(j)(1− e−xij ) ≥ pj .

5: else

6: a(j) = ∗
7: end if

8: end for

The Poisson rounding scheme is (1 − 1/e)-approximate
and convex. The proof of Lemma 4.2 is not difficult, and we
sketch it in the appendix. We prove Lemma 4.3 in Section
4.3. As a warm-up, we first present a simplified proof of
Lemma 4.3 for the special case of coverage valuations in
Section 4.2.

Lemma 4.2. The Poisson rounding scheme is (1 − 1/e)-
approximate when valuations are submodular.

Lemma 4.3. The Poisson rounding scheme is convex when
player valuations are matroid rank sum functions.

4.2 Warm-up: Convexity for Coverage
Valuations

In this section, we prove the special case of Lemma 4.3
for coverage valuations, as defined in Section 2.4. For each
player i ∈ [n], let Li be a ground set and Ai

1, . . . , A
i
m ⊆ Li be

such that vi(S) = |∪j∈S Ai
j | for each S ⊆ [m]. Let R denote

the feasible set of (7). Fix x ∈ R, and let (S1, . . . , Sn) ∼
rpoiss(x). The expected social welfare of the Poisson round-
ing scheme at x can be written as follows.

E

[
∑

i

vi(Si)

]
=
∑

i

E[vi(Si)]

=
∑

i

E[| ∪j∈Si
Ai

j |]

=
∑

i

∑

ℓ∈Li

Pr[ℓ ∈ ∪j∈Si
Ai

j ]



The term Pr[ℓ ∈ ∪j∈Si
Ai

j ] can be interpreted as the prob-
ability that element ℓ is covered by an item in Si, where
an item j ∈ [m] covers ℓ ∈ Li if ℓ ∈ Ai

j . Let Ci
ℓ be the

set of items that cover ℓ ∈ Li. Element ℓ ∈ Li is cov-
ered by Si precisely when Ci

ℓ ∩ Si 6= ∅. Each item j ∈ Ci
ℓ

is included in Si independently with probability 1 − e−xij .
Therefore, the probability ℓ ∈ Li is covered by Si equals

1−∏
j∈Ci

ℓ
e−xij = 1− e

−
∑

j∈Ci
ℓ
xij

. Therefore,

E

[
∑

i

vi(Si)

]
=
∑

i

∑

ℓ∈Li

(
1− e

−
∑

j∈Ci
ℓ
xij
)

Each term in this summation is concave in x, completing
the proof.

4.3 Convexity for MRS Valuations
In this section, we will prove Lemma 4.3 in its full general-

ity. First, we define a discrete analogue of a hessian matrix
for set functions, and show that these discrete Hessians are
negative semi-definite for matroid rank sum functions.

Definition 4.4. Let v : 2[m] → R be a set function. For
S ⊆ [m], we define the discrete Hessian matrix Hv

S ∈ R
m×m

of v at S as follows:

Hv
S(j, k) = v(S∪{j, k})−v(S∪{j})−v(S∪{k})+v(S) (8)

for j, k ∈ [m].

Claim 4.5. If v : 2[m] → R
+ is a matroid rank sum func-

tion, then Hv
S is negative semi-definite for each S ⊆ [m].

Proof. We observe that Hv
S is linear in v, and recall

that a non-negative weighted-sum of negative semi-definite
matrices is negative semi-definite. Therefore, it is sufficient
to prove this claim when v is a matroid rank function.

Let v be a matroid rank function, and fix S. Applying the
matroid axioms reveals that there are two cases:

Hv
S(j, k) =






−1 if v(S ∪ {j}) = v(S ∪ {k}) =
v(S ∪ {j, k}) = v(S) + 1,

0 otherwise

Applying the matroid exchange property reveals that the
binary matrix −Hv

S encodes a transitive relation on [m] –
namely, if−Hv

S(j, k) = 1 and−Hv
S(k, ℓ) = 1 then−Hv

S(j, ℓ) =
1. Moreover, it is apparent by definition that −Hv

S is sym-
metric. A binary matrix encoding a symmetric and transi-
tive relation is a block diagonal matrix where each diagonal
block is an all-ones or all-zeros sub-matrix. It is known, and
easy to check, that such a matrix is positive semi-definite.
Therefore Hv

S is negative semi-definite.

We now return to Lemma 4.3. Fix n, m, and MRS valua-
tions {vi}ni=1, and let R denote the feasible set of mathemat-
ical program (7). Let (S1, . . . , Sn) ∼ rpoiss(x) be the (ran-
dom) allocation computed by the Poisson rounding scheme
for point x ∈ R. The expected welfare E[w(rpoiss(x))] can
be written as E[

∑n

i=1 vi(Si)], where the expectation is taken
over the internal random coins of the rounding scheme. By
linearity of expectation, as well as the fact that the sum
of concave functions is concave, it suffices to show that
E[vi(Si)] is a concave function of x for an arbitrary player i
with MRS valuation vi.

Fix player i, and use xj , v, S as short-hand for xij , vi,
Si respectively. The Poisson rounding scheme includes each
item j in S independently with probability 1 − e−xj . We
can now write the expected value of player i as the following
function Gv : Rm → R:

Gv(x1, . . . , xm) =
∑

S⊆[m]

v(S)
∏

j∈S

(1− e−xj )
∏

j 6=S

e−xj (9)

The following claim, combined with Claim 4.5, completes
the proof of Lemma 4.3.

Claim 4.6. If all discrete Hessians of v are negative semi-
definite, then Gv is concave.

Proof. AssumeHv
S is negative semi-definite for each S ⊆

[m]. We work with Gv as expressed in equation (9). We will
show that the hessian matrix of Gv at an arbitrary x ∈ R

m

is negative semi-definite, which is a sufficient condition for
concavity. We take the mixed-derivative of Gv with respect
to xj and xk (possibly j = k).

∂2Gv(x)

∂xj∂xk

=
∑

S⊆[m]\{j,k}

(∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(v(S)− v(S ∪ {j})− v(S ∪ {k}) + v(S ∪ {j, k}))
)

=
∑

S⊆[m]

(∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ

(v(S)− v(S ∪ {j})− v(S ∪ {k}) + v(S ∪ {j, k}))
)

=
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S(j, k)

The first equality follows by appropriately grouping the terms
of equation (9) before differentiating. The second equality
follows from the fact that v(S)− v(S ∪ {j})− v(S ∪ {k}) +
v(S ∪ {j, k}) = 0 when S includes either of j and k. The
last equality follows by definition of Hv

S.
The above derivation immediately implies that we can

write the hessian matrix of Gv(x) as a non-negative weighted
sum of discrete hessian matrices.

▽2Gv(x) =
∑

S⊆[m]

∏

ℓ∈S

(1− e−xℓ)
∏

ℓ∈[m]\S

e−xℓ Hv
S (10)

A non-negative weighted-sum of negative semi-definite ma-
trices is negative semi-definite. This completes the proof of
the claim.

Acknowledgments
We thank Ittai Abraham, Moshe Babaioff, Bobby Kleinberg,
and Jan Vondrák for helpful discussions and comments.

5. REFERENCES
[1] X. Bei and Z. Huang. Towards optimal bayesian

algorithmic mechanism design. In Proc. 22nd ACM
Symp. on Discrete Algorithms (SODA), 2011.

[2] A. Ben-Tal and A. Nemirovski. Lectures on Modern
Convex Optimization: Analysis, Algorithms, and
Engineering Applications. SIAM, 2001.



[3] L. Blumrosen and N. Nisan. Combinatorial auctions (a
survey). In N. Nisan, T. Roughgarden, E. Tardos, and
V. Vazirani, editors, Algorithmic Game Theory.
Cambridge University Press, 2007.

[4] P. Cramton, Y. Shoham, and R. S. (Editors).
Combinatorial Auctions. MIT Press., 2006.

[5] S. Dobzinski. Two randomized mechanisms for
combinatorial auctions. In Proc. 10th Intl. Workshop
on Approximation Algorithms for Combinatorial
Optimization Problems, 2007.

[6] S. Dobzinski and S. Dughmi. On the power of
randomization in algorithmic mechanism design. In
Proc. 50th IEEE Symp. on Foundations of Computer
Science (FOCS), 2009.

[7] S. Dobzinski, H. Fu, and R. Kleinberg. Truthfulness
via proxies. CoRR, abs/1011.3232, 2010.

[8] S. Dobzinski and M. Schapira. An improved
approximation algorithm for combinatorial auctions
with submodular bidders. In Proc. 17th ACM Symp.
on Discrete Algorithms (SODA), 2006.

[9] S. Dughmi and T. Roughgarden. Black-box
randomized reductions in algorithmic mechanism
design. In Proc. 51st IEEE Symp. on Foundations of
Computer Science (FOCS), 2010.

[10] S. Dughmi, T. Roughgarden, and M. Sundararajan.
Revenue submodularity. In Proc. 11th ACM Conf. on
Electronic Commerce (EC), 2009.

[11] U. Feige. On maximizing welfare where the utility
functions are subadditive. In Proc. 37th ACM Symp.
on Theory of Computing (STOC), 2006.

[12] J. Hartline, R. Kleinberg, and A. Malekian.
Multi-parameter bayesian algorithmic mechanism
design. In Proc. 22nd ACM Symp. on Discrete
Algorithms (SODA), 2011.

[13] J. D. Hartline and B. Lucier. Bayesian algorithmic
mechanism design. In Proc. 41st ACM Symp. on
Theory of Computing (STOC), 2010.

[14] S. Khot, R. J. Lipton, E. Markakis, and A. Mehta.
Inapproximability results for combinatorial auctions
with submodular utility functions. Algorithmica,
52(1):3–18, 2008.

[15] R. Lavi, A. Mu’alem, and N. Nisan. Towards a
characterization of truthful combinatorial auctions. In
Proc. 44th IEEE Symp. on Foundations of Computer
Science (FOCS), 2003.

[16] R. Lavi and C. Swamy. Truthful and near-optimal
mechanism design via linear programming. In Proc.
46th IEEE Symp. on Foundations of Computer
Science (FOCS), 2005.

[17] B. Lehmann, D. Lehmann, and N. Nisan.
Combinatorial auctions with decreasing marginal
utilities. In Proc. 3rd ACM Conf. on Electronic
Commerce (EC), 2001.

[18] D. Lehmann, L. I. O’Callaghan, and Y. Shoham.
Truth revelation in approximately efficient
combinatorial auctions. In JACM 49(5), pages
577–602, Sept. 2002.

[19] V. Mirrokni, M. Schapira, and J. Vondrák. Tight
information-theoretic lower bounds for welfare
maximization in combinatorial auctions. In Proc. 10th
ACM Conf. on Electronic Commerce (EC), 2008.

[20] N. Nisan. Introduction to mechanism design (for
computer scientists). In N. Nisan, T. Roughgarden,
E. Tardos, and V. Vazirani, editors, Algorithmic Game
Theory. Cambridge University Press, 2007.

[21] J. G. Oxley. Matroid Theory. Oxford University Press,
1992.

[22] C. Papadimitriou, M. Schapira, and Y. Singer. On the
hardness of being truthful. In Proc. 49th IEEE Symp.
on Foundations of Computer Science (FOCS), 2008.

[23] A. Schrijver. Combinatorial Optimization. Springer,
2003.

[24] J. Vondrák. Optimal approximation for the
submodular welfare problem in the value oracle model.
In Proc. 39th ACM Symp. on Theory of Computing
(STOC), 2008.

APPENDIX

A. EXPLICIT COVERAGE VALUATIONS
In this section, we apply our mechanism to explicitly rep-

resented coverage valuations. This demonstrates the utility
of our mechanism in a concrete, non-oracle-based setting.
In the full version of this paper, we also show that deter-
ministic VCG-based mechanisms cannot approximate this
problem by a factor better than n in polynomial-time unless
NP ⊆ P/poly, establishing the first separation between ran-
domized and deterministic VCG-based mechanisms in the
computational complexity model.

An n player, m item instance combinatorial auctions with
explicit coverage valuations is described as follows. For each
player i, there is a finite set Li, and a family Ai

1, . . . , A
i
m

of subsets of Li. The valuation function of player i is then
defined as vi(S) = | ∪j∈S Ai

j |. The set system (Li,
{
Ai

j

}m
j=1

)

is encoded explicitly as a bi-partite graph.
As discussed previously, MRS valuations include all cover-

age valuations. Therefore, in order to implement the MIDR
allocation rule of Section 4 for this problem, it suffices to an-
swer lottery-value queries in time polynomial in the number
of bits encoding the instance.

Claim A.1. In combinatorial auctions with explicit cov-
erage valuations, lottery-value queries can be answered in
time polynomial in the length of the encoding of the instance.

Proof. Let v : 2[m] → R
+ be a coverage valuation pre-

sented explicitly as a set system (L, {Aj}mj=1), and let x ∈
[0, 1]m. Let S be a random set that includes each j ∈ [m]
independently with probability xj . The outcome of the lot-
tery value oracle of v evaluated at x is equal to the sum,
over all ℓ ∈ L, of the probability that ℓ is “covered” by S –
specifically,

∑
ℓ∈LPr[ℓ ∈ ∪j∈SAj ]. It is easy to verify that

a term of this sum can be expressed as the following closed
form expression.

Pr[ℓ ∈ ∪j∈SAj ] = 1−
∏

j:Aj∋ℓ

(1− xj)

This expression can be evaluated in time polynomial in the
representation of the set system. This completes the proof.

Claim A.1 implies the following Theorem.

Theorem A.2. There is an expected polynomial-time, (1−
1/e)-approximate, truthful-in-expectation mechanism for com-
binatorial auctions with explicit coverage valuations.



B. SOLVING THE CONVEX PROGRAM
In this section, we overcome some technical difficulties re-

lated to the solvability of convex programs. We show in
Section B.1 that, in the lottery-value oracle model, the four
conditions for “solvability” of convex programs, as stated in
Fact C.3, are easily satisfied for convex program (7). How-
ever, an additional challenge remains: “solving” a convex
program – as in Definition C.2 – returns an approximately
optimal solution. Indeed the optimal solution of a convex
program may be irrational in general, so this is un-avoidable.

We show how to overcome this difficulty if we settle for
polynomial runtime in expectation. While the optimal so-
lution x∗ of (7) cannot be computed explicitly, the random
variable rpoiss(x

∗) can be sampled in expected polynomial
time. The key idea is the following: sampling the random
variable rpoiss(x

∗) rarely requires precise knowledge of x∗.
Depending on the coin flips of rpoiss, we decide how accu-
rately we need to solve convex program (7) in order compute
rpoiss(x

∗). Roughly speaking, we show that the probability
of requiring a (1 − ǫ)-approximation falls exponentially in
1
ǫ
. As a result, we can sample rpoiss(x

∗) in expected poly-
nomial time. We implement this plan in Section B.2 under
the simplifying assumption that convex program (7) is well-
conditioned – i.e. is “sufficiently concave” everywhere. In
Section B.3, we show how to remove that assumption by
slightly modifying our algorithm.

B.1 Approximating the Convex Program

Claim B.1. There is an algorithm for Combinatorial Auc-
tions with MRS valuations in the lottery-value oracle model
that takes as input an instance of the problem and an ap-
proximation parameter ǫ > 0, runs in poly(n,m, log(1/ǫ))
time, and returns a (1 − ǫ)-approximate solution to convex
program (7).

It suffices to show that the four conditions of Fact C.3
are satisfied in our setting. The first three are immediate
from elementary combinatorial optimization (see for exam-
ple [23]). It remains to show that the first-order oracle, as
defined in Fact C.3, can be implemented in polynomial-time
in the lottery-value oracle model. The objective f(x) of con-
vex program (7) can, by definition, be written as

f(x) =
∑

i

Gvi(xi),

where vi is the valuation function of player i, xi is the vector
(xi1, . . . , xim), and and Gvi is as defined in (9). By defini-
tion, Gvi(xi) is the outcome of querying the lottery-value
oracle of player i with (1 − e−xi1 , . . . , 1 − e−xim) . There-
fore, we can evaluate f(x) using n lottery-value query, one
for each player. It remains to show that we can also evaluate
the (multi-variate) derivative ▽f(x) of f(x). Using defini-
tion (9), we take the partial derivative corresponding to xij .
By rearranging the sum appropriately, we get that

∂f

∂xij

(x) = e−xij

(
Fvi((1− e−xi1 , . . . , 1− e−xim) ∨ 1j)

− Fvi((1− e−xi1 , . . . , 1− e−xim) ∧ 0j)

)
,

where Fvi is as defined in Equation (3). Here, ∨ and ∧
denote entry-wise minimum and maximum respectively, 1j
denotes the vector with all entries equal to 0 except for a

1 at position j, and 0j denotes the vector with all entries
equal to 1 except for a 0 at position j. It is clear that this
entry of the gradient of f can be evaluated using two lottery-
value queries. Therefore, ▽f(x) can be evaluated using 2n
lottery-value queries, 2 for each player. This completes the
proof of Claim B.1.

B.2 The Well-Conditioned Case
In this section, we make the following simplifying assump-

tion: The objective function f(x) of convex program (7),
when restricted to any line in the feasible set R, has a sec-

ond derivative of magnitude at least λ =
∑n

i=1 vi([m])

2poly(n,m) ev-
erywhere, where the polynomial in the denominator may be
arbitrary. This is equivalent to requiring that every eigen-
value of the Hessian matrix of f(x) has magnitude at least λ
when evaluated at any point in R. Under this assumption,
we prove Lemma B.2.

Lemma B.2. Assume the magnitude of the second deriva-

tive of f(x) is at least λ =
∑n

i=1 vi([m])

2poly(n,m) everywhere. Algo-
rithm 1, instantiated for combinatorial auctions with r =
rpoiss, can be simulated in time polynomial in n and m in
expectation.

Let x∗ be the optimal solution to convex program (7).
Algorithm 1 allocates items according to the distribution
rpoiss(x

∗). The Poisson rounding scheme requires making m
independent decisions, one for each item j. Therefore, we fix
item j and show how to simulate this decision. It suffices to
do the following in expected polynomial time: flip uniform
coin pj ∈ [0, 1], and find the minimum index a(j) (if any)

such that
∑

i≤a(j)(1−e−x∗ij) ≥ pj . For most realizations of

pj , this can be decided using only coarse estimates x̃ij to x∗
ij .

Assume we have an estimation oracle for x∗ that, on input
δ, returns a δ-estimate x̃ of x∗: Specifically, x̃ij − x∗

ij ≤ δ
for each i. When pj falls outside the “uncertainty zones”

of x̃, such as when |pj −∑
i′≤i

(1 − e−x̃i′j )| > δn for each

i ∈ [n], it is easy to see that we can correctly determine a(j)
by using x̃ in lieu of x. The total measure of the uncertainty
zones of x̃ is at most 2n2δ, therefore pj lands outside the
uncertainty zones with probability at least 1 − 2n2δ. The
following claim shows that if the estimation oracle for x∗

can be implemented in time polynomial in log(1/δ), then
we can simulate the Poisson rounding procedure in expected
polynomial time.

Claim B.3. Let x∗ be the optimal solution of convex pro-
gram (7). Assume access to a subroutine B(δ) that returns
a δ-estimate of x∗ in time poly(n,m, log(1/δ)). Algorithm
(1) with r = rpoiss can be simulated in expected poly(n,m)
time.

Proof. It suffices to show that we can simulate the al-
location of an item j by Algorithm (2) on input x∗. Draw
pj ∈ [0, 1] uniformly at random. Start with δ = δ0 = 1

2n2 .

Let x̃ = B(δ). While |pj −
∑

i′≤i
(1− e−x̃i′j )| ≤ δn for some

i ∈ [n] (i.e. pj may fall inside an “uncertainty zone”) do the
following: let δ = δ/2, x̃ = B(δ) and repeat. After the loop
terminates, we have a sufficiently accurate estimate of x∗ to
calculate a(j) as in Algorithm (2).

It is easy to see that the above procedure is a faithful sim-
ulation of Algorithm (2) on x∗. It remains to bound its ex-
pected running time. Let δk = 1

2k+1n2 denote the value of δ
at the k’th iteration. By assumption, the k’th iteration takes



poly(n,m, log(1/δk)) = poly(n,m, log(2k+1n2)) = poly(n,m, k)
time. The probability this procedure does not terminate af-
ter k iterations is at most 2n2δk = 1/2k. Taken together,
these two facts and a simple geometric summation imply
that the expected runtime is polynomial in n and m.

It remains to show that the estimation oracle B(δ) can
be implemented in poly(n,m, log(1/δ)) time. At first blush,
one may expect that the ellipsoid method can be used in
the usual manner here. However, there is one complica-
tion: we require an estimate x̃ that is close to x∗ in solution
space rather than in terms of objective value. Using our
assumption on the curvature of f(x), we will reduce find-
ing a δ-estimate of x∗ to finding an 1 − ǫ(δ) approximate
solution to convex program (7). The dependence of ǫ on

δ will be such that ǫ ≥ poly(δ)/2poly(n,m), thereby we can
invoke Claim B.1 to deduce that B(δ) can be implemented
in poly(n,m, log(1/δ)) time.

Let ǫ = ǫ(δ) = δ2λ
2
∑

i vi([m])
. Plugging in the definition of

λ, we deduce that ǫ ≥ δ2/2poly(n,m), which is the desired de-
pendence. It remains to show that if x̃ is (1−ǫ)-approximate
solution to (7), then x̃ is also a δ-estimate of x∗.

Using the fact that f(x) is concave, and moreover its sec-
ond derivative has magnitude at least λ, it a simple exercise
to bound distance of any point x from the optimal point x∗

in terms of its sub-optimality f(x∗)− f(x), as follows:

f(x∗)− f(x) ≥ λ

2
||x− x∗||2. (11)

Assume x̃ is a (1− ǫ)-approximate solution to (7). Equation
(11) implies that

||x̃− x∗||2 ≤ 2

λ
ǫf(x∗) =

δ2∑
i
vi([m])

f(x∗) ≤ δ2,

where the last inequality follows from the fact that
∑

i
vi([m]))

is an upper-bound on the optimal value f(x∗). Therefore,
||x−x∗|| ≤ δ, as needed. This completes the proof of Lemma
B.2.

B.3 Guaranteeing Good Conditioning
In this section, we propose a modification r+poiss of the

Poisson rounding scheme rpoiss. We will argue that r+poiss
satisfies all the properties of rpoiss established so far, with
one exception: the approximation guarantee of Lemma 4.2
is reduced to 1−1/e−2−2mn . Then we will show that r+poiss
satisfies the curvature assumption of Lemma B.2, demon-
strating that said assumption may be removed. Therefore
Algorithm 1, instantiated with r = r+poiss for combinato-
rial auctions with MRS valuations in the lottery-value or-
acle model, is (1 − 1/e − 2−2mn) approximate and can be
implemented in expected poly(n,m) time. Finally, we show
in Remark B.4 how to recover the 2−2mn term to get a clean
1− 1/e approximation ratio, as claimed in Theorem 4.1.

Let µ = 2−2nm. We define r+poiss in Algorithm 3. Intu-

itively, r+poiss at first makes a tentative allocation using rpoiss.
Then, it cancels said allocation with small probability µ. Fi-
nally, with probability β it chooses a random“lucky winner”
i∗ and gives him all the items. β is defined as the fraction
of items allocated in the original tentative allocation. The
motivation behind this seemingly bizarre definition of r+poiss
is purely technical: as we will see, it can be thought of as
adding “concave noise” to rpoiss.

Algorithm 3 Modified Poisson Rounding Scheme r+poiss

Input: Fractional allocation x with
∑

i
xij ≤ 1 for all j,

and 0 ≤ xij ≤ 1 for all i, j.
Output: Feasible allocation (S1, . . . , Sn).
1: Let (S1, . . . , Sn) ∼ rpoiss(x).

2: Let β =
∑

i |Si|

m
.

3: Draw q1 ∈ [0, 1] uniformly at random.
4: if q1 ∈ [0, µ] then
5: Let (S1, . . . , Sn) = (∅, ∅, . . . , ∅).
6: Draw q2 ∈ [0, 1] uniformly at random.
7: if q2 ∈ [0, β] then
8: Choose a player i∗ uniformly at random.
9: Let Si∗ = [m], and Si = ∅ for all i 6= i∗.
10: end if

11: end if

We can write the expected welfare E[w(r+poiss(x))] as fol-
lows. We use linearity of expectations and the fact that β is
independent of the choice of i∗ to simplify the expression.

E[w(r+poiss(x))] = E[(1− µ)w(rpoiss(x)) + µβvi∗([m])]

= (1− µ) E[w(rpoiss(x))] + µE[β]E[vi∗([m])]

= (1− µ) E[w(rpoiss(x))] + µE[β]

∑
i
vi([m])

n

Observe that rpoiss allocates an item j with probability
∑

i
(1−e−xij ). Therefore, the expectation of β is

∑
ij(1−e

−xij )

m
.

This gives:

E[w(r+poiss(x))] =(1− µ) E[w(rpoiss(x))]

+
µ

mn

∑

i

vi([m])
∑

i,j

(1− e−xij ). (12)

It is clear that the expected welfare when using r = r+poiss
is within 1 − µ = 1 − 2−2nm of the expected welfare when
using r = rpoiss in the instantiation of Algorithm 1. Using
Lemma 4.2, we conclude that r+poiss is a (1− 1/e− 2−2nm)-
approximate rounding scheme. Moreover, using Lemma 4.3,
as well as the fact that (1− e−xij ) is a concave function, we
conclude that r+poiss is a convex rounding scheme. Therefore,
this establishes the analogues of Lemmas 4.2 and 4.3 for
r+poiss. It is elementary to verify that our proof of Lemma

B.2 can be adapted to r+poiss as well.

It remains to show that r+poiss is “sufficiently concave”.
This would establish that the conditioning assumption of
Section B.2 is unnecessary for r+poiss. We will show that
expression (12) is a concave function with curvature of mag-

nitude at least λ =
∑n

i=1 vi([m])

enm22nm everywhere. Since the curva-
ture of concave functions is always non-positive, and more-
over the curvature of the sum of two functions is the sum
of their curvatures, it suffices to show that the second term
of the sum (12) has curvature of magnitude at least λ. We
note that the curvature of

∑
ij
(1−e−xij ) is at least e−1 over

x ∈ [0, 1]n×m. Therefore, the curvature of the second term
of (12) is at least

µ

nm

(
∑

i

vi([m])

)
e−1 = λ

as needed.



Remark B.4. In this section, we sacrificed 2−2nm in the
approximation ratio in order to guarantee expected polyno-
mial runtime of our algorithm even when convex program
(7) is not well-conditioned. This loss can be recovered to
get a clean 1 − 1/e approximation as follows. Given our
(1−1/e−2−2nm)-approximate MIDR algorithm A, construct
the following algorithm A′: Given an instance of combina-
torial auctions, A′ runs A on the instance with probabil-
ity 1 − e2−2nm, and with the remaining probability solves
the instance optimally in exponential time O(22nm). It was
shown in [9] that a random composition of MIDR mecha-
nisms is MIDR, therefore A′ is MIDR. The expected run-
time of A′ is bounded by the expected runtime of A plus
e2−2nm ·O(22nm) = O(1). Finally, the expected approxima-
tion of A′ is the weighted average of the approximation ratio
of A and the optimal approximation ratio 1, and is at least
(1− e2−2nm)(1− 1/e− 2−2nm) + e2−2nm ≥ 1− 1/e.

C. ADDITIONAL PRELIMINARIES

C.1 Matroid Theory
In this section, we review some basics of matroid theory.

For a more comprehensive reference, see [21].
A matroid M is a pair (X , I), where X is a finite ground

set, and I is a non-empty family of subsets of X – often
referred to as the independent sets of the matroid – satisfying
the following two properties. (1) Downward closure: If S
belongs to I, then so do all subsets of S. (2) The Exchange
Property: Whenever T, S ∈ I with |T | < |S|, there is some
x ∈ S \ T such that T ∪ {x} ∈ I.

We associate with matroid M a set function rankM :
2X → N, known as the rank function of M , defined as fol-
lows: rankM (A) = maxS∈I |S ∩ A|. Equivalently, the rank
of set A in matroid M is the maximum size of an indepen-
dent set contained in A. A set function f on a ground set
X is a matroid rank function if there exists a matroid M on
the same ground set such that f = rankM . It is well-known
that matroid rank functions are monotone, normalized, and
submodular.

C.2 Convex Optimization
In this section, we distill some basics of convex optimiza-

tion. For more details, see [2].

Definition C.1. A maximization problem is given by a
set Π of instances (P , c), where P is a subset of some eu-
clidean space, c : P → R, and the goal is to maximize c(x)
over x ∈ P. We say Π is a convex maximization problem
if for every (P , c) ∈ Π, P is a compact convex set, and
c : P → R is concave. If c : P → R

+ for every instance of
Π, we say Π is non-negative.

Definition C.2. We say a non–negative maximization
problem Π is R-solvable in polynomial time if there is an al-
gorithm that takes as input the representation of an instance
I = (P , c) ∈ Π — where we use |I| to denote the number of
bits in the representation — and an approximation param-
eter ǫ, and in time poly(|I|, log(1/ǫ)) outputs x ∈ P such
that c(x) ≥ (1− ǫ)maxy∈P c(y).

Fact C.3. Consider a non-negative convex maximization
problem Π. If the following are satisfied, then Π is R-solvable
in polynomial time using the ellipsoid method. We let I =

(P , c) denote an instance of Π, and let m denote the dimen-
sion of the ambient euclidean space.

1. Polynomial Dimension: m is polynomial in |I|.
2. Starting ellipsoid: There is an algorithm that computes,

in time poly(|I|), a point c ∈ R
m, a matrix A ∈ R

m×m,
and a number V ∈ R such that the following hold. We
use E(c,A) to denote the ellipsoid given by center c and
linear transformation A.

(a) E(c,A) ⊇ P
(b) V ≤ volume(P)

(c) volume(E(c,A))
V

≤ 2poly(|I|)

3. Separation oracle for P: There is an algorithm that
takes takes input I and x ∈ R

m, and in time poly(|I|, |x|)
where |x| denotes the size of the representation of x,
outputs “yes” if x ∈ P, otherwise outputs h ∈ R

m such
that hTx < hT y for every y ∈ P.

4. First order oracle for c: There is an algorithm that
takes input I and x ∈ R

m, and in time poly(|I|, |x|)
outputs c(x) ∈ R and ▽c(x) ∈ R

m.

D. OMITTED PROOFS

Proof Sketch of Lemma 4.2. Let S1, . . . , Sn be an al-
location, and let x be an the integer point of (7) correspond-
ing to S1, . . . , Sn. Let (S

′
1, . . . , S

′
n) ∼ rpoiss(x). It suffices to

show that E[
∑

i
vi(S

′
i)] ≥ (1− 1/e) ·∑

i
vi(Si).

By definition of the poisson rounding scheme, S′
i includes

each j ∈ Si independently with probability 1 − 1/e. Sub-
modularity implies that E[vi(S

′
i)] ≥ (1− 1/e) · vi(Si) – this

is well-known, and we omit the details from this extended
abstract. This completes the proof.

Lemma D.1. Let A be an MIDR allocation rule for com-
binatorial auctions, and let v1, . . . , vn be input valuations.
Assume black-box access to A, and value oracle access to
{vi}ni=1. We can compute, with poly(n) over-head in run-
time, payments p1, . . . , pn such that E[pi] equals the VCG
payment of player i for MIDR allocation rule A on input
v1, . . . , vn.

Proof. Without loss of generality, it suffices to show how
to compute p1. Let 0 : 2[m] → R be the valuation evaluating
to 0 at each bundle. Recall (see e.g. [20]) that the VCG
payment of player 1 is equal to

E
T∼A(0,v2,...,vn)

[
n∑

i=2

vi(Ti)

]
− E

S∼A(v1,...,vn)

[
n∑

i=2

vi(Si)

]
.

(13)

Let (S1, . . . , Sn) be a sample from A(v1, . . . , vn), and let
(T1, . . . , Tn) be a sample from A(0, v2, . . . , vn). Let p1 =∑n

i=2 vi(Ti) −
∑n

i=2 vi(Si). Using linearity of expectations,
it is easy to see that the expectation of p1 is equal to the
expression in (13). This completes the proof.

Remark D.2. We note that the mechanism resulting from
Lemma D.1 is individually rational in expectation, and each
payment is non-negative in expectation. We leave open the
question of whether it is possible to enforce individual ratio-
nality and non-negative payments ex-post.


