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Abstract

In Combinatorial Public Projectsthere is a set of projects that may be undertaken, and a seffof
interested players with a stake in the set of projects cho8guublic planner must choose a subset of
these projects, subject to a resource constraint, withdaéaf maximizing social welfare. Combinato-
rial Public Projects has emerged as one of the paradigmatitgms inAlgorithmic Mechanism Design
a field concerned with solving fundamental resource allongiroblems in the presence of both selfish
behavior and the computational constraint of polynonirakt

We design a polynomial-time, truthful-in-expectatioh— 1/¢)-approximation mechanism for wel-
fare maximization in a fundamental variant of combinatagpizblic projects. Our results apply to com-
binatorial public projects when players have valuatiors #rematroid rank sums (MRSyvhich en-
compass most concrete examples of submodular functiodgestin this context, including coverage
functions, matroid weighted-rank functions, and convexbmations thereof. Our approximation fac-
tor is the best possible, assumiRg# N P. Ours is the first mechanism that achieves a constant factor
approximation for a natural NP-hard variant of combinatigpublic projects.

*Extended abstract appearsiroceedings of the 12th ACM Conference on Electronic Comen@&C), 2011.
fSupported by NSF Grant CCF-0448664.



1 Introduction

The overarching goal adlgorithmic mechanism design to design computationally efficient algorithms
that solve or approximate fundamental resource allocatioblems in which the underlying data is a priori
unknown to the algorithm. A problem that has received mutdn#on in this context — albeit mostly in
the form of negative results — Sombinatorial Public Project§CPP). Here, there ama projectsbeing
considered by a public plannerplayers and a bound: < m on the number of projects that may be chosen.
Each playet has a privateraluationv;(.S) for each subset of the projects. We consider tfiexiblevariant

of CPP, where a feasible solution is a set of at miogtojects. The goal is to choose a feasible set of
projectsS maximizingsocial welfare ). v;(S). The valuations are initially unknown to the public planner
and must be elicited from the (self-interested) players.mfethanism” for CPP extracts this information,
and decides on a set of projects to undertake. The mechanisrosnsider can charge the players payments
in order to incentivize truthful reporting of their valuatis. Moreover, we seek mechanisms that run in
polynomial time.

Since CPP is highly inapproximable for general valuationgven by non-truthful algorithms — it is
most interesting to study CPP for restricted classes oftiins. Most notable among these are submodular
valuations, as they naturally model the pervasive notiotdwhinishing marginal returns”. In this paper,
we study CPP for a fundamental and large subset of submodallzations:Matroid Rank Sum Valuations
This class includes most concrete examples of submodutatifuns studied in this context. Most notably,
it includes the canonical and arguably most natural exawfpebmodularity: coverage functions.

Combinatorial public projects and its variants are exaspfevelfare maximization problem3here are
many other examples, most notable among thentamebinatorial auctionswith their many variants (see
e.g. [25]). Welfare maximization problems occupy a cergaaition in mechanism design, not only because
of the fundamental nature of the utilitarian objective, &lsto due to the rich economic theory surrounding
them. Most notably, the celebrated Vickrey-Clarke-Gro¢8G) mechanism (see e.g. [25]) is a general
solution for all these problems, at least from an economispgeetive. The VCG mechanismtisithful, in
that it is in a player’s best interest to report his true vatues regardless of the reports of the other players.
Moreover, VCG finds the welfare maximizing solution.

Unfortunately, however, most interesting welfare maxaian problems, such as combinatorial public
projects, are NP-hard. Therefore, implementing VCG effitje— i.e. in polynomial time — is impossible
unlessP = NP. Moreover, as first argued in [24], most existing approxiora@lgorithms — unlike
exact algorithms — cannot be converted to truthful mecimasiby the imposition of a suitable payment
scheme. This necessitates the design of carefully craftpcbgimation algorithms, tailored specifically
for truthfulness. Understanding the power of these truthfyproximation mechanisms is the central goal
of algorithmic mechanism design. This research agenda wsisaflvocated by Nisan and Ronen [23].
Since then, combinatorial auctions and combinatorial ipuojects have emerged as the paradigmatic
“challenge-problems” of the field, with much work in recerlays establishing upper and lower-bounds on
truthful polynomial-time mechanisms for these problenos,eixample: [20, 11, 13, 12, 10, 6, 14, 27, 3, 4,
7,17].

The “holy grail” of algorithmic mechanism design is to desjgolynomial-time truthful approximation
mechanisms that match the approximation guarantee of gtdrdmn-truthful) polynomial-time approxima-
tion algorithm. Unfortunately, several recent impossipilesults have shed serious doubt on the possibility

1This is in contrast to thexactvariant, where each feasible solution consistexdctly k projects — a difference that is
uninteresting in an approximation algorithms context, gt major implications when incentives are in the pictur@. rRore on
the distinction between the two variants, we refer the retaf].



of this goal [10, 27, 3, 4, 7]. Combinatorial public projeats particular, bore the brunt of the most bru-
tal of these negative results [27, 4, 7]. Fortunately, atldne of these lower bounds apply exclusively to
deterministic mechanisms, and none apply to randomizedhamegms for the — arguably more natural —
flexible variant of combinatorial public projects.

As the limitations of deterministic mechanisms became @giga recent research direction has focused
on designing randomized approximation mechanisms foruhddmental problems of algorithmic mecha-
nism design [20, 8, 15, 9, 17]. These mechanisms are instasfdhe only general approacknown for
designing (randomized) truthful mechanisms: miaximal-in-distributional range (MIDR) algorithn(8].

An MIDR algorithm fixes a set of distributions over feasibtdugions — thedistributional range— inde-
pendently of the valuations reported by the self-intecbgi@rticipants, and outputs a random sample from
the distribution that maximizes expected (reported) welfahe “Vickrey-Clarke-Groves (VCG)” payment
scheme renders an MIDR algorithinuthful-in-expectation— that is, a player unaware of the coin flips of
the mechanism maximizes his expected utility by reportiathfully.

Recently Dughmi, Roughgarden and Yan [17] presented the gesgeral framework to date for the
design of maximal-in-distributional-range algorithmselr approach is based on convex optimization, and
generalizes the celebrated linear-programming basedagpiof Lavi and Swamy [20]. Given a mathemat-
ical relaxation to a welfare maximization problem, [17] adates designing randomized rounding schemes
that areconvex Given a convex rounding scheme, the problem of finding trst dgput of the rounding
scheme is a convex optimization problem solvable in polyiabtime, and implements an MIDR allocation
rule. They then show how to design a convex rounding schenfobinatorial auctions with matroid rank
sum valuations, yielding an optimél — 1/e) approximation mechanism. We elaborate on the framework
of [17] in Section 2.5.

By reducing the problem of designing a truthful mechanisnthit of designing a convex rounding
scheme, the approach of [17] yielded the first optimal tulthfiechanism for a variant of combinatorial
auctions with restricted valuations. It is now natural tonder if their approach is applicable to other
welfare maximization problems. In particular, can the @mounding framework be used to obtain optimal
approximation mechanisms for interesting variants of Cioatiorial Public Projects?

We answer this question in the affirmative, and elaborateunmcontributions below.

1.1 Contributions

We design g1 — 1/e)-approximate convex rounding scheme for combinatorialipyioojects with matroid
rank sum valuations. This yields @ — 1/e)-approximate truthful-in-expectation mechanism for CPP,
running in expected polynomial-time. This is the best agipnation possible for this problem, even without
truthfulness, unles® = N P. Therefore, ours is the first truthful mechanism for an NRdhariant of CPP
that matches the approximation ratio of the best non-taligifyorithm. Our results works with “black-box”
valuations, provided that players can answer a randomigakbgue of value oracles.

To prove our results, we follow the general outline of [17]owver, our task is more challenging:
whereas in combinatorial auctions, randomized rounding allcate each item independently (the ap-
proach taken in [17]), this is not possible in CPP. We musgieesthe cardinality constraint éfon the set
of chosen projects, and therefore our rounding scheme nyusatbbe dependent This presents a major
challenge in analyzing our rounding scheme. Whereas thectg value of a submodular function on a
product distribution (i.e. independent rounding) has b&tedied extensively, and is closely related to the

2The random sampling approach used in [6], while arguablyeg#ndoes not seem applicable beyond auction settings — in
particular, it is not applicable to combinatorial publiojects.



now well-understood multi-linear (see e.qg. [5, 30]), aaalg the expected value of a dependent distribution
— in particular proving it to be a concave function of undartyparameters — is a technical challenge that
we overcome by combining techniques from combinatoriceyew analysis, and matroid theory.

1.2 Additional Related Work

Combinatorial Public Projects, in particular @sactvariant, was first introduced by Papadimitriou, Schapira
and Singer [27]. They show that no deterministic truthfulchremnism for exact CPP with submodular val-
uations can guarantee better thaf@/m) approximation to the optimal social welfare. The non-sgat
version of the problem, on the other hand, is equivalent tgimmiaing a submodular function subject to
a cardinality constraint, and admits(a— 1/e)-approximation algorithm due to Nemhauser, Wolsey and
Fisher [21], and this is optimal [28] assumiiy# N P.

Buchfuhrer, Schapira and Singer [4] explored approxinmatitgorithms and truthful mechanisms for
CPP with various classes of valuations in the submodulaatdby. The most relevant result of [4] to our
paper is a lower-bound @(/m) on deterministictruthful mechanisms for the exact variant of CPP with
coverage valuations — a class of valuations for whichrandomizedmechanism for flexible CPP obtains
a(1 —1/e) approximation.

Most recently, Dobzinski [7] showed two lower bounds for CGRRhe value oracle model: A lower
bound ofO(y/m) on universally truthful mechanisms for flexible CPP with sudulular valuations, and a
lower bound ofO(/m) on truthful-in-expectation mechanisms xactCPP with submodular valuations.
We note that the latter was the first unconditional lower lsbon truthful-in-expectation mechanisms.

2 Preliminaries

2.1 Combinatorial Public Projects

In Combinatorial Public Projectthere is a sefin] = {1, ..., m} of projects a cardinality bound such that
0 < k <m,andasefn] = {1,...,n} of players Each playei has a valuation function; : 2™ — R,
that is normalized«;(§) = 0) and monotone;(A) < v;(B) wheneverA C B). In this paper, we
consider thdlexiblevariant of combinatorial public projects: a feasible sintis a setS C [m| of projects
with |S| < k. Playeri’s value for outcomesS is equal tov;(S). The goal is to choose the feasible Set
maximizingsocial welfare >, v;(5).

We consider Combinatorial Public Projects where each plyaluationv; is know to lie in some set
Y of valuation functions. We abbreviate the set of instand&3R¥P constrained to valuationsas CPPY).
As first defined in [27], CPP was considered withequal to the set of monotone submodular functions.
In this paper, we focus on CPP with matroid-rank-sum (MR3)ai#ons — a large subset of monotone
submodular functions.

2.2 Mechanism Design Basics

We consider direct-revelation mechanisms for combinakqmiiblic projects. Fixn,n, andk, and letS =

{S C [m] :|S| < k} denote the set of feasible solutions. A mechanism compaisaiocation rule which

is a function from (hopefully truthfully) reported valuati functionsus, . .., v, : 2"/ — R to a feasible
outcomeS € S, and apayment rule which is a function from reported valuation functions toeguired
payment from each player. We allow the allocation and paymees to be randomized.



A mechanism with allocation and payment rulésndp is truthful-in-expectationf every player always
maximizes its expected payoff by truthfully reporting iewation function, meaning that

E[vi(A(v)) = pi(v)] > E[vi(A(v;,v-i)) — pi(vf, vi)] 1)

for every playeri, (true) valuation function;, (reported) valuation function, and (reported) valuation
functionsv_; of the other players. The expectation in (1) is over the cqis BHf the mechanism.

The mechanisms that we design can be thought of as randow@datons on the classical VCG mecha-
nism, as we explain next. Recall that MEG mechanisns defined by the (generally intractable) allocation
rule that selects the welfare-maximizing outcome with eespo the reported valuation functions, and the
payment rule that charges each playerbid-independent “pivot term” minus the reported welfamened
by other players in the selected outcome. This (deternhistechanism is truthful; see e.g. [22].

Now let dist(S) denote the probability distributions over the feasibleSeand letD C dist(S) be a
compact subset of them. The correspondieximal-In-Distributional-Range (MIDRallocation rule is de-
fined as follows: given reported valuation functians. . . , v, return an outcome that is sampled randomly
from a distributionD* € D that maximizes the expected welfdilg;.p[>, v;(S)] over all distributions
D € D. Analogous to the VCG mechanism, there is a (randomizednpayrule that can be coupled with
this allocation rule to yield a truthful-in-expectation afmanism (see [8]).

2.3 Matroid Rank Sum Valuations

We now define matroid rank sum valuations. Relevant condemts matroid theory are reviewed in Ap-
pendix B.1.

Definition 2.1. A set functiorv : 2™l — R is amatroid rank sum (MRSjunction if there exists a family
of matroid rank functionsu1, . .., u, : 2™ — R, and associated non-negative weights ..., w, € R,
such thaw(S) = >;_; weue(S) forall S C [m].

We do not assume any particular representation of MRS famgtiand require only oracle access to their
(expected) values on certain distributions (see Sectitn RIRS valuations include most concrete examples
of monotone submodular functions that appear in the lileeat— this includes coverage functidnsnatroid
weighted-rank functiorfs and all convex combinations thereof. Moreover, as show8h 1 — 1/¢ is the
best approximation possible for CPP with coverage valnatis- and hence also for MRS valuations —
in polynomial time, even ignoring strategic consideratioihat being said, we note that some interesting
submodular functions — such as some budget additive fumgtie- are not in the matroid rank sum family.

2.4 Lotteries and Oracles

A value oraclefor a valuationw : 2™ — R takes as input a sét C [m], and returns)(S). We define an
analogous oracle that takes in a description of a simpleriotiver sets' C [m], and outputs the expectation
of v over this lottery.

3A coverage functiorf on ground sefn] designates some sBt andm subsetsd, ..., A, C Y, suchthatf (S) = |Uees Ael-
We note thafy may be an infinite, yet measurable, space. Coverage fusaienarguablyhe canonical example of a submodular
function.

“This is a generalization of matroid rank functions, wherégives are placed on elements of the matroid. It is true, thouaf
immediately obvious, that a matroid weighted-rank functian be expressed as a weighted combination of matroid {ghtee)
rank functions — see e.g. [16].

°A set functionf on ground sefm] is budgeted additivéf there exists a constar® > 0 (the budget) such thaf(S) =

min(B, 3, ¢ f({7}))-



Letk € [m], let R C [m], and letz € [0,1]™ be a vector such thgdt;; z; < 1. We interpretz as
a probability distribution ovefm] U {x}, wherex represents not choosing a project. Specifically, project
Jj € [m] is chosen with probability:;, andx is chosen with probability — . z;. We define a distribution

Df(x) over2i™l, and call this distribution thé-bounded lottery with marginals and promiseR. We
sampleS ~ D,f(x) as follows: Letjy,. .., jx be independent draws from and letS = RU{j1,...,Jk} \
{x}. Essentially, this lottery commits to choosing proje&sand adds an additiona projects chosen
randomly with replacement from distribution WhenR = (), as will be the case through most of this
paper, we omit mention of the promised set. We can now defimm@domized analogue of a value oracle
that returns the expected value of a bounded-lottery.

Definition 2.2. A bounded-lottery-value oracler set functionv : 2™ — R takes as input a vector
z € [0,1]™ with >, 2; <1, aboundk € [m], and a set? C [m], and outputEg_pr(,) [v(9)].

In our model for CPP, we assume that a player with valuatiowtfan v; can answer bounded-lottery-
value oracle queries far,. A bounded-lottery-value oracle is a generalization ofieadracles. Nevertheless,
itis the case that a bounded-lottery-value oracle can bkeimgnted using a value oracle for some succinctly
represented examples of MRS valuations, such as expliggrage functions (In similar fashion to [17,
Appendix A]).

More generally we note that bounded-lottery-value orackes be approximated arbitrarily well, with
high probability, using value oracles; this is done by rancgampling, and we omit the technical details.
Unfortunately, we are not able to reconcile the incurredang errors — small as they may be — with
the requirement that our mechanisméectlytruthful. We suspect that relaxing our solution concept to
approximate truthfulness — also knowneasuthfulness — would remove this difficulty, and allow usétax
our oracle model to the more traditional value oracles.

2.5 Convex Rounding

In this section, we reviewonvex roundinga framework for the design of truthful mechanisms intraatlic
by Dughmi, Roughgarden and Yan [17]. We present the mainitefia and lemmas as they pertain to
combinatorial public projects. For a more thorough and ganieeatment of convex rounding, we refer the
reader to [17, Section 3].

We consider the standard integer programming formulatio@RP. There is a variable; € {0,1}
for each projectj € [m], and the goal is to set at mastof the variables td so that the welfare(z) =
> vi({j - z; = 1}) is maximized. Weelax this integer program in the obvious way to the polytdpe=

{x eR™: Zj r; <k,x = O}. We postulate aounding scheme that maps points oP to the feasible

solutionsS = {S C [m] : |S| < k} of CPP. We allow to be randomized, so thafz) is a distribution over
S for eachz € P.

Traditionally, approximation algorithms optimize an atijee v(xz) — often a simple extension afto
P — over the seP of fractional solutions, and then round the optimal fraggibpointz* to a solution-(z*)
in the original feasible sef. Many of the best approximation algorithms for various jpeals are based
on this relax-solve-round framework. Unfortunately, hges this approach is almost always incompatible
with the design of truthful mechanisms, due to the fact tharounding step is often unpredictable. Truthful
mechanism design, on the other hand, is intimately tiegktt optimizationas evidenced by the fact that
the vast majority truthful mechanisms for multi-parameissblems are based on the VCG paradigm (see
Section 2.2).



In an effort to reconcile the techniques of approximatiogoathms and truthful mechanism design,
Dughmi, Roughgarden and Yan propossatimizing directly on the output of the rounding scheméhea
than on its input This defines an optimization problem induced by relaxaffoand rounding scheme
Stated for CPP with the relaxation as described above, th#gm is as follows.

maximize Eg.,(x)[>_; vi(S)]
subjectto >, x; <k 2
0<uwx; <1, forj=1,...,m.

They consider a simple allocation rule, which we state foP@iPAlgorithm 1, that solves (2) optimally.
They observe that this allocation rule is maximal-in-dlisttional-range.

Algorithm 1 MIDR Allocation Rule for CPP
Parameter: n,m,k
Parameter:. (Randomized) rounding scheme
Input: Valuation functions{v;}" ,
Output: A setS C [m] with |[S| < k

1: Letx* be an optimal solution to (2)

2. LetS ~ r(z*)

Lemma 2.3([17]). Algorithm 1 is an MIDR allocation rule.

Fora < 1, we say that the rounding schem&r CPP{) is a-approximateaf, wheneverz is an integer
point of P corresponding to a s&f € S, andv; € V for eachi, we have thatEr., ) [>_; vi(T)] >
a . v;(S). In other words, rounding does not degrade the quality ohgeger solution by more tham.
Given the definition of Algorithm 1, it is easy to conclude thdowing lemma.

Lemma 2.4 ([17]). If r is an a-approximate rounding scheme for CBB( then Algorithm 1 is aru-
approximation algorithm for CPRY).

For reasons outlined in [17], implementing Algorithm 1 a#fittly is impossible for most rounding
schemes in the literature. To get around this difficulty, they adviecdesigning rounding schemes that
render (2) a convex optimization problem.

Definition 2.5. Consider a randomized rounding schemeP — dist(S). We sayr is aconvex rounding
scheméor CPP(V) if, whenevew; € V for all i, the objectiveEg...,.,,)[>_; vi(S)] is a concave function of
xX.

Lemma 2.6. Whenr is a convex rounding scheme for CRB(, (2) is a convex optimization problem for
each instance of CPP).

Under additional technical conditions, discussed in th&texi of combinatorial public projects in Ap-
pendix A, convex program (2) can be solved efficiently (euging the ellipsoid method). This reduces the
design of a polynomial-time-approximate MIDR algorithm to designing a polynomial-éim-approximate
convex rounding scheme.

Summarizing, Lemmas 2.3, 2.4, and 2.6 give the followingrimfal theorem.

Theorem 2.7(Informal). If there exists amv-approximate convex rounding scheme for CPRthen there
exists a truthful-in-expectation, polynomial-timeapproximate mechanism for CPP,



3 The Mechanism

In this section, we prove the main result.

Theorem 3.1. There is & 1—1/e)-approximate, truthful-in-expectation mechanism for boratorial public
projects with matroid rank sum valuations in the bounddtkly-value oracle model, running in expected
poly(n, m) time.

We structure the proof of Theorem 3.1 as follows. We definektheunded-lottery rounding scheme
which we denote by, in Section 3.1. We prove that is (1 — 1/e)-approximate (Lemma 3.3), and convex
(Lemma 3.2). Lemmas 2.3, 2.4 and 3.3, taken together, infy@y Algorithm 1 when instantiated with
r = rg, isa(l — 1/e)-approximate MIDR allocation rule. Lemma 3.2 reduces imp@ating this allocation
rule to solving a convex program.

In Appendix A, we handle the technical and numerical issetded to solving convex programs. First,
we prove that our instantiation of Algorithm 1 can be implerneel in expected polynomial-time using the
ellipsoid method under a simplifying assumption on the nuecaé conditioning of our convex program
(Lemma A.2). Then we show in Section A.3 that the previousimggion can be removed by slightly
modifying our algorithm.

Finally, we prove that truth-telling VCG payments can be pated efficiently in Lemma B.4. Taken
together, these lemmas complete the proof of Theorem 3.1.

3.1 Thek-Bounded-Lottery Rounding Scheme

We devise a rounding schemg that we term the:-bounded-lottery rounding schemé&iven a feasible
solutionz to linear program (2), we let distribution, (x) be thek-bounded-lottery with marginals/ (and
promisef), as defined in Section 2.4. We make this more explicit in Atgm 2.

Algorithm 2 Thek-Bounded-Lottery Rounding Schemg

Input: Fractional solutionr € R™ with Zj z; < k,and0 < z; < 1forallj.

Output: S C [m]with |S| <k
1: For eachj € [m] designate the interval; = [ Y=, xjr, £ 2. < 4] of length 3
2: Drawpy, ..., p; independently and uniformly frono, 1]
3 LetS={je[m]:{p1,....,px} NI; # 0}

Thek-bounded-lottery rounding schemgis— 1/¢) approximate and convex. We prove the approxima-
tion lemma below. As for convexity, we present a simplifiedqdifor the special case of coverage valuations
in Section 3.2, and present the proof for MRS valuations ictiSe 3.3.

Lemma 3.2. Thek-bounded-lottery rounding scheme is convex for CPP with Mid&ations.

Lemma 3.3. The k-bounded-lottery rounding scheme(is— 1/e)-approximate when valuations are sub-
modular.

Proof. Fix n,m,k and{v;};" ;. LetS C [m] be a feasible solution to CPP — i.¢S| < k. Let1g be
the vector withl in indices corresponding t6, and0 otherwise. Letl’ ~ r(1g). We will first show that
each element of € S is included inT" with probability at least — 1/e. Observe thaf is the union of
k independent draws from a distribution én| U {x}, where each time the probability gfe S is 1/k.

Therefore, the probability thatis included inT is 1 — (1 — 1/k)k > 1 —1/e.

7



Submodularity now implies thdt[v;(T)] > (1 — 1/e) - v;(S) for each playet — this was proved in
many contexts: see for example [19, Lemma 2.2], and theceaeliated result in [18, Proposition 2.3]. This
completes the proof. O

3.2 Warmup: Convexity for Coverage Valuations

In this section, we prove a special case of Lemma 3.2 for emeevaluations. Recall that a coverage function
f on ground sefmn] designates some sgt andm subsetsdy, ..., A,, C Y, such thatf(S) = | Ujes 4;].

Fix n,m, k and {v;}7_,. Assume that, for each playér the valuation function; : 20" — Ris a
coverage function. We let(S) = >, v;(S) be the welfare of a solutio to CPP. It is an easy observation
that the sum of coverage functions is also a coverage funclibereforev(S) is a coverage function. We
let) be a set, andly, ..., A, C Y, such thaw(S) = | Ujes A;|. While our proof extends easily to the
case wher¢y is an arbitrary measure space, we assume in this sectiop/tisa finite set for simplicity.

Let P denote the polytope of fractional solutions to CPP as ging@). We now show thdEg...,, () [v(S5)]
is a concave function of for z € P, completing the proof of Lemma 3.2 for the special case otcage
valuations. Take an arbitrary € P, and letS ~ r;(z) be a random variable. Using linearity of expecta-
tions, we can rewrite the expected welfare as follows.

E[v(5)] = E[| Ujes Aj]] = Y Pr[l € Ujes4))
ey

Since the sum of concave functions is concave, showindhfte U;cgA;] is concave in: for eachl € Y
suffices to complete the proof. Fore ), letT, = {j € [m] : £ € A;} be the set of projects that “cover”
(. Letpy,...,prandlq,..., I be as in Algorithm 2. Note tha(t[j};.”:1 are disjoint sub-intervals g6, 1],

and|[;| = “%J We can rewrite the probability of coverirfgas follows.
Pr[l € UjegAj] =Pr[SNT, # @]

=Pr[{p1,...,pe} NUjer,I; # 0]
=1-Prl{p1,....pc} NUjen,I; = 0]

k
=1-[[Prlp: ¢ Yjer,I)]
i1

Ed

=1— |1~ |Ujer, ;)
t=1
k
_ ZJ'ETe Ly
—1-(1- s

The final form is simply the composition of the concave fumiety(y) = 1 — (1 — y/k)* with the affine
functiony — ZJETZ x;. Itis well known that composing a concave function with aimaffunction yields
another concave function (see e.g. [2]). This completegtbef.

3.3 Convexity for Matroid Rank Sum Valuations

In this section, we will prove Lemma 3.2 in its full genenlifirst, we recall thaliscrete hessian matrjix
as defined in [17].



Definition 3.4 ([17]). Letv : 2™ — R be a set function. Fos C [m], we define the discrete Hessian
matrix Hg € R™*™ of v at S as follows:

Hs (i) = v(S Ui, 5}) —v(SU{i}) —o(SU{7}) + v(S) 3)
fori,j € [m].

It was shown in [17] that the discrete hessian matrices agative semi-definite for matroid rank sum
functions.

Claim 3.5 ([17]). If v : 2™ — R is a matroid rank sum function, thel? is negative semi-definite for
eachS C [m].

We now return to Lemma 3.2. Fix andm. For each cardinality bounkl € [m], let P, denote the
polytope of fractional solutions to CPP as given in (2). Feedof MRS valuations., . . . , v,, we observe
that the social welfare(S) = " , v;(S) is — by the (obvious) fact that the sum of MRS functions is an
MRS function — also an MRS function. Therefore, we will prdvemma 3.2 by showing that, for each
k € [m] and MRS functiory : 2" — R, the following function of € Py is concave in.

Gile) = | B, [0(S)

= 3" u(8)Prlry(a) = 8 @)

5C[m]

We use techniques from combinatorics to wike[r;(z) = S] in a form that will be easier to work
with. For7" C [m], we userr as short-hand fo} _ ;. z;, andT as short-hand fom] \ 7.

Claim 3.6. For eachk € [m], x € Py, andS C [m]
g = _1ISI N _qlRl(_ Tr\"
Prir(x) = 8] = —1I5Y" -1 (1 ] ) 6)
RCS
Proof. Itis easy to see th&r[r;(z) = S] is equal to:
Prlry(z) C 8] = Pr[\/ ri(z) € S\ {j}] (6)
jes
Using the inclusion-exclusion principle, we can rewritg &6 follows:
Pr(ri(z) € S]— > —1T"Prlr(z) C 5\ T] 7)
0#TCS

Letting R = S\ T"in (7), we get

Prry(z) C S] — Z —1S=IB=1 Py (2) C R] (8)
RCS
We can easily simplify (8) to conclude that

Prirp(z) = S| = Y —1¥1-1"Pr[r(2) C R (9)
RCS



Next, we observe that the expressiB[r,(z) C R] can be expressed as a simple closed form:.in
Letpi,...,pr @andly,..., I, be as in Algorithm 2. The eveni,(x) C R occurs exactly when none of
p1,...,pk land in the intervals corresponding to projeéts Recalling that the interval; of project; has
lengthz;/k, we get that the probability of any particulgy falling in Ujerlj is exactlyzy/k. Therefore,
by the independence of the variablgs. . . , px, we get that

Priri(r) € 7] = (1- 72)" (10)

Combining (9) and (10) completes the proof. O

Building on Claim 3.6, we now express the Hessian matrix:ffas a non-negative weighted sum of
discrete Hessian matrices of We note that when: € Py, it is easy to verify that=2 - = € P;_,, and
therefore (11) is well-defined.

Claim 3.7. For eachk € [m], z € P, andv : 2™} — R, we have

V2GY(z) :—ZPr[rk2<kk2 >:S}Hg (11)

SCm]

Proof. Fix i,j € [m], possibly withi = j. We work with G}, as defined in Equation (4), and plug in
expression (5).

v (r) — IS ST _qlrl (1 _ TR
Giz) = Y w(s)- 1813 -1 (1 k)
SC[m] RCS
Differentiating with respect te; andz; gives:

OZGU(SL') . k-1 S| IR| T\ k—2
i e IL RN VIR S

5C[m] RCS\{i,j}

We group the terms by projectingonto[m] \ {i,j}, and then we simplify the resulting expression.

2 v T _ T\ k—
PGy(z) _k . Loy Y (1 ?R)’“ T (0(8) —v(S U{i}) — o(S U {G}) + (S U i 7})

Ozidz; SC[m]\{i j} RCS

== Z 1S (1 TE) T () — o5 U ) — o(S U () + oS U i, 5))

RCS
k-1 B B (1 TR\
S ey (1) o
sCim]  RCS

The second equality follows from the fact thdtS) — v(S U {i}) —v(S U {j}) + v(S U {i,j}) = 0 when
S includes either of andj. The last equality foIIows by definition Gf%.

Invoking Claim 3.6 withk’ = k — 2 andz’ = -z, and pluggmg the resulting expression into into
(12), we conclude that

*Gi(x) k-1 k—2 o
ooz, Tk Z Pr [rk_2< 5 a:) —S] HS(i, 7).

SCim]
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Claims (3.5) and (3.7) establish that, wheis MRS andk € [m)], V2GZ(96) is a non-negative weighted
sum of negative semi-definite matrices for eack P,. A non-negative weighted sum of negative semi-
definite matrices is negative semi-definite. Therefore Hassian matrix oy} is negative semi-definite at
eachx € Py, and we conclude that} is a concave function o;,. This completes the proof of Lemma
3.2.
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A Solving The Convex Program

In this section, we overcome some technical difficultieatesd to the solvability of convex programs. We
follow the general outline of [17, Appendix B], modifyingehproofs throughout in order to handle the
additional technical difficulties specific to CPP. We showsiction A.1 that, in the bounded-lottery-value
oracle model, the four conditions for “solvability” of cagw programs, as stated in Fact B.3, are easily
satisfied for convex program (2) when= r,. However, an additional challenge remains: “solving” a
convex program — as in Definition B.2 — returns an approximyad@timal solution. Indeed the optimal
solution of a convex program may be irrational in generathsois unavoidable.

We show how to overcome this difficulty if we settle for polynial runtime in expectation. While
the optimal solutionz* of (2) cannot be computed explicitly, the random variahléx*) can be sampled
in expected polynomial-time. The key idea is the followirsgimpling the random variable, (xz*) rarely
requires precise knowledge of. Depending on the coin flips of,, we decide how accurately we need
to solve convex program (2) in order compuigz*). Roughly speaking, we show that the probability of
requiring a(1 — e)-approximation falls exponentially iij As a result, we can sample(x*) in expected
polynomial-time. We implement this plan in Section A.2 untlee simplifying assumption that convex
program (2) iswvell-conditioned— i.e. is “sufficiently concave” everywhere. In Section Ava show how
to remove that assumption by slightly modifying our aldamit

A.1 Approximating the Convex Program

Claim A.1. There is an algorithm for Combinatorial Public Projects WiMRS valuations in the bounded-
lottery-value oracle model that takes as input an instarfcén® problem and an approximation parameter
e > 0, runs inpoly(n, m,log(1/¢€)) time, and returns &1 — ¢)-approximate solution to convex progre®)
whenr = ry.

It suffices to show that the four conditions of Fact B.3 arésiatl in our setting. The first three are
immediate from elementary combinatorial optimizatiore(f& example [29]). It remains to show that the
first-order oracle, as defined in Fact B.3, can be implemeimtgublynomial-time in the bounded-lottery-
value oracle model. We lef(x) denote the objective function of convex program (2) whea 7. This
objective can, by definition, be written as follows.

f@)=_E_ [Z vi8)| =G ()

wherew; is the valuation function of player and G}’ is as defined in (4). By definition7," () is the
outcome of querying the bounded-lottery-value oracle; ofith boundk and marginals:/k. Therefore, we
can evaluatef (z) usingn bounded-lottery-value queries, one for each player. Iltaiemto show that we
can also evaluate the (multi-variate) derivatiye () of f(x). Using definition (4) and Claim 3.6, we take
the partial derivative o7}’ with respect taz; and simplify the resulting expression.
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oG} k-1
Sy T e T o5

SCm] RCS\{j}
= Y (s U ) - w(s) X -1 (1= 2y
SCm\{j} RCS
= Z S (wi(S U ) — () 3 -1 (1= 2E)
RCS
1 k—1
= S%;ﬂ vi(SU{j}) Pr |:Tk—1 ( 3 x) = S] —S%;ﬂ (S)Pr [rk 1 < 3 x) = S]

(13)

The second equality follows by grouping the terms of the sation by the projection of onto[m] \ {j}.
The third equality follows from the observation thdtS U {j}) — v(S) = 0 whenS includes;. The fourth
equality follows by a simple re-arrangement and applicetibClaim 3.6.

Inspect the final form (13) in light of the definition of bourtlttery-value oracles (Definition 2.2) and
the definition ofr; (Section 3.1). Notice that the first term is the expectedevatw; over the(k — 1)-
bounded-lottery with marglnal%—x and promis€j}. The second term is the expected value,ajver the

same lottery without the promise. Therefore, we can evale(gat— ) using two queries to the bounded-
lottery-value oracle of player This completes the proof of Claim A.1.

A.2 The Well-Conditioned Case

In this section, we make the following simplifying assuropti The objective functiory(z) of convex
program (2) withr = r;, when restricted to any line in the feasible $&thas a second derivative of

magnitude at least = %polyfﬁfj}” everywhere, where the polynomial in the denominator mayribirary.
This is equivalent to requiring that every eigenvalue oftfessian matrix off (x) has magnitude at leait
when evaluated at any point fA. Under this assumption, we prove Lemma A.2.

Lemma A.2. Assume the magnitude of the second derivativé of is at least\ = Licy villm]) everywhere.

2p01y(n " gpoly(n,m)
Algorithm 1, instantiated witlt = r;,, can be simulated in time polynomial#nandm in expectation.

Let z* be the optimal solution to convex program (2) witk= r. Algorithm 1 outputs a set of projects
distributed as(«*). Thek-bounded-lottery rounding scheme, as described in Algori, requires mak-
ing k independent decisions: fére {1,...,k}, we drawp, uniformly from [0, 1] and decide which interval
I;, if any, p, falls into. In other words, we find the minimum indgx(if any) such thatzjgj[ xj/k > py.

Fix ¢. For most realizations gf;, we can calculatg, using only coarse estimates to ;. Assume we have
anestimation oracldor x* that, on inpu®, returns aj-estimater of z*; Specifically%j z; < ¢ foreach

j € [m]. If p, falls outside the “uncertainty zones” of such as whefp, — >, ; ;. /k| > ém/k for each

j € [m], it is easy to see that we can correctly determinby usingz in I|eu of z. The total measure of
the uncertainty zones afis at mos2m?g, thereforep, lands outside the uncertainty zones with probability
at leastl — 2m?§. The following claim shows that if the estimation oracle fdrcan be implemented in
time polynomial inlog(1/4), then we can simulate thiebounded-lottery rounding procedure in expected
polynomial-time.

15



Claim A.3. Letz* be the optimal solution of convex progrd®) with r = . Assume access to a subroutine
B(9) that returns aj-estimate ofc* in poly(n, m,log(1/d)) time. Algorithm 1, instantiated with = ry,
can be simulated in expectedly(n, m) time.

Proof. Fix ¢ € {1,...,k}. Drawp, € [0, 1] uniformly at random as in thé-bounded-lottery rounding
scheme in Algorithm 2. We will show how to find, in expectedy (n, m) time, the minimum index; (if
any) such thap ., =7/k > ps.

The algorithm proceeds as follows: Start with= §p = ﬁ Letz = B(5). While |p;—3 " ,; Zjr k| <
dm/k for some; € [m] (i.e. p, may fall inside an “uncertainty zone”) do the following: l&t= §/2,
Z = B(9) and repeat. After the loop terminates, we have a sufficiextburate estimate af* to calculate
Je-

It is easy to see that the above procedure is a faithful siionlaof Algorithm (2) onx*. It remains
to bound its expected running time. L&t = W denote the value of at iterationt. By our initial
assumption, iterationtakespoly(n, m,log(1/6;)) = poly(n, m,log(271m?)) = poly(n, m, t) time. The
probability this procedure does not terminate aftéerations is at mos2m?s; = 1/2¢. Taken together,
these two facts and a simple geometric summation imply tleekpected runtime is polynomial inand
m. O

It remains to show that the estimation oraéléj) can be implemented ipoly(n,m,log(1/d)) time.
At first blush, one may expect that the ellipsoid method cangesl in the usual manner here. However,
there is one complication: we require an estimathat is close tac* in solution spaceather than in terms
of objective value. Using our assumption on the curvaturé(af), we will reduce finding a&-estimate of
x* to finding anl — ¢(§) approximate solution to convex program (2) with= 7. The dependence efon
& will be such thate > poly(§)/2P°Y (™) thereby we can invoke Claim A.1 to deduce tf#) can be
implemented irpoly(n, m,log(1/4)) time.

Lete = €(8) = 5"y Plugging in the definition of, we deduce that > 52 /2vlv(:m), which is
the desired dependeﬁce. It remains to show thaisf(1 — ¢)-approximate solution to (2), thenis also a
d-estimate ofc*.

Using the fact thaff (x) is concave, and moreover its second derivative has magnatitbast), it a
simple exercise to bound distance of any pairftom the optimal point:* in terms of its sub-optimality
f(z*) — f(x), as follows:

* A *
fa) = fl@) = Slle =], (14)
Assumez is a(1 — e)-approximate solution to (2) with = r,. Equation (14) implies that
2 52
T—2*? < Zef(z¥) = = f(z*) < 62,
17— 0| < Sef ) = s )

where the last inequality follows from the fact tha}; v; ([m]) is an upper-bound on the optimal valfier*).
Therefore ||z — z*|| < §, as needed. This completes the proof of Lemma A.2.

A.3 Guaranteeing Good Conditioning

In this section, we propose a modificatiojj of the k-bounded-lottery rounding schemg. We will argue
thatr,j satisfies all the properties of established so far, with one exception: the approximaticaragntee
of Lemma 3.3 is reduced tb— 1/e — 272", Then we will show that;" satisfies the curvature assumption
of Lemma A.2, demonstrating that said assumption may be vedoTherefore Algorithm 1, instantiated
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with r = r,j for combinatorial public projects with MRS valuations iretbounded-lottery-value oracle
model, is(1 — 1/e — 272™") approximate and can be implemented in expegigd (n, m) time. Finally,
we show in Remark A.4 how to recover tBe?™" term to get a clean — 1/e approximation ratio, as
claimed in Theorem 3.1.

Let u = 272", We definer; in Algorithm 3. Intuitively, 7/ first chooses a tentative s&tC [m] of
projects using;. Then it cancels its choice with small probabiljty Finally, with probabilitys it chooses
arandom projeci* € [m] and letsS = {j*}. 3 is defined as the fraction of projects included in the origina
tentative choice of. The motivation behind this seemingly bizarre definition«@fis purely technical: as
we will see, it can be thought of as adding “concave noise’;to

Algorithm 3 Modified k-bounded-lottery Rounding SchemE

Input: Fractional solution: € R™ with Zj z; < k,and0 < z; < 1forallj.
Output: Feasible solutiort’ C [m] with |S| < k
: LetS = ri(x)
s Letp = %
: Draw¢; € [0, 1] uniformly
if ¢1 € [0, u] then
LetS =0
Draw g2 € [0, 1] uniformly
if g2 € [0, 5] then
Choose projeci* € [m| uniformly at random.
LetS = {;*}
end if
. end if

© o NORAE DN R

e
= o

We can write the expected welfalé%wz (@) >, vi(S)] as follows.

E
Srorg(x)

(1—p)> vilS) + Mﬁzvz’(j*)

7

Using linearity of expectations and the fact ti¥as independent of the choice ¢f to simplify the expres-
sion, we get thaESNTZ(m) >, vi(S)] is equal to

> wilS)

7

(I-p)_ E

+uE
s 2 rwE[B]

Z;'n=1 > i ’Ui({j})‘

Observe that; chooses a projegtwith probability 1 — (1 — x;/ k)k. Therefore, the expectation Bfis
>, 1-(—=; /k)*

m

. This gives:

v b (Z vi<{j}>) (Zl <1xj/k>’f).

(15)

E
SNT’: ()

> wilS)

i

zma] —(l-p) B

S~ry(z)

i

It is clear that the expected welfare when using r;" is within 1 — 4 = 1 — 272"™ of the expected
welfare when using = r;, in the instantiation of Algorithm 1. Using Lemma 3.3, we cluge thatr,j is
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a(l — 1/e — 272m)-approximate rounding scheme. Moreover, using Lemma 3.%edl as the fact that
1 — (1 — z;/k)* is a concave function, we conclude thgt is a convex rounding scheme. Therefore, this
establishes the analogues of Lemmas 3.3 and 3.@0“ is elementary to verify that our proof of Lemma
A.2 can be adapted tg" as well.

It remains to show that,j is “sufficiently concave”. This would establish that the diioning assump-
tion of Section A.2 is unnecessary fﬁg“. We will show that expression (15) is a concave function with

curvature of magnitude at least= % everywhere. Since the curvature of concave functions is
always non-positive, and moreover the curvature of the sumvafunctions is the sum of their curvatures,
it suffices to show that the second term of the sum (15) hasatuner of magnitude at least We note that

the curvature ofy"; (1 — (1 —x;/k)*) is at leaste~" overz € [0,1]™. Therefore, the curvature of the

second term of (15) is at least
7 _
m2 (Z%([m])> el =\

as needed.

Remark A.4. In this section, we sacrificeZi™2"™ in the approximation ratio in order to guarantee expected
polynomial runtime of our algorithm even when convex prag€2) is not well-conditioned. This loss can be
recovered to get a cleah— 1/e approximation as follows. Given ot —1/e—2~2"™)-approximate MIDR
algorithm A, construct the following algorithrd’: Given an instance of combinatorial public projects,
A’ runs A on the instance with probability — ¢272"™, and with the remaining probability solves the
instance optimally in exponential ting&(22"™). It was shown in [15] that a random composition of MIDR
mechanisms is MIDR, therefoi# is MIDR. The expected runtime 4f is bounded by the expected runtime
of A pluse2=27" . O(227) = O(1). Finally, the expected approximation df is the weighted average of
the approximation ratio ofd and the optimal approximation ratib, and is at least1 — e2=2"")(1 —1/e —
272mY) 4 =M > 1 1 /e,

B Additional Preliminaries

B.1 Matroid Theory

In this section, we review some basics of matroid theory.dHmore comprehensive reference, we refer the
reader to [26].

A matroid M is a pair(X',Z), whereX is a finiteground setandZ is a non-empty family of subsets of
X satisfying the following two properties. (Downward closurelf S belongs tdZ, then so do all subsets
of S. (2) The Exchange PropertyVheneverT', S € Z with |T'| < |S|, there is some: € S\ T such that
T U{z} € Z. Elements off are often referred to as tledependent setsf the matroid. Subsets of that
are not inZ are often calledlependent

We associate with matroitl/ a set function-ank,, : 2% — N, known as theank function of\/, defined
as follows:rank(A) = maxsez |[SNA|. Equivalently, the rank of set in matroid M is the maximum size
of an independent set containedAn A set functionf on a ground set’ is amatroid rank functiorif there
exists a matroid/ on the same ground set such thfat rank,;. Matroid rank functions are monotone
(f(S) < f(T)whenS C T), normalized ¢ (() = 0), and submodularf(S)+ f(T) > f(SNT)+ f(SUT)
for all S andT).
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B.2 Convex Optimization
In this section, we distill some basics of convex optimi@atiFor more details, see [1].

Definition B.1. A maximization problem is given by a détof instancegP, c¢), whereP is a subset of
some euclidean space,: P — R, and the goal is to maximiz€x) overxz € P. We sayll is a convex
maximization problem if for ever{P, c) € II, P is a compact convex set, and P — R is concave. If
c: P — RT for every instance dfl, we sayll is non-negative.

Definition B.2. We say a non-negative maximization problEnis R-solvablein polynomial time if there
is an algorithm that takes as input the representation of @stanceZ = (P,c) € II — where we use
|Z| to denote the number of bits in the representation — and amoappation parametek, and in time

poly(|Z|,log(1/e)) outputsz € P such thatc(z) > (1 — €) maxyep c(y).

Fact B.3. Consider a non-negative convex maximization prodlenf the following are satisfied, thdi is

R-solvable in polynomial time using the ellipsoid method. |®¥& = (P, ¢) denote an instance &f, and
let m denote the dimension of the ambient euclidean space.

1. Polynomial Dimensionin is polynomial in|Z|.

2. Starting ellipsoid: There is an algorithm that computiestime poly(|Z|), a pointc € R™, a matrix
A e R™™ and a numbel’ € R such that the following hold. We u#&c, A) to denote the ellipsoid
given by center and linear transformatior.

@) E(c,A) D P
(b) V < wolume(P)

(©) %VE(QA)) < gpoly(IZ))

3. Separation oracle fo?: There is an algorithm that takes takes inpglitand z € R™, and in time
poly(|Z|, |x|) where|z| denotes the size of the representation: abutputs “yes” ifz € P, otherwise
outputsh € R™ such thath”z < h”y for everyy € P.

4. Firstorder oracle fore: There is an algorithm that takes inpfitandz € R™, and in timepoly (|Z|, |z|)
outputsc(z) € Randsyc(z) € R™.

B.3 Computing Payments

Lemma B.4. Let A be an MIDR allocation rule for combinatorial public projegtand letvq, ..., v, be
input valuations. Assume black-box accessli@nd value oracle access {@;},_,. We can compute, with
poly(n) over-head in runtime, payments, . . . , p,, such thatE[p;] equals the VCG payment of playigior
MIDR allocation ruleA on inputwy, . .., v,.

We note that an essentially identical lemma was proved ih [Névertheless, we include a proof for
completeness.

Proof. Without loss of generality, it suffices to show how to compuiteLet 0 : 2" — R be the valuation
evaluating tad) at each bundle. Recall (see e.g. [22]) that the VCG paymepiayer1 is equal to

> vi(S)] . (16)

1=2

n

E (T
T~A(0,v2,...,0n) [ZU ( )

1=2

E
S~ A(v1,...,0n)
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Let S be a sample fromA(vy,...,v,), and letT be a sample from4(0,vy,...,v,). Letp; =
S oui(T) — Y5 vi(S). Using linearity of expectations, it is easy to see that tkgeetation ofp; is
equal to the expression in (16). This completes the proof. O

We note that the mechanism resulting from Lemma B.4 is iddizily rational in expectation, and each
payment is non-negative in expectation. We leave open tlestipm of whether it is possible to enforce
individual rationality and non-negative payments for ow@amanism ex-post.
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