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ABSTRACT
In Combinatorial Public Projects, there is a set of projects
that may be undertaken, and a set of self-interested play-
ers with a stake in the set of projects chosen. A public
planner must choose a subset of these projects, subject to a
resource constraint, with the goal of maximizing social wel-
fare. Combinatorial Public Projects has emerged as one of
the paradigmatic problems in Algorithmic Mechanism De-
sign, a field concerned with solving fundamental resource
allocation problems in the presence of both selfish behavior
and the computational constraint of polynomial time.

We design a polynomial-time, truthful-in-expectation, (1−
1/e)-approximation mechanism for welfare maximization in
a fundamental variant of combinatorial public projects. Our
results apply to combinatorial public projects when players
have valuations that are matroid rank sums (MRS), which
encompass most concrete examples of submodular functions
studied in this context, including coverage functions and ma-
troid weighted-rank functions. Our approximation factor is
the best possible, assuming P 6= NP . Ours is the first mech-
anism that achieves a constant factor approximation for a
natural NP-hard variant of combinatorial public projects.

Categories and Subject Descriptors
F.0 [Theory of Computation]: General

General Terms
Algorithms, Economics, Theory
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1. INTRODUCTION
The overarching goal of algorithmic mechanism design is

to design computationally efficient algorithms that solve or
approximate fundamental resource allocation problems in
which the underlying data is a priori unknown to the al-
gorithm. A problem that has received much attention in
this context – albeit mostly in the form of negative results
– is Combinatorial Public Projects (CPP). Here, there are
m projects being considered by a public planner, n players,
and a bound k ≤ m on the number of projects that may
be chosen. Each player i has a private valuation vi(S) for
each subset S of the projects. We consider the flexible vari-
ant of CPP, where a feasible solution is a set of at most k
projects1. The goal is to choose a feasible set of projects
S maximizing social welfare:

∑
i vi(S). The valuations are

initially unknown to the public planner, and must be elicited
from the (self-interested) players. A “mechanism” for CPP
extracts this information, and decides on a set of projects
to undertake. The mechanisms we consider can charge the
players payments in order to incentivize truthful reporting
of their valuations. Moreover, we seek mechanisms that run
in polynomial time.

Since CPP is highly inapproximable for general valuations
– even by non-truthful algorithms – it is most interesting to
study CPP for restricted classes of valuations. Most no-
table among these are submodular valuations, as they nat-
urally model the pervasive notion of “diminishing marginal
returns”. In this paper, we study CPP for a fundamental
and large subset of submodular valuations: Matroid Rank
Sum Valuations. This class includes most concrete exam-
ples of submodular functions studied in this context. Most
notably, it includes the canonical and arguably most natural
example of submodularity: coverage functions.

Combinatorial public projects and its variants are exam-
ples of welfare maximization problems. There are many
other examples, most notable among them are combina-
torial auctions, with their many variants (see e.g. [25]).
Welfare maximization problems occupy a central position
in mechanism design, not only because of the fundamental
nature of the utilitarian objective, but also due to the rich

1This is in contrast to the exact variant, where each feasible
solution consists of exactly k projects – a difference that is
uninteresting in an approximation algorithms context, yet
has major implications when incentives are in the picture.
For more on the distinction between the two variants, we
refer the reader to [7].



economic theory surrounding them. Most notably, the cel-
ebrated Vickrey-Clarke-Groves (VCG) mechanism (see e.g.
[25]) is a general solution for all these problems, at least from
an economic perspective. The VCG mechanism is truthful,
in that it is in a player’s best interest to report his true val-
uations regardless of the reports of the other players. More-
over, VCG finds the welfare maximizing solution.

Unfortunately, however, most interesting welfare maxi-
mization problems, such as combinatorial public projects,
are NP-hard. Therefore, implementing VCG efficiently –
i.e. in polynomial time – is impossible unless P = NP .
Moreover, as first argued in [24], most existing approxima-
tion algorithms – unlike exact algorithms – cannot be con-
verted to truthful mechanisms by the imposition of a suit-
able payment scheme. This necessitates the design of care-
fully crafted approximation algorithms, tailored specifically
for truthfulness. Understanding the power of these truthful
approximation mechanisms is the central goal of algorithmic
mechanism design. This research agenda was first advocated
by Nisan and Ronen [23]. Since then, combinatorial auc-
tions and combinatorial public projects have emerged as the
paradigmatic “challenge-problems” of the field, with much
work in recent years establishing upper and lower-bounds
on truthful polynomial-time mechanisms for these problems,
for example: [20, 11, 13, 12, 10, 6, 14, 27, 3, 4, 7, 17].

The “holy grail” of algorithmic mechanism design is to
design polynomial-time truthful approximation mechanisms
that match the approximation guarantee of the best (non-
truthful) polynomial-time approximation algorithm. Unfor-
tunately, several recent impossibility results have shed se-
rious doubt on the possibility of this goal [10, 27, 3, 4, 7].
Combinatorial public projects, in particular, bore the brunt
of the most brutal of these negative results [27, 4, 7]. Fortu-
nately, all but one of these lower bounds apply exclusively
to deterministic mechanisms, and none apply to random-
ized mechanisms for the – arguably more natural – flexible
variant of combinatorial public projects.

As the limitations of deterministic mechanisms became
apparent, a recent research direction has focused on design-
ing randomized approximation mechanisms for the funda-
mental problems of algorithmic mechanism design [20, 8,
15, 9, 17]. These mechanisms are instances of the only gen-
eral approach2 known for designing (randomized) truthful
mechanisms: via maximal-in-distributional range (MIDR)
algorithms [8]. An MIDR algorithm fixes a set of distribu-
tions over feasible solutions – the distributional range – inde-
pendently of the valuations reported by the self-interested
participants, and outputs a random sample from the dis-
tribution that maximizes expected (reported) welfare. The
“Vickrey-Clarke-Groves (VCG)”payment scheme renders an
MIDR algorithm truthful in expectation – that is, a player
unaware of the coin flips of the mechanism maximizes his
expected utility by reporting truthfully.

Recently Dughmi, Roughgarden and Yan [17] presented
the most general framework to date for the design of maximal-
in-distributional-range algorithms. Their approach is based
on convex optimization, and generalizes the celebrated linear-
programming based approach of Lavi and Swamy [20]. Given
a mathematical relaxation to a welfare maximization prob-

2The random sampling approach used in [6], while arguably
general, does not seem applicable beyond auction settings
– in particular, it is not applicable to combinatorial public
projects.

lem, [17] advocates designing randomized rounding schemes
that are convex. Given a convex rounding scheme, the prob-
lem of finding the best output of the rounding scheme is a
convex optimization problem solvable in polynomial time,
and implements an MIDR allocation rule. They then show
how to design a convex rounding scheme for combinatorial
auctions with matroid rank sum valuations, yielding an op-
timal (1− 1/e) approximation mechanism. We elaborate on
the framework of [17] in Section 2.5.

By reducing the problem of designing a truthful mech-
anism to that of designing a convex rounding scheme, the
approach of [17] yielded the first optimal truthful mechanism
for a variant of combinatorial auctions with restricted valua-
tions. It is now natural to wonder if their approach is appli-
cable to other welfare maximization problems. In particular,
can the convex rounding framework be used to obtain op-
timal approximation mechanisms for interesting variants of
Combinatorial Public Projects?

We answer this question in the affirmative, and elaborate
on our contributions below.

1.1 Contributions
We design a (1−1/e)-approximate convex rounding scheme

for combinatorial public projects with matroid rank sum val-
uations. This yields a (1 − 1/e)-approximate truthful-in-
expectation mechanism for CPP, running in expected poly-
nomial time. This is the best approximation possible for
this problem, even without truthfulness, unless P = NP .
Therefore, ours is the first truthful mechanism for an NP-
hard variant of CPP that matches the approximation ratio
of the best non-truthful algorithm. Our results works with
“black-box” valuations, provided that players can answer a
randomized analogue of value oracles.

To prove our results, we follow the general outline of [17].
However, our task is more challenging: whereas in combi-
natorial auctions, randomized rounding may allocate each
item independently (the approach taken in [17]), this is not
possible in CPP. We must respect the cardinality constraint
of k on the set of chosen items, and therefore our rounding
scheme must by fiat be dependent. This presents a major
challenge in analyzing our rounding scheme. Whereas the
expected value of a submodular function on a product dis-
tribution (i.e. independent rounding) has been studied ex-
tensively, and is closely related to the now well-understood
multi-linear (see e.g. [5, 30]), analyzing the expected value
of a dependent distribution – in particular proving it to be
a concave function of underlying parameters – is a technical
challenge that we overcome by combining techniques from
combinatorics, convex analysis, and matroid theory.

1.2 Additional Related Work
Combinatorial Public Projects, in particular its exact vari-

ant, was first introduced by Papadimitriou, Schapira and
Singer [27]. They show that no deterministic truthful mech-
anism for exact CPP with submodular valuations can guar-
antee better than a O(

√
m) approximation to the optimal

social welfare. The non-strategic version of the problem,
on the other hand, is equivalent to maximizing a submod-
ular function subject to a cardinality constraint, and ad-
mits a (1−1/e)-approximation algorithm due to Nemhauser,
Wolsey and Fisher [21], and this is optimal [28] assuming
P 6= NP .

Buchfuhrer, Schapira and Singer [4] explored approxima-



tion algorithms and truthful mechanisms for CPP with var-
ious classes of valuations in the submodular hierarchy. The
most relevant result of [4] to our paper is a lower-bound of
O(

√
m) on deterministic truthful mechanisms for the exact

variant of CPP with coverage valuations – a class of valua-
tions for which our randomized mechanism for flexible CPP
obtains a (1− 1/e) approximation.

Most recently, Dobzinski [7] showed two lower bounds for
CPP in the value oracle model: A lower bound of O(

√
m)

on universally truthful mechanisms for flexible CPP with
submodular valuations, and a lower bound of O(

√
m) on

truthful-in-expectation mechanisms for exact CPP with sub-
modular valuations. We note that the latter was the first
unconditional lower bound on truthful-in-expectation mech-
anisms.

2. PRELIMINARIES

2.1 Combinatorial Public Projects
In Combinatorial Public Projects there is a set [m] =

{1, . . . ,m} of projects, a cardinality bound k such that 0 ≤
k ≤ m, and a set [n] = {1, . . . , n} of players. Each player i

has a valuation function vi : 2
[m] → R+ that is normalized

(vi(∅) = 0) and monotone (vi(A) ≤ vi(B) whenever A ⊆ B).
In this paper, we consider the flexible variant of combina-
torial public projects: a feasible solution is a set S ⊆ [m]
of projects with |S| ≤ k. Player i’s value for outcome S
is equal to vi(S). The goal is to choose the feasible set S
maximizing social welfare:

∑
i vi(S).

We consider Combinatorial Public Projects where each
player’s valuation vi is know to lie in some set V of valua-
tion functions. We abbreviate the set of instances of CPP
constrained to valuations V as CPP(V). As first defined in
[27], CPP was considered with V equal to the set of mono-
tone submodular functions. In this paper, we focus on CPP
with matroid-rank-sum (MRS) valuations – a large subset
of monotone submodular functions.

2.2 Mechanism Design Basics
We consider direct-revelation mechanisms for combinato-

rial public projects. Fix m,n, and k, and let S = {S ⊆
[m] : |S| ≤ k} denote the set of feasible solutions. A
mechanism comprises an allocation rule, which is a func-
tion from (hopefully truthfully) reported valuation functions

v1, . . . , vn : 2[m] → R to a feasible outcome S ∈ S , and a
payment rule, which is a function from reported valuation
functions to a required payment from each player. We allow
the allocation and payment rules to be randomized.

A mechanism with allocation and payment rules A and
p is truthful in expectation if every player always maximizes
its expected payoff by truthfully reporting its valuation func-
tion, meaning that

E[vi(A(v))− pi(v)] ≥ E[vi(A(v′i, v−i))− pi(v
′
i, v−i)] (1)

for every player i, (true) valuation function vi, (reported)
valuation function v′i, and (reported) valuation functions v−i

of the other players. The expectation in (1) is over the coin
flips of the mechanism.

The mechanisms that we design can be thought of as ran-
domized variations on the classical VCG mechanism, as we
explain next. Recall that the VCG mechanism is defined by
the (generally intractable) allocation rule that selects the

welfare-maximizing outcome with respect to the reported
valuation functions, and the payment rule that charges each
player i a bid-independent “pivot term” minus the reported
welfare earned by other players in the selected outcome.
This (deterministic) mechanism is truthful; see e.g. [22].

Now let dist(S) denote the probability distributions over
the feasible set S , and let D ⊆ dist(S) be a compact sub-
set of them. The corresponding Maximal in Distribution
Range (MIDR) allocation rule is defined as follows: given
reported valuation functions v1, . . . , vn, return an outcome
that is sampled randomly from a distribution D∗ ∈ D that
maximizes the expected welfare ES∼D[

∑
i vi(S)] over all dis-

tributions D ∈ D. Analogous to the VCG mechanism, there
is a (randomized) payment rule that can be coupled with this
allocation rule to yield a truthful-in-expectation mechanism
(see [8]).

2.3 Matroid Rank Sum Valuations
We now define matroid rank sum valuations. Relevant

concepts from matroid theory are reviewed in Appendix B.1.

Definition 2.1. A set function v : 2[m] → R is a matroid
rank sum (MRS) function if there exists a family of ma-

troid rank functions u1, . . . , uκ : 2[m] → R, and associated
non-negative weights w1, . . . , wκ ∈ R

+, such that v(S) =∑κ
ℓ=1 wℓuℓ(S) for all S ⊆ [m].

We do not assume any particular representation of MRS
functions, and require only oracle access to their (expected)
values on certain distributions (see Section 2.4).

MRS valuations include most concrete examples of mono-
tone submodular functions that appear in the literature –
this includes coverage functions3, matroid weighted–rank
functions4, and all convex combinations thereof. Moreover,
as shown in [28], 1− 1/e is the best approximation possible
for CPP with coverage valuations – and hence also for MRS
valuations – in polynomial time, even ignoring strategic con-
siderations.

2.4 Lotteries and Oracles
A value oracle for a valuation v : 2[m] → R takes as input

a set S ⊆ [m], and returns v(S). We define an analogous
oracle that takes in a description of a simple lottery over
sets S ⊆ [m], and outputs the expectation of v over this
lottery. The lotteries we consider will be of a very simple
form, which we describe next.

Let k ∈ [m], let R ⊆ [m], and let x ∈ [0, 1]m be a vector
such that

∑
j xj ≤ 1. We interpret x as a probability dis-

tribution over [m] ∪ {∗}, where ∗ represents not choosing a
project. Specifically, project j ∈ [m] is chosen with proba-
bility xj , and ∗ is chosen with probability 1 −∑j xj . We

define a distribution DR
k (x) over 2[m], and call this distri-

bution the k-bounded lottery with marginals x and promise

3A coverage function f on ground set [m] designates some
set Y, and m subsets A1, . . . , Am ⊆ Y, such that f(S) =
| ∪ℓ∈S Aℓ|. We note that Y may be an infinite, yet measur-
able, space. Coverage functions are arguably the canonical
example of a submodular function.
4This is a generalization of matroid rank functions, where
weights are placed on elements of the matroid. It is true,
though not immediately obvious, that a matroid weighted-
rank function can be expressed as a weighted combination
of matroid (unweighted) rank functions – see e.g. [16].



R. We sample S ∼ DR
k (x) as follows: Let j1, . . . , jk be in-

dependent draws from x, and let S = R∪ {j1, . . . , jk} \ {∗}.
Essentially, this lottery commits to choosing projects R, and
adds an additional k projects chosen randomly with replace-
ment from distribution x. When R = ∅, as will be the case
through most of this paper, we omit mention of the promised
set. We can now define a randomized analogue of a value
oracle that returns the expected value of a bounded-lottery.

Definition 2.2. A bounded-lottery-value oracle for set
function v : 2[m] → R takes as input a vector x ∈ [0, 1]m

with
∑

j xj ≤ 1, a bound k ∈ [m], and a set R ⊆ [m], and

outputs ES∼DR
k
(x)[v(S)].

In our model for CPP, we assume that a player with val-
uation function vi can answer bounded-lottery-value oracle
queries for vi. A bounded-lottery-value oracle is a gener-
alization of value oracles. Nevertheless, it is the case that
a bounded-lottery-value oracle can be implemented using
a value oracle for some succinctly represented examples of
MRS valuations, such as explicit coverage functions (In sim-
ilar fashion to [17, Appendix A]).

More generally we note that bounded-lottery-value oracles
can be approximated arbitrarily well, with high probability,
using value oracles; this is done by random sampling, and
we omit the technical details. Unfortunately, we are not
able to reconcile the incurred sampling errors with the need
for exactness characteristic of truthful mechanism design.
However, we suspect that relaxing our solution concept to
approximate truthfulness – also known as ǫ-truthfulness –
would remove this difficulty, and allow us to relax our oracle
model to the more traditional value-oracles.

2.5 Convex Rounding
In this section, we review convex rounding, a framework

for the design of truthful mechanisms introduced by Dughmi,
Roughgarden and Yan [17]. We present the main definitions
and lemmas as they pertain to combinatorial public projects.
For a more thorough and general treatment of convex round-
ing, we refer the reader to [17, Section 3].

We consider the standard integer programming formula-
tion of CPP. There is a variable xj ∈ {0, 1} for each project
j ∈ [m], and the goal is to set at most k of the variables
to 1 so that the welfare v(x) =

∑
i vi({j : xj = 1}) is maxi-

mized. We relax this integer program in the obvious way to

the polytope P =
{
x ∈ R

m :
∑

j xj ≤ k, x � 0
}
. We pos-

tulate a rounding scheme r that maps points of P to the
feasible solutions S = {S ⊆ [m] : |S| ≤ k} of CPP. We allow
r to be randomized, so that r(x) is a distribution over S for
each x ∈ P .

Traditionally, approximation algorithms optimize an ob-
jective ṽ(x) – often a simple extension of v to P – over the
set P of fractional solutions, and then round the optimal
fractional point x∗ to a solution r(x∗) in the original feasi-
ble set S . Many of the best approximation algorithms for
various problems are based on this relax-solve-round frame-
work. Unfortunately, however, this approach is almost al-
ways incompatible with the design of truthful mechanisms,
due to the fact that the rounding step is often unpredictable.
Truthful mechanism design, on the other hand, is intimately
tied to exact optimization, as evidenced by the fact that
the vast majority truthful mechanisms for multi-parameter
problems are based on the VCG paradigm (see Section 2.2).

In an effort to reconcile the techniques of approximation
algorithms and truthful mechanism design, Dughmi, Rough-
garden and Yan proposed optimizing directly on the output
of the rounding scheme, rather than on its input. This de-
fines an optimization problem induced by relaxation P and
rounding scheme r. Stated for CPP with the relaxation as
described above, the problem is as follows.

maximize ES∼r(x)[
∑

i vi(S)]
subject to

∑m
j=1 xj ≤ k

0 ≤ xj ≤ 1, for j = 1, . . . ,m.
(2)

They consider a simple allocation rule, which we state for
CPP in Algorithm 1, that solves (2) optimally. They observe
that this allocation rule is maximal in distributional range.

Algorithm 1 MIDR Allocation Rule for CPP

Parameter: n,m,k
Parameter: (Randomized) rounding scheme r
Input: Valuation functions {vi}ni=1

Output: A set S ⊆ [m] with |S| ≤ k
1: Let x∗ be an optimal solution to (2)
2: Let S ∼ r(x∗)

Lemma 2.3 ([17]). Algorithm 1 is an MIDR allocation rule.

For α ≤ 1, we say that the rounding scheme r for CPP(V)
is α-approximate if, whenever x is an integer point of P
corresponding to a set S ∈ S , and vi ∈ V for each i, we
have that ET∼r(x)[

∑
i vi(T )] ≥ α

∑
i vi(S). In other words,

rounding does not degrade the quality of an integer solution
by more than α. Given the definition of Algorithm 1, it is
easy to conclude the following lemma.

Lemma 2.4 ([17]). If r is an α–approximate rounding
scheme for CPP(V), then Algorithm 1 is an α-approximation
algorithm for CPP(V).

For reasons outlined in [17], implementing Algorithm 1
efficiently is impossible for most rounding schemes r in the
literature. To get around this difficulty, they advocate de-
signing rounding schemes that render (2) a convex optimiza-
tion problem.

Definition 2.5. Consider a randomized rounding scheme
r : P → dist(S). We say r is a convex rounding scheme
for CPP(V) if, whenever vi ∈ V for all i, the objective
ES∼r(x)[

∑
i vi(S)] is a concave function of x.

Lemma 2.6. When r is a convex rounding scheme for
CPP(V) , (2) is a convex optimization problem for each in-
stance of CPP(V).

Under additional technical conditions, discussed in the
context of combinatorial public projects in Appendix A, con-
vex program (2) can be solved efficiently (e.g., using the
ellipsoid method). This reduces the design of a polynomial-
time α-approximate MIDR algorithm to designing a poly-
nomial time α-approximate convex rounding scheme.

Summarizing, Lemmas 2.3, 2.4, and 2.6 give the following
informal theorem.

Theorem 2.7 (Informal). If there exists an α-approximate
convex rounding scheme for CPP(V), then there exists a
truthful-in-expectation, polynomial-time, α-approximate mech-
anism for CPP(V).



3. THE MECHANISM
In this section, we prove the main result.

Theorem 3.1. There is a (1−1/e)-approximate, truthful-
in-expectation mechanism for combinatorial public projects
with matroid rank sum valuations in the bounded-lottery-
value oracle model, running in expected poly(n,m) time.

We structure the proof of Theorem 3.1 as follows. We
define the k-bounded-lottery rounding scheme, which we de-
note by rk, in Section 3.1. We prove that rk is (1 − 1/e)-
approximate (Lemma 3.2), and convex (Lemma 3.3). Lem-
mas 2.3, 2.4 and 3.2, taken together, imply that Algorithm
1 when instantiated with r = rk, is a (1− 1/e)-approximate
MIDR allocation rule. Lemma 3.3 reduces implementing
this allocation rule to solving a convex program.

In Appendix A, we handle the technical and numerical
issues related to solving convex programs. First, we prove
that our instantiation of Algorithm 1 can be implemented in
expected polynomial-time using the ellipsoid method under
a simplifying assumption on the numerical conditioning of
our convex program (Lemma A.2). Then we show in Section
A.3 that the previous assumption can be removed by slightly
modifying our algorithm.

Finally, we prove that truth-telling VCG payments can be
computed efficiently in Lemma B.4. Taken together, these
lemmas complete the proof of Theorem 3.1.

3.1 The k-Bounded-Lottery Rounding Scheme
We devise a rounding scheme rk that we term the k-

bounded-lottery rounding scheme. Given a feasible solution
x to linear program (2), we let distribution rk(x) be the
k-bounded-lottery with marginals x/k (and promise ∅), as
defined in Section 2.4. We make this more explicit in Algo-
rithm 2.

Algorithm 2 The k-Bounded-Lottery Rounding Scheme rk

Input: Fractional solution x ∈ R
m with

∑
j xj ≤ k, and

0 ≤ xj ≤ 1 for all j.
Output: S ⊆ [m] with |S| ≤ k
1: For each j ∈ [m] designate the interval Ij =

[ 1
k

∑
j′<j xj′ ,

1
k

∑
j′≤j xj′ ] of length

xj

k

2: Draw p1, . . . , pk independently and uniformly from [0, 1]
3: Let S = {j ∈ [m] : {p1, . . . , pk} ∩ Ij 6= ∅}

The k-bounded-lottery rounding scheme is (1 − 1/e) ap-
proximate and convex. We prove the approximation lemma
below. As for convexity, we present a simplified proof for
the special case of coverage valuations in Section 3.2, and
present the proof for MRS valuations in Section 3.3.

Lemma 3.2. The k-bounded-lottery rounding scheme is (1−
1/e)-approximate when valuations are submodular.

Proof. Fix n,m, k and {vi}ni=1. Let S ⊆ [m] be a feasible
solution to CPP – i.e. |S| ≤ k. Let 1S be the vector with
1 in indices corresponding to S, and 0 otherwise. Let T ∼
rk(1S). We will first show that each element of j ∈ S is
included in T with probability at least 1−1/e. Observe that
T is the union of k independent draws from a distribution
on [m] ∪ {∗}, where each time the probability of j ∈ S is
1/k. Therefore, the probability that j is included in T is
1− (1− 1/k)k ≥ 1− 1/e.

Submodularity now implies that E[vi(T )] ≥ (1 − 1/e) ·
vi(S) for each player i — this was proved in many contexts:
see for example [19, Lemma 2.2], and the earlier related
result in [18, Proposition 2.3]. This completes the proof.

Lemma 3.3. The k–bounded-lottery rounding scheme is
convex for CPP with MRS valuations.

3.2 Warm-up: Convexity for Coverage
Valuations

In this section, we prove a special case of Lemma 3.3
for coverage valuations. Recall that a coverage function f
on ground set [m] designates some set Y, and m subsets
A1, . . . , Am ⊆ Y, such that f(S) = | ∪j∈S Aj |.

Fix n,m, k and {vi}ni=1. Assume that, for each player i,

the valuation function vi : 2
[m] → R is a coverage function.

We let v(S) =
∑

i vi(S) be the welfare of a solution S to
CPP. It is an easy observation that the sum of coverage
functions is also a coverage function. Therefore v(S) is a
coverage function. We let Y be a set, and A1, . . . , Am ⊆ Y,
such that v(S) = | ∪j∈S Aj |. While our proof extends easily
to the case where Y is an arbitrary measure space, we assume
in this section that Y is a finite set for simplicity.

Let P denote the polytope of fractional solutions to CPP
as given in (2). We now show that ES∼rk(x)[v(S)] is a con-
cave function of x for x ∈ P , completing the proof of Lemma
3.3 for the special case of coverage valuations. Take an ar-
bitrary x ∈ P , and let S ∼ rk(x) be a random variable.
Using linearity of expectations, we can rewrite the expected
welfare as follows.

E[v(S)] = E[| ∪j∈S Aj |] =
∑

ℓ∈Y

Pr[ℓ ∈ ∪j∈SAj ]

Since the sum of concave functions is concave, showing that
Pr[ℓ ∈ ∪j∈SAj ] is concave in x for each ℓ ∈ Y suffices to
complete the proof. For ℓ ∈ Y, let Tℓ = {j ∈ [m] : ℓ ∈ Aj}
be the set of projects that “cover” ℓ. Let p1, . . . , pk and
I1, . . . , Ik be as in Algorithm 2. Note that {Ij}mj=1 are dis-

joint sub-intervals of [0, 1], and |Ij | = xj

k
. We can rewrite

the probability of covering ℓ as follows.

Pr[ℓ ∈ ∪j∈SAj ] = Pr[S ∩ Tℓ 6= ∅]
= Pr[{p1, . . . , pk} ∩ ∪j∈Tℓ

Ij 6= ∅]
= 1−Pr[{p1, . . . , pk} ∩ ∪j∈Tℓ

Ij = ∅]

= 1−
k∏

t=1

Pr[pt /∈ ∪j∈Tℓ
Ij ]

= 1−
k∏

t=1

(1− | ∪j∈Tℓ
Ij |)

= 1−
(
1−

∑
j∈Tℓ

xj

k

)k

.

The final form is simply the composition of the concave
function g(y) = 1 − (1 − y/k)k with the affine function
y → ∑

j∈Tℓ
xj . It is well known that composing a con-

cave function with an affine function yields another concave
function (see e.g. [2]). This completes the proof.

3.3 Convexity for MRS Valuations
In this section, we will prove Lemma 3.3 in its full gener-

ality. First, we recall the discrete hessian matrix, as defined
in [17].



Definition 3.4 ([17]). Let v : 2[m] → R be a set function.
For S ⊆ [m], we define the discrete Hessian matrix Hv

S ∈
R

m×m of v at S as follows:

Hv
S(i, j) = v(S∪{i, j})−v(S∪{i})−v(S∪{j})+v(S) (3)

for i, j ∈ [m].

It was shown in [17] that the discrete hessian matrices are
negative semi-definite for matroid rank sum functions.

Claim 3.5 ([17]). If v : 2[m] → R
+ is a matroid rank sum

function, then Hv
S is negative semi-definite for each S ⊆ [m].

We now return to Lemma 3.3. Fix n and m. For each
cardinality bound k ∈ [m], let Pk denote the polytope of
fractional solutions to CPP as given in (2). For a set of
MRS valuations v1, . . . , vn, we observe that the social wel-
fare v(S) =

∑n
i=1 vi(S) is – by the (obvious) fact that the

sum of MRS functions is an MRS function – also an MRS
function. Therefore, we will prove Lemma 3.3 by showing
that, for each k ∈ [m] and MRS function v : 2[m] → R, the
following function of x ∈ Pk is concave in x.

Gv
k(x) = E

S∼rk(x)
[v(S)]

=
∑

S⊆[m]

v(S)Pr[rk(x) = S]
(4)

We use techniques from combinatorics to writePr[rk(x) =
S] in a form that will be easier to work with. For T ⊆ [m],
we use xT as short-hand for

∑
j∈T xj , and T as short-hand

for [m] \ T .
Claim 3.6. For each k ∈ [m], x ∈ Pk, and S ⊆ [m]

Pr[rk(x) = S] = −1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k
(5)

Proof. It is easy to see that Pr[rk(x) = S] is equal to:

Pr[rk(x) ⊆ S]−Pr[
∨

j∈S

rk(x) ⊆ S \ {j}] (6)

Using the inclusion-exclusion principle, we can rewrite (6)
as follows:

Pr[rk(x) ⊆ S]−
∑

∅6=T⊆S

−1|T |−1
Pr[rk(x) ⊆ S \ T ] (7)

Letting R = S \ T in (7), we get

Pr[rk(x) ⊆ S]−
∑

R(S

−1|S|−|R|−1
Pr[rk(x) ⊆ R] (8)

We can easily simplify (8) to conclude that

Pr[rk(x) = S] =
∑

R⊆S

−1|S|−|R|
Pr[rk(x) ⊆ R] (9)

Next, we observe that the expression Pr[rk(x) ⊆ R] can
be expressed as a simple closed form in x. Let p1, . . . , pk
and I1, . . . , Im be as in Algorithm 2. The event rk(x) ⊆ R
occurs exactly when none of p1, . . . , pk land in the intervals
corresponding to projects R. Recalling that the interval Ij of
project j has length xj/k, we get that the probability of any
particular pt falling in ∪j∈RIj is exactly xR/k. Therefore,
by the independence of the variables p1, . . . , pk, we get that

Pr[rk(x) ⊆ R] =
(
1− xR

k

)k
(10)

Combining (9) and (10) completes the proof.

Building on Claim 3.6, we now express the Hessian matrix
of Gv

k as a non-negative weighted sum of discrete Hessian
matrices of v. We note that when x ∈ Pk, it is easy to verify
that k−2

k
· x ∈ Pk−2, and therefore (11) is well defined.

Claim 3.7. For each k ∈ [m], x ∈ Pk, and v : 2[m] → R,
we have

▽2Gv
k(x) =

k − 1

k

∑

S⊆[m]

Pr

[
rk−2

(
k − 2

k
· x
)

= S

]
Hv

S

(11)

Proof. Fix i, j ∈ [m], possibly with i = j. We work with
Gv

k as defined in Equation (4), and plug in expression (5).

Gv
k(x) =

∑

S⊆[m]

v(S) · −1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k

Differentiating with respect to xi and xj gives:

∂2Gv
k(x)

∂xi∂xj
=

k − 1

k

∑

S⊆[m]

v(S) · −1|S|
∑

R⊆S\{i,j}

−1|R|
(
1− xR

k

)k−2

We group the terms by projecting S onto [m] \ {i, j}, and
then we simplify the resulting expression.

∂2Gv
k(x)

∂xi∂xj
=
k − 1

k

∑

S⊆[m]\{i,j}

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2

· (v(S)− v(S ∪ {i})− v(S ∪ {j}) + v(S ∪ {i, j}))

=
k − 1

k

∑

S⊆[m]

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2

· (v(S)− v(S ∪ {i})− v(S ∪ {j}) + v(S ∪ {i, j}))

=
k − 1

k

∑

S⊆[m]

−1|S|
∑

R⊆S

−1|R|
(
1− xR

k

)k−2

Hv
S(i, j)

(12)

The second equality follows from the fact that v(S)− v(S ∪
{i})− v(S ∪ {j}) + v(S ∪ {i, j}) = 0 when S includes either
of i and j. The last equality follows by definition of Hv

S.
Invoking Claim 3.6 with k′ = k − 2 and x′ = k−2

k
· x, and

plugging the resulting expression into into (12), we conclude
that

∂2Gv
k(x)

∂xi∂xj
=
k − 1

k

∑

S⊆[m]

Pr

[
rk−2

(
k − 2

k
· x
)

= S

]
Hv

S(i, j).

Claims (3.5) and (3.7) establish that, when v is MRS and
k ∈ [m], ▽2Gv

k(x) is a non-negative weighted sum of nega-
tive semi-definite matrices for each x ∈ Pk. A non-negative
weighted sum of negative semi-definite matrices is negative
semi-definite. Therefore, the Hessian matrix of Gv

k is nega-
tive semi-definite at each x ∈ Pk, and we conclude that Gv

k

is a concave function on Pk. This completes the proof of
Lemma 3.3.
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APPENDIX

A. SOLVING THE CONVEX PROGRAM
In this section, we overcome some technical difficulties re-

lated to the solvability of convex programs. We follow the
general outline of [17, Appendix B], modifying the proofs
throughout in order to handle the additional technical diffi-
culties specific to CPP. We show in Section A.1 that, in the
bounded-lottery-value oracle model, the four conditions for
“solvability” of convex programs, as stated in Fact B.3, are
easily satisfied for convex program (2) when r = rk. How-
ever, an additional challenge remains: “solving” a convex
program – as in Definition B.2 – returns an approximately
optimal solution. Indeed the optimal solution of a convex
program may be irrational in general, so this is unavoidable.

We show how to overcome this difficulty if we settle for
polynomial runtime in expectation. While the optimal so-
lution x∗ of (2) cannot be computed explicitly, the random
variable rk(x

∗) can be sampled in expected polynomial-time.
The key idea is the following: sampling the random variable
rk(x

∗) rarely requires precise knowledge of x∗. Depending



on the coin flips of rk, we decide how accurately we need to
solve convex program (2) in order compute rk(x

∗). Roughly
speaking, we show that the probability of requiring a (1−ǫ)-
approximation falls exponentially in 1

ǫ
. As a result, we can

sample rk(x
∗) in expected polynomial-time. We implement

this plan in Section A.2 under the simplifying assumption
that convex program (2) is well-conditioned – i.e. is “suffi-
ciently concave” everywhere. In Section A.3, we show how
to remove that assumption by slightly modifying our algo-
rithm.

A.1 Approximating the Convex Program

Claim A.1. There is an algorithm for Combinatorial Pub-
lic Projects with MRS valuations in the bounded–lottery-
value oracle model that takes as input an instance of the
problem and an approximation parameter ǫ > 0, runs in
poly(n,m, log(1/ǫ)) time, and returns a (1− ǫ)-approximate
solution to convex program (2) when r = rk.

It suffices to show that the four conditions of Fact B.3 are
satisfied in our setting. The first three are immediate from
elementary combinatorial optimization (see for example [29]).
It remains to show that the first-order oracle, as defined in
Fact B.3, can be implemented in polynomial-time in the
bounded-lottery-value oracle model. We let f(x) denote the
objective function of convex program (2) when r = rk. This
objective can, by definition, be written as follows.

f(x) = E
S∼rk(x)

[
∑

i

vi(S)

]
=
∑

i

Gvi
k (x)

where vi is the valuation function of player i and Gvi
k is

as defined in (4). By definition, Gvi
k (x) is the outcome of

querying the bounded-lottery-value oracle of vi with bound
k and marginals x/k. Therefore, we can evaluate f(x) using
n bounded-lottery-value queries, one for each player. It re-
mains to show that we can also evaluate the (multi-variate)
derivative ▽f(x) of f(x). Using definition (4) and Claim
3.6, we take the partial derivative of Gvi

k with respect to xj

and simplify the resulting expression.

∂Gvi
k

∂xj
(x) =

∑

S⊆[m]

−1|S|vi(S)
∑

R⊆S\{j}

−1|R|+1
(
1− xR

k

)k−1

=
∑

S⊆[m]\{j}

−1|S| (vi(S ∪ {j})− vi(S))

·
∑

R⊆S

−1|R|
(
1− xR

k

)k−1

=
∑

S⊆[m]

−1|S| (vi(S ∪ {j})− vi(S))

·
∑

R⊆S

−1|R|
(
1− xR

k

)k−1

=
∑

S⊆[m]

vi(S ∪ {j})Pr

[
rk−1

(
k − 1

k
x

)
= S

]

−
∑

S⊆[m]

vi(S)Pr

[
rk−1

(
k − 1

k
x

)
= S

]
. (13)

The second equality follows by grouping the terms of the
summation by the projection of S onto [m] \ {j}. The third
equality follows from the observation that v(S∪{j})−v(S) =

0 when S includes j. The fourth equality follows by a simple
re-arrangement and application of Claim 3.6.

Inspect the final form (13) in light of Definition 2.2 and
the definition of rk. Notice that the first term is the ex-
pected value of vi over the (k − 1)-bounded-lottery with
marginals k−1

k
x and promise {j}. The second term is the ex-

pected value of vi over the same lottery without the promise.

Therefore, we can evaluate
∂G

vi
k

∂xj
(x) using two queries to the

bounded-lottery-value oracle of player i. This completes the
proof of Claim A.1.

A.2 The Well-Conditioned Case
In this section, we make the following simplifying assump-

tion: The objective function f(x) of convex program (2) with
r = rk, when restricted to any line in the feasible set P , has

a second derivative of magnitude at least λ =
∑n

i=1 vi([m])

2poly(n,m)

everywhere, where the polynomial in the denominator may
be arbitrary. This is equivalent to requiring that every eigen-
value of the Hessian matrix of f(x) has magnitude at least λ
when evaluated at any point in P . Under this assumption,
we prove Lemma A.2.

Lemma A.2. Assume the magnitude of the second deriva-

tive of f(x) is at least λ =
∑n

i=1 vi([m])

2poly(n,m) everywhere. Algo-
rithm 1, instantiated with r = rk, can be simulated in time
polynomial in n and m in expectation.

Let x∗ be the optimal solution to convex program (2) with
r = rk. Algorithm 1 outputs a set of projects distributed
as rk(x

∗). The k-bounded-lottery rounding scheme, as de-
scribed in Algorithm 2, requires making k independent de-
cisions: for ℓ ∈ {1, . . . , k}, we draw pℓ uniformly from [0, 1]
and decide which interval Ij , if any, pℓ falls into. In other
words, we find the minimum index jℓ (if any) such that∑

j≤jℓ
x∗
j/k ≥ pℓ. Fix ℓ. For most realizations of pℓ, we

can calculate jℓ using only coarse estimates x̃j to x∗
j . As-

sume we have an estimation oracle for x∗ that, on input δ,
returns a δ-estimate x̃ of x∗: Specifically, x̃j − x∗

j ≤ δ for
each j ∈ [m]. If pℓ falls outside the “uncertainty zones” of x̃,
such as when |pℓ −

∑
j′≤j x̃j′/k| > δm/k for each j ∈ [m],

it is easy to see that we can correctly determine jℓ by us-
ing x̃ in lieu of x. The total measure of the uncertainty
zones of x̃ is at most 2m2δ, therefore pℓ lands outside the
uncertainty zones with probability at least 1 − 2m2δ. The
following claim shows that if the estimation oracle for x∗

can be implemented in time polynomial in log(1/δ), then
we can simulate the k-bounded-lottery rounding procedure
in expected polynomial-time.

Claim A.3. Let x∗ be the optimal solution of convex pro-
gram (2) with r = rk. Assume access to a subroutine B(δ)
that returns a δ-estimate of x∗ in poly(n,m, log(1/δ)) time.
Algorithm 1, instantiated with r = rk, can be simulated in
expected poly(n,m) time.

Proof. Fix ℓ ∈ {1, . . . , k}. Draw pℓ ∈ [0, 1] uniformly
at random as in the k-bounded-lottery rounding scheme
in Algorithm 2. We will show how to find, in expected
poly(n,m) time, the minimum index jℓ (if any) such that∑

j≤jℓ
x∗
j/k ≥ pℓ.

The algorithm proceeds as follows: Start with δ = δ0 =
1

2m2 . Let x̃ = B(δ). While |pℓ −
∑

j′≤j x̃j′/k| ≤ δm/k for

some j ∈ [m] (i.e. pℓ may fall inside an “uncertainty zone”)
do the following: let δ = δ/2, x̃ = B(δ) and repeat. After



the loop terminates, we have a sufficiently accurate estimate
of x∗ to calculate jℓ.

It is easy to see that the above procedure is a faithful
simulation of Algorithm (2) on x∗. It remains to bound
its expected running time. Let δt = 1

2t+1m2 denote the
value of δ at iteration t. By our initial assumption, iteration
t takes poly(n,m, log(1/δt)) = poly(n,m, log(2t+1m2)) =
poly(n,m, t) time. The probability this procedure does not
terminate after t iterations is at most 2m2δt = 1/2t. Taken
together, these two facts and a simple geometric summation
imply that the expected runtime is polynomial in n and
m.

It remains to show that the estimation oracle B(δ) can
be implemented in poly(n,m, log(1/δ)) time. At first blush,
one may expect that the ellipsoid method can be used in
the usual manner here. However, there is one complica-
tion: we require an estimate x̃ that is close to x∗ in solution
space rather than in terms of objective value. Using our as-
sumption on the curvature of f(x), we will reduce finding a
δ-estimate of x∗ to finding an 1− ǫ(δ) approximate solution
to convex program (2) with r = rk. The dependence of ǫ on

δ will be such that ǫ ≥ poly(δ)/2poly(n,m), thereby we can
invoke Claim A.1 to deduce that B(δ) can be implemented
in poly(n,m, log(1/δ)) time.

Let ǫ = ǫ(δ) = δ2λ
2
∑

i vi([m])
. Plugging in the definition of

λ, we deduce that ǫ ≥ δ2/2poly(n,m), which is the desired de-
pendence. It remains to show that if x̃ is (1−ǫ)-approximate
solution to (2), then x̃ is also a δ-estimate of x∗.

Using the fact that f(x) is concave, and moreover its sec-
ond derivative has magnitude at least λ, it a simple exercise
to bound distance of any point x from the optimal point x∗

in terms of its sub-optimality f(x∗)− f(x), as follows:

f(x∗)− f(x) ≥ λ

2
||x− x∗||2. (14)

Assume x̃ is a (1−ǫ)-approximate solution to (2) with r = rk.
Equation (14) implies that

||x̃− x∗||2 ≤ 2

λ
ǫf(x∗) =

δ2∑
i vi([m])

f(x∗) ≤ δ2,

where the last inequality follows from the fact that
∑

i vi([m])
is an upper-bound on the optimal value f(x∗). Therefore,
||x−x∗|| ≤ δ, as needed. This completes the proof of Lemma
A.2.

A.3 Guaranteeing Good Conditioning
In this section, we propose a modification r+k of the k-

bounded-lottery rounding scheme rk. We will argue that r+k
satisfies all the properties of rk established so far, with one
exception: the approximation guarantee of Lemma 3.2 is
reduced to 1−1/e−2−2mn . Then we will show that r+k sat-
isfies the curvature assumption of Lemma A.2, demonstrat-
ing that said assumption may be removed. Therefore Algo-
rithm 1, instantiated with r = r+k for combinatorial public
projects with MRS valuations in the bounded-lottery-value
oracle model, is (1− 1/e− 2−2mn) approximate and can be
implemented in expected poly(n,m) time. Finally, we show
in Remark A.4 how to recover the 2−2mn term to get a clean
1− 1/e approximation ratio, as claimed in Theorem 3.1.

Let µ = 2−2nm. We define r+k in Algorithm 3. Intuitively,
r+k first chooses a tentative set S ⊆ [m] of projects using rk.
Then it cancels its choice with small probability µ. Finally,

with probability β it chooses a random project j∗ ∈ [m] and
lets S = {j∗}. β is defined as the fraction of projects in-
cluded in the original tentative choice of S. The motivation
behind this seemingly bizarre definition of r+k is purely tech-
nical: as we will see, it can be thought of as adding “concave
noise” to rk.

Algorithm 3 Modified k-bounded-lottery Rounding
Scheme r+k
Input: Fractional solution x ∈ R

m with
∑

j xj ≤ k, and
0 ≤ xj ≤ 1 for all j.

Output: Feasible solution S ⊆ [m] with |S| ≤ k
1: Let S = rk(x)

2: Let β = |S|
m

3: Draw q1 ∈ [0, 1] uniformly
4: if q1 ∈ [0, µ] then
5: Let S = ∅
6: Draw q2 ∈ [0, 1] uniformly
7: if q2 ∈ [0, β] then
8: Choose project j∗ ∈ [m] uniformly at random.
9: Let S = {j∗}
10: end if

11: end if

We can write the expected welfare E
S∼r

+
k
(x)

[
∑

i vi(S)] as

follows.

E
S∼rk(x)

[
(1− µ)

∑

i

vi(S) + µβ
∑

i

vi(j
∗)

]
.

Using linearity of expectations and the fact that β is inde-
pendent of the choice of j∗ to simplify the expression, we
get that E

S∼r+
k
(x)

[
∑

i vi(S)] is equal to

(1− µ) E
S∼rk(x)

[
∑

i

vi(S)] + µE[β]

∑m
j=1

∑n
i=1 vi({j})
m

.

Observe that rk chooses a project j with probability 1 −
(1−xj/k)

k. Therefore, the expectation of β is
∑

j 1−(1−xj/k)
k

m
.

This gives:

E
S∼r+

k
(x)

[
∑

i

vi(S)] = (1− µ) E
S∼rk(x)

[
∑

i

vi(S)]

+
µ

m2

(
m∑

j=1

n∑

i=1

vi({j})
)(

m∑

j=1

1− (1− xj/k)
k

)
. (15)

It is clear that the expected welfare when using r = r+k
is within 1 − µ = 1 − 2−2nm of the expected welfare when
using r = rk in the instantiation of Algorithm 1. Using
Lemma 3.2, we conclude that r+k is a (1 − 1/e − 2−2nm)-
approximate rounding scheme. Moreover, using Lemma 3.3,
as well as the fact that 1− (1−xj/k)

k is a concave function,
we conclude that r+k is a convex rounding scheme. Therefore,
this establishes the analogues of Lemmas 3.2 and 3.3 for r+k .
It is elementary to verify that our proof of Lemma A.2 can
be adapted to r+k as well.

It remains to show that r+k is “sufficiently concave”. This
would establish that the conditioning assumption of Section
A.2 is unnecessary for r+k . We will show that expression
(15) is a concave function with curvature of magnitude at

least λ =
∑n

i=1 vi([m])

em222nm everywhere. Since the curvature of
concave functions is always non-positive, and moreover the



curvature of the sum of two functions is the sum of their
curvatures, it suffices to show that the second term of the
sum (15) has curvature of magnitude at least λ. We note
that the curvature of

∑
j

(
1− (1− xj/k)

k
)
is at least e−1

over x ∈ [0, 1]m. Therefore, the curvature of the second
term of (15) is at least

µ

m2

(
∑

i

vi([m])

)
e−1 = λ

as needed.

Remark A.4. In this section, we sacrificed 2−2nm in the
approximation ratio in order to guarantee expected polyno-
mial runtime of our algorithm even when convex program
(2) is not well-conditioned. This loss can be recovered to
get a clean 1 − 1/e approximation as follows. Given our
(1 − 1/e − 2−2nm)-approximate MIDR algorithm A, con-
struct the following algorithm A′: Given an instance of com-
binatorial public projects, A′ runs A on the instance with
probability 1 − e2−2nm, and with the remaining probability
solves the instance optimally in exponential time O(22nm).
It was shown in [15] that a random composition of MIDR
mechanisms is MIDR, therefore A′ is MIDR. The expected
runtime of A′ is bounded by the expected runtime of A plus
e2−2nm ·O(22nm) = O(1). Finally, the expected approxima-
tion of A′ is the weighted average of the approximation ratio
of A and the optimal approximation ratio 1, and is at least
(1− e2−2nm)(1− 1/e− 2−2nm) + e2−2nm ≥ 1− 1/e.

B. ADDITIONAL PRELIMINARIES

B.1 Matroid Theory
In this section, we review some basics of matroid theory.

For a more comprehensive reference, see [26].
A matroid M is a pair (X , I), where X is a finite ground

set, and I is a non-empty family of subsets of X – often
referred to as the independent sets of the matroid – satisfying
the following two properties. (1) Downward closure: If S
belongs to I, then so do all subsets of S. (2) The Exchange
Property: Whenever T, S ∈ I with |T | < |S|, there is some
x ∈ S \ T such that T ∪ {x} ∈ I.

We associate with matroid M a set function rankM :
2X → N, known as the rank function of M , defined as fol-
lows: rankM (A) = maxS∈I |S ∩ A|. Equivalently, the rank
of set A in matroid M is the maximum size of an indepen-
dent set contained in A. A set function f on a ground set
X is a matroid rank function if there exists a matroid M on
the same ground set such that f = rankM . It is well-known
that matroid rank functions are monotone, normalized, and
submodular.

B.2 Convex Optimization
In this section, we distill some basics of convex optimiza-

tion. For more details, see [1].

Definition B.1. A maximization problem is given by a
set Π of instances (P , c), where P is a subset of some eu-
clidean space, c : P → R, and the goal is to maximize c(x)
over x ∈ P. We say Π is a convex maximization problem
if for every (P , c) ∈ Π, P is a compact convex set, and
c : P → R is concave. If c : P → R

+ for every instance of
Π, we say Π is non-negative.

Definition B.2. We say a non–negative maximization
problem Π is R-solvable in polynomial time if there is an al-
gorithm that takes as input the representation of an instance
I = (P , c) ∈ Π — where we use |I| to denote the number of
bits in the representation — and an approximation param-
eter ǫ, and in time poly(|I|, log(1/ǫ)) outputs x ∈ P such
that c(x) ≥ (1− ǫ)maxy∈P c(y).

Fact B.3. Consider a non-negative convex maximization
problem Π. If the following are satisfied, then Π is R-solvable
in polynomial time using the ellipsoid method. We let I =
(P , c) denote an instance of Π, and let m denote the dimen-
sion of the ambient euclidean space.

1. Polynomial Dimension: m is polynomial in |I|.
2. Starting ellipsoid: There is an algorithm that computes,

in time poly(|I|), a point c ∈ R
m, a matrix A ∈ R

m×m,
and a number V ∈ R such that the following hold. We
use E(c,A) to denote the ellipsoid given by center c and
linear transformation A.

(a) E(c,A) ⊇ P
(b) V ≤ volume(P)

(c) volume(E(c,A))
V

≤ 2poly(|I|)

3. Separation oracle for P: There is an algorithm that
takes takes input I and x ∈ R

m, and in time poly(|I|, |x|)
where |x| denotes the size of the representation of x,
outputs “yes” if x ∈ P, otherwise outputs h ∈ R

m such
that hTx < hT y for every y ∈ P.

4. First order oracle for c: There is an algorithm that
takes input I and x ∈ R

m, and in time poly(|I|, |x|)
outputs c(x) ∈ R and ▽c(x) ∈ R

m.

B.3 Computing Payments

Lemma B.4. Let A be an MIDR allocation rule for com-
binatorial public projects, and let v1, . . . , vn be input valua-
tions. Assume black-box access to A, and value oracle ac-
cess to {vi}ni=1. We can compute, with poly(n) over-head
in runtime, payments p1, . . . , pn such that E[pi] equals the
VCG payment of player i for MIDR allocation rule A on
input v1, . . . , vn.

We note that an essentially identical lemma was proved
in [17]. Nevertheless, we include a proof for completeness.

Proof. Without loss of generality, it suffices to show how
to compute p1. Let 0 : 2[m] → R be the valuation evaluating
to 0 at each bundle. Recall (see e.g. [22]) that the VCG
payment of player 1 is equal to

E
T∼A(0,v2,...,vn)

[
n∑

i=2

vi(T )

]
− E

S∼A(v1,...,vn)

[
n∑

i=2

vi(S)

]
.

(16)

Let S be a sample from A(v1, . . . , vn), and let T be a sam-
ple fromA(0, v2, . . . , vn). Let p1 =

∑n
i=2 vi(T )−

∑n
i=2 vi(S).

Using linearity of expectations, it is easy to see that the
expectation of p1 is equal to the expression in (16). This
completes the proof.

Remark B.5. We note that the mechanism resulting from
Lemma B.4 is individually rational in expectation, and each
payment is non-negative in expectation. We leave open the
question of whether it is possible to enforce individual ratio-
nality and non-negative payments ex-post.


