
CS364A: Problem Set #4

Due in class on Thursday, November 20, 2008

Instructions: Same as previous problem sets.

Problem 16

(a) (5 points) Algorithmic Game Theory, Exercise 19.9.

(b) (5 points) Algorithmic Game Theory, Exercise 19.10.

Problem 17

(a) (10 points) Algorithmic Game Theory, Exercise 19.13.

(b) (5 points) In this part and the next, we consider abstract finite game with n players with finite strategy
sets S1, . . . , Sn. Each player has a payoff function πi mapping outcomes (elements of S1 × · · · × Sn)
to real numbers. Recall that an exact potential function Φ for such a game is defined by the following
property: for every outcome s ∈ S1 × · · · × Sn, every player i, and every deviation s′i ∈ Si,

πi(s′i, s−i)− πi(si, s−i) = Φ(s′i, s−i)− Φ(si, s−i).

Prove that if such a game admits two exact potential functions Φ1 and Φ2, then Φ1 and Φ2 differ by
a constant. (I.e., for some c ∈ R, Φ1(s) = Φ2(s) + c for every outcome s of the game.)

(c) (10 points) Prove that a finite game admits an exact potential function if and only if for every two
outcomes s1 and s2 that differ in two players’ choices (say players i and j),(
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Problem 18

(15 points) Algorithmic Game Theory, Exercise 19.12.

Problem 19

(a) (7 points) Consider an atomic selfish routing game in which all players have the same source vertex and
sink vertex (and each controls one unit of flow). Assume that edge cost functions are nondecreasing, but
do not assume that they are affine. Prove that a (pure-strategy) Nash equilibrium (i.e., an equilibrium
flow) can be computed in polynomial time.

[Hint: Remember the potential function. You can assume without proof that the minimum-cost flow
problem can be solved in polynomial time. If you haven’t seen the min-cost flow problem before,
you can read about it in any book on “combinatorial optimization”. Be sure to discuss the issue of
fractional vs. integral flows, and explain how (or if) you use the hypothesis that edge cost functions
are nondecreasing.]
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(b) (7 points) Prove that in an atomic selfish routing network of parallel links, every equilibrium flow
minimizes the potential function.

(c) (6 points) Show by example that (b) does not hold in general networks, even when all players have a
common source and sink vertex.

Problem 20

(a) (7 points) Recall the scheduling games of Problem #15, where each job j has a processing time pj and
selfishly schedules itself on one of m machines to minimize its completion time. Assume that every
job can be feasibly scheduled on any machine (in the notation of Problem #15, Sj is the set of all
machines for each j). Unlike in Problem #15, you should assume that all jobs on a common machine
complete at the same time. So if jobs with processing times 1, 3, and 5 are scheduled together, all
of them will complete at time 9. As before, the global objective is to minimize the makespan (the
maximum completion time).

Suppose we run best-response dynamics long enough, starting from an arbitrary initial outcome, so
that every job has had at least one opportunity to deviate. Prove that the makespan of the resulting
outcome is at most twice that of an optimal solution.

[Hint: note that
∑

j pj/m and maxj pj are both legitimate lower bounds on the minimum-possible
makespan.]

(b) (8 points) Consider an atomic selfish routing network with affine cost functions. Suppose that each
player runs a no-regret algorithm to select a route in each of T time steps, resulting in a sequence
of flows f1, . . . , fT . (Recall from lecture or Chapter 4 of the AGT book that a no-regret algorithm
produces a sequence of actions whose expected average cost is at most an o(1) additive term more than
the average cost that would have been incurred by any fixed action.)

Modify the proof from lecture (that upper bounded the POA in this context) to show that, for every
ε > 0 and T = T (ε) sufficiently large, the expected cost
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5)/2] + ε times the cost of an optimal flow.
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