CS369N: Problem Set \#3

Due to Qiqi Yan by 11:30 AM on Thursday, December 10, 2009

Instructions: same as the first two homeworks.

Problem 11

(12 points) Recall from Lecture $\# 6$ that we proved the following (the Leftover Hash Lemma). Suppose X is a random variable with collision probability $c p(X)$ at most $1 / K$. Suppose \mathcal{H} is a (2-)universal family of hash functions (from the range of X to the range $\{0,1,2, \ldots, M-1\}$), and h is chosen uniformly at random from \mathcal{H}. Then the statistical distance between the joint distribution of $(h, h(X))$ and of the uniform distribution (on $\mathcal{H} \times\{0,1,2, \ldots, M-1\}$) is at most $\frac{1}{2} \sqrt{M / K}$.

For this problem, assume that you have a sequence X_{1}, \ldots, X_{T} of random variables, with the property that for every i and fixed values of X_{1}, \ldots, X_{i-1}, the (conditional) collision probability of X_{i} is at most $1 / K$ (i.e., a "block source"). Prove that the statistical distance between the joint distribution of ($h, h\left(X_{1}\right), \ldots, h\left(X_{T}\right)$) and of the uniform distribution is at most $\frac{T}{2} \sqrt{M / K}$.
[Hint: One high-level approach is to prove, by downward induction on i, a bound of $\frac{(T-i)}{2} \sqrt{M / K}$ on the statistical distance between $\left(h, h\left(X_{i+1}\right), \ldots, h\left(X_{T}\right)\right)$ and the uniform distribution for every fixed value of X_{1}, \ldots, X_{i}. The increase in statistical distance in the inductive step should come from the Triangle Inequality.]

Problem 12

(20 points) You are given n points x_{1}, \ldots, x_{n} in some bounded real interval ($[0,1]$, if you like) and a parameter k. The goal is to partition the n points into k clusters C_{1}, \ldots, C_{k} and designate points $m_{1}, \ldots, m_{k} \in \mathcal{R}$ as cluster centers to minimize $\Phi=\sum_{i=1}^{k} \sum_{x_{j} \in C_{i}}\left(x_{j}-m_{i}\right)^{2}$. One can easily check that, given the C_{i} 's, the optimal thing to do is to set m_{i} equal to the average value of the points in C_{i}.

In this problem we will analyze a particular local search heuristic, which works as follows. Iteration 0 begins with an arbitrary clustering C_{1}, \ldots, C_{k} with each C_{i} non-empty. In an odd iteration, we hold the C_{i} 's fixed and re-compute m_{i} as the average value of the points in C_{i}. In an even iteration, we independently and simultaneously re-assign each point x_{j} to the cluster C_{i} that had mean m_{i} closest to x_{j}. You should check that every non-vacuous iteration (i.e., one that makes some change) strictly decreases Φ. Thus, this heuristic is guaranteed to terminate (with a "locally optimal" clustering). Prove that the heuristic has polynomial smoothed complexity, meaning that for every point set x_{1}, \ldots, x_{n}, if an independent (onedimensional) Gaussian with standard deviation σ is added to each x_{i}, then the expected running time (over the perturbation) of the local search heuristic is polynomial in n, k, and $1 / \sigma$.
[Hint: You might look to the analysis of the 2-OPT heuristic for TSP for inspiration. Try to identify a sufficient condition on the input that guarantees that every improving local move makes a non-trivial improvement to Φ, and prove probability bounds on the likelihood that the condition is satisfied.]

Problem 13

(15 points) Recall the Balance algorithm for non-clairvoyant online scheduling from Lecture \#8. In lecture, we studied the objective of minimizing the average flow (or response) time, $\sum_{j}\left(C_{j}-r_{j}\right)$. One concern about such objectives is that minimizing the average might require assigning huge delays to a small number of jobs. This problem proves that this concern is unwarranted for the Balance algorithm.

Precisely, consider the objective of minimizing the maximum idle time of a job, where the idle time is $C_{j}-r_{j}-\left(p_{j} / s\right)$, where C_{j} is the job's completion time, r_{j} is its release date, p_{j} is its processing time, and s is the machine speed. Show that the maximum idle time of a job under the Balance algorithm with a machine of speed $1+\epsilon$ is at most $1 / \epsilon$ times that of an optimal (clairvoyant and offline) solution with a machine of unit speed.

Problem 14

Recall from Lecture \#8 the definition of a selfish routing network, of an equilibrium flow, and of the price of anarchy. For a given network G with continuous and nondecreasing edge cost functions and a traffic rate r between a source s and sink t, let $\pi(G, r)$ denote the ratio of the costs of equilibrium flows at rate r and rate $r / 2$. By the resource augmentation result from lecture, the price of anarchy in the network G at rate r is at most $\pi(G, r)$.
(a) (8 points) Prove a "loosely competitive" guarantee using the above resource augmentation bound: for every G and r, and for at least a constant fraction of the traffic rates \hat{r} in $[r / 2, r]$, the price of anarchy in G at traffic rate \hat{r} is $O(\log \pi(G, r))$.
(b) (7 points) Prove that for every constant K, there exists a network G with continuous, nondecreasing edge cost functions and a traffic rate r such that the price of anarchy in G is at least K for every traffic rate $\hat{r} \in[r / 2, r]$.

Problem 15

(15 points) Recall that in Lecture $\# 9$ we studied the problem of selling a good with unlimited supply to n potential buyers to maximize revenue. Now suppose you have only k copies of the good, where $k<n$.

Let's begin with the thought experiment where there is a distribution over inputs, with each valuation v_{i} drawn IID from a known distribution F. It turns out that the truthful auction that maximizes the expected revenue is the Vickrey auction with a reserve price r (where r depends on $F-$ e.g., it is $\frac{1}{2}$ if F is the uniform distribution on $[0,1]) .{ }^{1}$ This auction sells to all of the buyers that have a valuation v_{i} above r and are also amongst the top k valutions overall. All winners pay either r or the $(k+1)$ th highest valuation, whichever is larger. As usual, define \mathcal{C}_{D} as the set of all such auctions (i.e., the Vickrey auction with all possible choices of the reserve r).

Assume that $k \geq 2$ and design a truthful auction that has the same type of guarantee as the RSPE auction from Lecture $\# 9$. That is, for every input v, your (randomized) auction should have expected revenue at least a constant fraction of every auction in \mathcal{C}_{D} that sells to at least 2 buyers. (You don't have to compete with an auction of \mathcal{C}_{D} that sells to only one bidder on input v, just like in Lecture \#9).

[^0]
[^0]: ${ }^{1}$ Actually, this assertion holds only under a mild technical condition on F, but you don't need to worry about that for this problem.

