
CS369N: Problem Set #3

Due to Qiqi Yan by 11:30 AM on Thursday, December 10, 2009

Instructions: same as the first two homeworks.

Problem 11

(12 points) Recall from Lecture #6 that we proved the following (the Leftover Hash Lemma). Suppose X is
a random variable with collision probability cp(X) at most 1/K. Suppose H is a (2-)universal family of hash
functions (from the range of X to the range {0, 1, 2, . . . ,M − 1}), and h is chosen uniformly at random from
H. Then the statistical distance between the joint distribution of (h, h(X)) and of the uniform distribution
(on H× {0, 1, 2, . . . ,M − 1}) is at most 1

2

√
M/K.

For this problem, assume that you have a sequence X1, . . . , XT of random variables, with the property that
for every i and fixed values of X1, . . . , Xi−1, the (conditional) collision probability of Xi is at most 1/K (i.e.,
a “block source”). Prove that the statistical distance between the joint distribution of (h, h(X1), . . . , h(XT ))
and of the uniform distribution is at most T

2

√
M/K.

[Hint: One high-level approach is to prove, by downward induction on i, a bound of (T−i)
2

√
M/K on

the statistical distance between (h, h(Xi+1), . . . , h(XT )) and the uniform distribution for every fixed value
of X1, . . . , Xi. The increase in statistical distance in the inductive step should come from the Triangle
Inequality.]

Problem 12

(20 points) You are given n points x1, . . . , xn in some bounded real interval ([0, 1], if you like) and a parameter
k. The goal is to partition the n points into k clusters C1, . . . , Ck and designate points m1, . . . ,mk ∈ R
as cluster centers to minimize Φ =

∑k
i=1

∑
xj∈Ci

(xj −mi)2. One can easily check that, given the Ci’s, the
optimal thing to do is to set mi equal to the average value of the points in Ci.

In this problem we will analyze a particular local search heuristic, which works as follows. Iteration 0
begins with an arbitrary clustering C1, . . . , Ck with each Ci non-empty. In an odd iteration, we hold the Ci’s
fixed and re-compute mi as the average value of the points in Ci. In an even iteration, we independently
and simultaneously re-assign each point xj to the cluster Ci that had mean mi closest to xj . You should
check that every non-vacuous iteration (i.e., one that makes some change) strictly decreases Φ. Thus,
this heuristic is guaranteed to terminate (with a “locally optimal” clustering). Prove that the heuristic
has polynomial smoothed complexity, meaning that for every point set x1, . . . , xn, if an independent (one-
dimensional) Gaussian with standard deviation σ is added to each xi, then the expected running time (over
the perturbation) of the local search heuristic is polynomial in n, k, and 1/σ.

[Hint: You might look to the analysis of the 2-OPT heuristic for TSP for inspiration. Try to identify
a sufficient condition on the input that guarantees that every improving local move makes a non-trivial
improvement to Φ, and prove probability bounds on the likelihood that the condition is satisfied.]
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Problem 13

(15 points) Recall the Balance algorithm for non-clairvoyant online scheduling from Lecture #8. In lecture,
we studied the objective of minimizing the average flow (or response) time,

∑
j(Cj−rj). One concern about

such objectives is that minimizing the average might require assigning huge delays to a small number of jobs.
This problem proves that this concern is unwarranted for the Balance algorithm.

Precisely, consider the objective of minimizing the maximum idle time of a job, where the idle time is
Cj−rj−(pj/s), where Cj is the job’s completion time, rj is its release date, pj is its processing time, and s is
the machine speed. Show that the maximum idle time of a job under the Balance algorithm with a machine
of speed 1 + ε is at most 1/ε times that of an optimal (clairvoyant and offline) solution with a machine of
unit speed.

Problem 14

Recall from Lecture #8 the definition of a selfish routing network, of an equilibrium flow, and of the price
of anarchy. For a given network G with continuous and nondecreasing edge cost functions and a traffic rate
r between a source s and sink t, let π(G, r) denote the ratio of the costs of equilibrium flows at rate r and
rate r/2. By the resource augmentation result from lecture, the price of anarchy in the network G at rate r
is at most π(G, r).

(a) (8 points) Prove a “loosely competitive” guarantee using the above resource augmentation bound: for
every G and r, and for at least a constant fraction of the traffic rates r̂ in [r/2, r], the price of anarchy
in G at traffic rate r̂ is O(log π(G, r)).

(b) (7 points) Prove that for every constant K, there exists a network G with continuous, nondecreasing
edge cost functions and a traffic rate r such that the price of anarchy in G is at least K for every traffic
rate r̂ ∈ [r/2, r].

Problem 15

(15 points) Recall that in Lecture #9 we studied the problem of selling a good with unlimited supply to n
potential buyers to maximize revenue. Now suppose you have only k copies of the good, where k < n.

Let’s begin with the thought experiment where there is a distribution over inputs, with each valuation vi

drawn IID from a known distribution F . It turns out that the truthful auction that maximizes the expected
revenue is the Vickrey auction with a reserve price r (where r depends on F — e.g., it is 1

2 if F is the uniform
distribution on [0, 1]).1 This auction sells to all of the buyers that have a valuation vi above r and are also
amongst the top k valutions overall. All winners pay either r or the (k +1)th highest valuation, whichever is
larger. As usual, define CD as the set of all such auctions (i.e., the Vickrey auction with all possible choices
of the reserve r).

Assume that k ≥ 2 and design a truthful auction that has the same type of guarantee as the RSPE auction
from Lecture #9. That is, for every input v, your (randomized) auction should have expected revenue at
least a constant fraction of every auction in CD that sells to at least 2 buyers. (You don’t have to compete
with an auction of CD that sells to only one bidder on input v, just like in Lecture #9).

1Actually, this assertion holds only under a mild technical condition on F , but you don’t need to worry about that for this
problem.
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