
CS364A: Problem Set #1

Due in class on Thursday, January 20, 2011

Instructions:

(1) Students taking the course for a letter grade should attempt all of the following 5 problems; those
taking the course pass-fail should attempt the first 3.

(2) Some of these problems are difficult. I highly encourage you to start on them early and discuss them
extensively with your fellow students. If you don’t solve a problem to completion, write up what you’ve
got: partial proofs, lemmas, high-level ideas, counterexamples, and so on. This is not an IQ test; we’re
just looking for evidence that you’ve thought long and hard about the material.

(3) You may refer to your course notes, and to the textbooks and research papers listed on the course
Web page only. You cannot refer to textbooks, handouts, or research papers that are not listed on the
course home page. Cite any sources that you use, and make sure that all your words are your own.

(4) Collaboration on this homework is strongly encouraged. However, your write-up must be your own,
and you must list the names of your collaborators on the front page.

(5) No late assignments will be accepted.

Problem 1

(a) (3 points) [From Lecture #2.] Prove that for every false bid bi 6= vi by a bidder in a Vickrey auction,
there exist bids b−i by the other bidders such that i’s payoff when bidding bi is strictly less than when
bidding vi.

(b) (4 points) [From Lecture #2.] Consider a Vickrey auction with n bidders and suppose a subset S of
the bidders decide to collude, meaning that they submit false bids in a coordinated way to maximize
the sum of their payoffs. Prove necessary and sufficient conditions on the set S (in terms of the private
valuations of the bidders) such that the bidders of S can increase their collective payoff via non-truthful
bidding.

(c) (4 points) [From Lecture #2.] We proved that the Vickrey auction is truthful under the assumption
that every bidder’s utility function is quasi-linear — of the form ui(vi, pi) = vi · xi − pi. State some
significantly weaker assumptions on the utility functions ui(vi, pi) under which truthful bidding is a
dominant strategy for every bidder.

(d) (4 points) [From Lecture #3.] Prove that for every single-parameter problem, every implementable
allocation rule is monotone.

Problem 2

Recall the sponsored search auction problem discussed in Lectures #2 and 3: there are k slots, the jth slot
has a known click-through rate (CTR) of αj (nonincreasing in j), and the payoff of bidder i in slot j is
αj(vi − pj), where vi is the (private) value-per-click of the bidder and pj is the price charged per-click in
that slot. For historical reasons, modern search engines do not use the truthful auction discussed in class.
Instead, they use auctions derived from the Generalized Second-Price (GSP) auction, defined as follows:
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(1) Rank advertisers by bid; assume without loss that b1 ≥ b2 ≥ · · · ≥ bn.

(2) For i = 1, 2, . . . , k, assign the ith bidder to the i slot.

(3) For i = 1, 2, . . . , k, charge the ith bidder a price of bi+1 per click.

(a) (4 points) Prove that for every k ≥ 2 and sequence α1 ≥ · · · ≥ αk > 0 of CTRs, there exist valuations
for the bidders such that the GSP auction is not truthful.

(b) [Do not hand in.] Fix CTRs for slots and valuations-per-click for bidders. We can assume that k = n
by adding dummy slots with zero CTR (if k < n) or dummy bidders with zero valuation (if k > n). A
bid vector b is an equilibrium of GSP if no bidder can increase its payoff by changing its bid. Verify
that this translates to the following conditions, assuming that b1 ≥ b2 ≥ · · · ≥ bn: for every i and
higher slot j < i,

αi(vi − bi+1) ≥ αj(vi − bj);

and for every lower slot j > i,
αi(vi − bi+1) ≥ αj(vi − bj+1).

(Derive these by adopting i’s perspective and “targeting” the slot j.)

(c) [Do not hand in.] A bid vector b with b1 ≥ · · · ≥ bn is envy-free if for every bidder i and higher slot
j < i,

αi(vi − bi+1) ≥ αj(vi − bj+1);

and for every lower slot j > i,
αi(vi − bi+1) ≥ αj(vi − bj+1).

Verify that an envy-free bid vector is necessarily an equilibrium. (The terminology “envy-free” stems
from the following interpretation: write pj = bj+1, for the current price-per-click of slot j; then the
above inequalities say: “each bidder i is as happy getting its current slot at its current price as it would
be getting any other slot and that slot’s current price”.)

(d) (6 points) A bid vector is locally envy-free if the inequalities in (c) hold for adjacent slots (i.e., for every
i and j = i− 1, i + 1). Prove that, as long as the CTRs are strictly decreasing, a locally envy-free bid
vector must in fact be envy-free.

[Hint: you might want to first prove that the bidders must be sorted in nonincreasing order of valua-
tions.]

(e) (5 points) Prove that, for every set of αj ’s and vi’s, there is an equilibrium of the GSP auction for
which the outcome (i.e., the assignment of bidders to slots) and the prices paid precisely match those
of the truthful auction discussed in class. If you want, you can assume that the CTRs are strictly
decreasing.

[Hint: Recall that you know a closed-form solution for the payments made by the truthful auction.
What bids would yield these payments in a GSP auction? Part (d) might be useful for proving that
they form an equilibrium.]

Problem 3

Recall our discussion of Bayesian-optimal and prior-free revenue-maximizing auctions (Lectures #3-5).

(a) (5 points) Consider a single-item auction, where the ith bidder’s valuation vi is drawn from a regular
distribution Fi. Bidders’ valuations are independent, but notice that the distributions are not identical.
Is the Bayesian-optimal auction equivalent to the Vickrey auction with a suitably chosen reserve price?
Explain.
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(b) (7 points) Consider the following single-bidder prior-free pricing game. There is an unknown value
v ∈ [1, h]. If you offer a price p ≤ v you get p dollars and otherwise you get nothing. Design
a randomized pricing strategy (i.e., a probability distribution over prices) such that your expected
revenue is at least v/α for every v, where α is as close to 1 as you can manage.

(c) (6 points) Prove the best lower bound that you can on what values of α are achievable in the game
in (b).

[Hint: use the probabilistic method.]

(d) (5 points) Now consider a general setting, with n bidders each with private valuation vi. Let X ⊆ {0, 1}n

be the set of feasible allocation vectors. Assume that X is downward-closed, meaning that if x ∈ X,
and y ∈ {0, 1}n with y ≤ x component-wise, then y ∈ X as well.

Use Myerson’s Lemma to prove that there is a truthful mechanism that always outputs an allocation
that maximizes the social surplus

∑n
i=1 vixi over x ∈ X (assuming truthful bidding). [Cf., the truthful

sponsored search auction in Lecture #2.]

(e) (7 points) Continuing with the setting of part (d): suppose we know that every valuation vi lies in
[1, h]. Prove that there is a randomized truthful mechanism that, for every valuation profile v ∈ [1, h]n,
has expected revenue at least

1
α

max
x∈X

n∑
i=1

vixi,

where α is the same number as in part (b).

Problem 4

This problem explores composition theorems, which identify conditions under which truthful mechanisms
can be safely combined.

(a) (7 points) Show by example that there is a downward-closed setting (as defined in Problem 3(d)) and
monotone allocation rules x1, x2 such that the following allocation rule xmax is not monotone: given
valuations v, output whichever allocation out of x1(v), x2(v) has a higher surplus (i.e., a larger value
of

∑n
i=1 vixi). If possible, don’t rely on weird tie-breaking rules in your argument.

(a) (8 points) Identify some additional conditions (beyond monotonicity) on the allocation rules x1, x2 such
that the induced “better-of-two” allocation rule is guaranteed to be monotone. Make your conditions
as weak as you can.

Problem 5

A general issue in theoretical computer science is to understand the power and limitations of adding ran-
domness to a computational model. We are only beginning to understand this issue in mechanism design;
this problem provides some positive and negative results in the simple setting of digital goods auctions (with
n bidders and n identical goods).

(a) [Do not hand in.] We first develop a different randomized competitive auction based on the profit
extraction subroutine that we covered in lecture. Consider a bid vector b with all bids in the range
[1, h], with the property that F (2)(b) ≥ 2h. Write OPT (b) for F (2)(b) and OPT−i(b) for F (1)(b−i) —
the optimal fixed-price revenue from b−i, where any number of winners is allowed. Observe that for
every i, OPT (b)/2 ≤ OPT−i(b) ≤ OPT (b).

(b) (4 points) Let r1(x) and r2(x) denote the functions that round x to the nearest odd power of 2 and the
nearest even power of 2, respectively. (E.g., r1(14) = 23 = 8 and r2(14) = 24 = 16, while r1(18) = 32
and r2(18) = 16.) Prove that for every bid vector b that satisfies the assumption in (a), there is always
a choice of j = 1, 2 such that rj(OPT (b)) ≤ OPT (b) and also rj(OPT−i(b)) = rj(OPT (b)) for every i.
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(c) (4 points) Recall the ProfitExtract subroutine from lecture. Suppose that running this subroutine on
a bid vector b with revenue target R results in a price p being charged to the winning bidders S. Let
i ∈ S and set b′i = +∞. Prove that running ProfitExtract with the new bid vector (b′i, b−i) and the
same revenue target R yields the same outcome as before (the same winning set S and price p).

(d) [Do not hand in.] Consider the following randomized digital goods auction: given a bid vector b,
independently for each bidder i, perform three steps: (1) Choose j = 1, 2 uniformly at random and
set Ri = rj(OPT−i(b)); (2) set b′i = +∞ and run the ProfitExtract subroutine on the bid vector (b′i, b−i)
with revenue target Ri, terminating with a set Si of winners at price pi (with pi|Si| = Ri); (3) finally,
offer bidder i a posted price of pi. Convince yourself that this is a truthful auction.

(e) (7 points) Prove that for every bid vector b that satisfies the assumption of part (a), the expected
revenue of the auction in part (d) is at least OPT (b)/4.

[Hint: Let S denote the winning bidders when ProfitExtract is called on the bid vector b with revenue
target rj(OPT (b)) ≤ OPT (b). Argue separately about each bidder of S.]

(f) (8 points) Derandomize the auction in part (d) while losing only an additive factor of h in the revenue
guarantee. I.e., design a deterministic auction, closely related to the auction in (d), that on every bid
vector b that satisfies the assumption in (a), obtains revenue at least (OPT (b)/4)− h.

[Hints: Argue that it suffices to ensure the following: for every `, at least b`/2c of the top ` bidders
choose j = 1 in step (1), and at least b`/2c of the top ` bidders choose j = 2. Do you see how to ensure
that the bidders accomplish this, using a parity argument applied to the different b−i’s?]

(g) (2 points) Prove that the auction in (f) obtains revenue at least (OPT (b)/4)− h for every bid vector b
(not only those satisfying the assumption in (a)).

(h) (6 extra-credit points) Unlike the 4-competitive RSPE auction covered in class, this auction suffers an
additional additive loss term. Prove that this is necessary in the following sense: for every constant
c > 1, no deterministic (asymmetric) auction obtains revenue at least F (2)(b)/c for every bid vector b.
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