
CS369B: Problem Set #1

Due in class on Thursday, January 24, 2008

Instructions:

(0) Warning: Budget a lot of time for this problem set.

(1) Students taking the course for a letter grade should attempt 4 of the following 5 problems; those taking
the course pass-fail should attempt 2 of them.

(2) Some of these problems are quite difficult. I highly encourage you to start on them early and discuss
them extensively with your fellow students. If you don’t solve a problem to completion, write up what
you’ve got: partial proofs, lemmas, high-level ideas, counterexamples, and so on. This is not an IQ
test; we’re just looking for evidence that you’ve thought long and hard about the material.

(3) You may refer to your course notes, and to the textbooks and research papers listed on the course
Web page only. You cannot refer to textbooks, handouts, or research papers that are not listed on the
course home page.

(4) Collaboration on this homework is strongly encouraged. However, your write-up must be your own,
and you must list the names of your collaborators on the front page.

(5) No late assignments will be accepted.

Problem 1

Fibonacci heaps.

(a) Unlike normal heaps or binomial heaps, Fibonacci heaps can include trees that are very deep. Prove
this by giving a sequence of operations for a Fibonacci heap with n elements such that the depth of
one of its trees is Ω(n).

[Hint: induction on n.]

(b) Suppose we modify Fibonacci heaps so that we only rip out a node if k of its children have already been
ripped out. Intuitively, this should speed up (the constant factors of) the amortized time bound for
Decrease Key, since there will be fewer cascading cuts, and slow down Extract Min, since the trees can
get more scraggly. Try to quantify how the amortized bound for Extract Min degrades as a function
of k.

Problem 2

Matroids. A matroid is given by a ground set E of elements and a collection I of subsets of E, called
independent sets, satisfying three properties:

(i) ∅ ∈ I;

(ii) I is closed under subsets: if S ⊆ T and T ∈ I, S ∈ I;

(iii) the Exchange Property: if S, T ∈ I and |S| > |T |, then T can be extended by some element of S \ T :
there is an element e ∈ S \ T such that T ∪ {e} ∈ I.

1

A basis of a matroid is a maximal independent set. A cycle is a minimal dependent set (i.e., all of its proper
subsets are in I). A cut is a minimal subset that intersects every basis.

(a) [Do not hand in.] Convince yourself that all bases of a matroid have the same cardinality. This is
called the rank of the matroid.

(b) [Do not hand in.] Let I denote the acyclic subgraphs of an undirected connected graph. Convince
yourself that this is a matroid, the bases are the spanning trees of the graph, and cuts and cycles of
the matroid correspond to cuts and cycles of the graph.

(c) Let M be an arbitrary matroid and assign distinct real-valued costs to its elements. Prove the Cut
Property: for every cut S of M , the cheapest element of S belongs to every minimum-cost basis of M .

(d) Let M be an arbitrary matroid and assign distinct real-valued costs to its elements. Prove the Cycle
Property: for every cycle S of M , the costliest element of S belongs to no minimum-cost basis of M .

(e) [Do not hand in.] Let M be an arbitrary matroid and assign distinct real-valued costs to its elements.
Define the greedy algorithm for computing a minimum-cost basis of M as in Kruskal’s MST algorithm:
start with S = ∅; go through the elements of M in order from cheapest to costliest, in each iteration
adding the current element to the set S if and only if doing so preserves independence. Convince yourself
that the correctness proof for Kruskal’s algorithm remains valid in this general matroid context.

(f) Consider a ground set E and a collection J of subsets of E that satisfies the first two defining properties
of a matroid but not the third. Prove that there exists an assignment of costs to the elements E such
that the greedy algorithm fails to output the minimum-cost subset in J .

Problem 3

An O(m log log n)-Time Implementation of Boru̇vka’s Algorithm.

(a) Suppose as a preprocessing step, we sort the edges in each node’s adjacency list by cost. (This takes
O(m log n) time.) Show how to implement the rest of Boru̇vka’s algorithm to run in time O(m+n log n).

[Hint: It might help to implement contractions only implicitly. Have each node of the original graph
keep track of which edges in its adjacency list are useless, in that they point to a different node in the
same connected component of the tree-so-far. Keep the potentially useful ones sorted by cost. Can
you achieve a bound of O(n) per phase, plus O(m) additional time overall to maintain the adjacency
lists?]

(b) Call an array partially sorted with parameter k if every element is less than k positions away from its
rightful position in the sorted version of the array. (k = 1 is fully sorted, k = n is unsorted.) Show
how to k-partially sort an array of n numbers in O(n log n

k) time.

[Hint: linear-time median.]

(c) Strengthening the result in (a), show that O(m log log n) preprocessing time for partial sorting is enough
to obtain a bound of O(m + n log n) for the rest of the work done by Boru̇vka’s algorithm.

(d) Explain why performing log log n Boru̇vka phases prior to your algorithm in (c) yields an O(m log log n)
MST algorithm (including all preprocessing steps).

Problem 4

MSTs and Shortest-Path Trees: The Best of Both Worlds. Our first two topics are minimum-
spanning trees and shortest-path trees. But what if we want a single tree possessing the good properties of
both? Consider an undirected graph G = (V,E) with distinct and nonnegative edge lengths and a source
vertex s.

2

(a) Show that the shortest-path tree rooted at s can be an extremely bad approximation of the MST (in
terms of the sum of the lengths of the edges in the tree). How big a gap can you obtain? (You should
give a family of examples such that, as the number of nodes n goes to infinity, the total edge cost of
the shortest-path tree is f(n) times the MST cost, where f(n) is as large a function as possible.)

(b) Conversely, show that the MST T can be a bad approximation of the shortest-path tree, in that there
can be vertices v such that the s-v path in T has length much larger than that of a shortest such path
in G. How big a gap can you obtain?

(c) Prove that there always exists a tree that simultaneously O(1)-approximates the cost of an MST and
also O(1)-approximates shortest-path distances from s to all other vertices. What kind of upper bounds
on the trade-offs between the two approximation factors can you obtain?

[Hint: start with the MST, do a traversal starting from the source. If a path in the current tree is too
long relative to a shortest path in G, shortcut it. You need to bound the cost of all the edges that you
add.]

(d) Can you obtain any interesting lower bounds on the best-possible trade-offs between the two approxi-
mation factors?

Problem 5

Subgraphs that preserve all distances. Consider a graph G = (V,E). This problem is a generalization
of the previous in that we want a subgraph of G that approximately preserves all shortest-path distances
in G, not just those involving a distinguished source vertex. For a subgraph H of G, let dH(u, v) denote the
length (in hops) of a shortest u-v path in H. Note that dH(u, v) ≥ dG(u, v) for all u, v,H. Define αH by
maxu,v(dH(u, v)/dG(u, v)) – i.e., the largest factor by which a shortest path in H is bigger than one (with
the same endpoints) in G. If H is not connected, then we define αH = +∞.

(a) Show that if we restrict H to be a spanning tree of G, then for some graphs G we are stuck with
αH = Ω(n).

(b) We therefore seek to minimize both the number of edges of H and αH . Suppose we fix a target α∗ for
the latter and try to minimize the former. Consider the following Kruskal-like heuristic: go through
the edges of G in arbitrary order, and include an edge (u, v) into the graph H if and only if there is
not yet a u-v path in H with α∗ or fewer hops. Prove that this algorithm terminates with a subgraph
H satisfying αH ≤ α∗.

(c) Prove an upper bound, in terms of α∗ and n, on the number of edges that the subgraph H will include.

[Hint: use the fact that a graph with girth (i.e., length of the shortest cycle) equal to g has no more
than ng/(g−2) edges. You can assume this without proof.]

(d) Suppose the edges of G have nonnegative (not necessarily unit) weights. Give an analog of the algorithm
in (b) so that the bounds in part (b) (in terms of αH) and (c) (in terms of the number of edges) continue
to hold.

Can you find any meaningful upper bound the total edge cost, rather than merely the number of edges,
of the subgraph H constructed by this algorithm? You could, perhaps, parametrize such an upper
bound in terms of the MST cost, which is a lower bound on the cost of every subgraph with finite
α-value.

3

