
CS261: Exercise Set #7

For the week of February 15–19, 2016

Instructions:

(1) Do not turn anything in.

(2) The course staff is happy to discuss the solutions of these exercises with you in office hours or on
Piazza.

(3) While these exercises are certainly not trivial, you should be able to complete them on your own
(perhaps after consulting with the course staff or a friend for hints).

Exercise 31

Recall Graham’s algorithm from Lecture #13: given a parameter m (the number of machines) and n jobs
arriving online with processing times p1, . . . , pn, always assign the current job to the machine that currently
has the smallest load. We proved that the schedule produced by this algorithm always has makespan (i.e.,
maximum machine load) at most twice the minimum possible in hindsight.

Show that for every constant c < 2, there exists an instance for which the schedule produced by Graham’s
algorithm has makespan more than c times the minimum possible.

[Hint: Your bad instances will need to grow larger as c approaches 2.]

Exercise 32

In Lecture #13 we considered the online Steiner tree problem, where the input is a connected undirected
graph G = (V,E) with nonnegative edge costs ce, and a sequence t1, . . . , tk ∈ V of “terminals” arrive
online. The goal is to output a subgraph that spans all the terminals and has total cost as small as possible.
In lecture we only considered the metric special case, where the graph G is complete and the edge costs
satisfy the triangle inequality. (I.e., for every triple u, v, w ∈ V , cuw ≤ cuv + cvw.) Show how to convert
an α-competitive online algorithm for the metric Steiner tree problem into one for the general Steiner tree
problem.1

[Hint: Define a metric instance where the edges represent paths in the original (non-metric) instance.]

Exercise 33

Give an infinite family of instances (with the number k of terminals tending to infinity) demonstrating that
the greedy algorithm for the online Steiner tree problem is Ω(log k)-competitive (in the worst case).

Exercise 34

Let G = (V,E) be an undirected graph that is connected and Eulerian (i.e., all vertices have even degree).
Show that G admits an Euler tour — a (not necessarily simple) cycle that uses every edge exactly once. Can
you turn your proof into an O(m)-time algorithm, where m = |E|?

[Hint: Induction on |E|.]
1This extends the 2 ln k competitive ratio given in lecture to the general online Steiner tree problem.

1

Exercise 35

Consider the following online matching problem in general, not necessarily bipartite graphs. No information
about the graph G = (V,E) is given up front. Vertices arrive one-by-one. When a vertex v ∈ V arrives, and
S ⊆ V are the vertices that arrived previously, the algorithm learns about all of the edges between v and
vertices in S. Equivalently, after i time steps, the algorithm knows the graph G[Si] induced by the set Si of
the first i vertices.

Give a 1
2 -competitive online algorithm for this problem.

2

