
Stanford University — CS261: Optimization Handout 7
Luca Trevisan January 25, 2011

Lecture 7

In which we show how to use linear programming to approximate the vertex cover
problem.

1 Linear Programming Relaxations

An integer linear program (abbreviated ILP) is a linear program (abbreviated LP)
with the additional constraints that the variables must take integer values. For ex-
ample, the following is an ILP:

maximize x1 − x2 + 2x3

subject to
x1 − x2 ≤ 1
x2 + x3 ≤ 2
x1 ∈ N
x2 ∈ N
x3 ∈ N

(1)

Where N = {0, 1, 2, . . .} is the set of natural numbers.

The advantage of ILPs is that they are a very expressive language to formulate opti-
mization problems, and they can capture in a natural and direct way a large number
of combinatorial optimization problems. The disadvantage of ILPs is that they are
a very expressive language to formulate combinatorial optimization problems, and
finding optimal solutions for ILPs is NP-hard.

If we are interested in designing a polynomial time algorithm (exact or approximate)
for a combinatorial optimization problem, formulating the combinatorial optimization
problem as an ILP is useful as a first step in the following methodology (the discussion
assumes that we are working with a minimization problem):

• Formulate the combinatorial optimization problem as an ILP;

1

• Derive a LP from the ILP by removing the constraint that the variables have
to take integer value. The resulting LP is called a “relaxation” of the original
problem. Note that in the LP we are minimizing the same objective function
over a larger set of solutions, so opt(LP) ≤ opt(ILP);

• Solve the LP optimally using an efficient algorithm for linear programming;

– If the optimal LP solution has integer values, then it is a solution for
the ILP of cost opt(LP) ≤ opt(ILP), and so we have found an optimal
solution for the ILP and hence an optimal solution for our combinatorial
optimization problem;

– If the optimal LP solution x∗ has fractional values, but we have a round-
ing procedure that transforms x∗ into an integral solution x′ such that
cost(x′) ≤ c · cost(x∗) for some constant c, then we are able to find a so-
lution to the ILP of cost ≤ c · opt(LP) ≤ c · opt(ILP), and so we have a
c-approximate algorithm for our combinatorial optimization problem.

In this lecture and in the next one we will see how to round fractional solutions of
relaxations of the Vertex Cover and the Set Cover problem, and so we will be able to
derive new approximation algorithms for Vertex Cover and Set Cover based on linear
programming.

2 The Weighted Vertex Cover Problem

Recall that in the vertex cover problem we are given an undirected graph G = (V, E)
and we want to find a minimum-size set of vertices S that “touches” all the edges of
the graph, that is, such that for every (u, v) ∈ E at least one of u or v belongs to S.

We described the following 2-approximate algorithm:

• Input: G = (V, E)

• S := ∅

• For each (u, v) ∈ E

– if u 6∈ S ∧ v 6∈ S then S := S ∪ {u, v}

• return S

The algorithm finds a vertex cover by construction, and if the condition in the if
step is satisfied k times, then |S| = 2k and the graph contains a matching of size k,

2

meaning that the vertex cover optimum is at least k and so |S| is at most twice the
optimum.

Consider now the weighted vertex cover problem. In this variation of the problem, the
graph G = (V, E) comes with costs on the vertices, that is, for every vertex v we have
a non-negative cost c(v), and now we are not looking any more for the vertex cover
with the fewest vertices, but for the vertex cover S of minimum total cost

∑
v∈S c(v).

(The original problem corresponds to the case in which every vertex has cost 1.)

Our simple algorithm can perform very badly on weighted instances. For example
consider the following graph:

Then the algorithm would start from the edge (a, b), and cover it by putting a, b into
S. This would suffice to cover all edges, but would have cost 101, which is much
worse than the optimal solution which consists in picking the vertices {b, c, d, e, f},
with a cost of 5.

Why does the approximation analysis fail in the weighted case? In the unweighted
case, every edge which is considered by the algorithm must cost at least 1 to the
optimum solution to cover (because those edges form a matching), and our algorithm
invests a cost of 2 to cover that edge, so we get a factor of 2 approximation. In the
weighted case, an edge in which one endpoint has cost 1 and one endpoint has cost
100 tells us that the optimum solution must spend at least 1 to cover that edge, but
if we want to have both endpoints in the vertex cover we are going to spend 101 and,
in general, we cannot hope for any bounded approximation guarantee.

We might think of a heuristic in which we modify our algorithm so that, when it
considers an uncovered edge in which one endpoint is much more expensive than the
other, we only put the cheaper endpoint in S. This heuristic, unfortunately, also fails
completely: imagine a “star” graph like the one above, in which there is a central
vertex of cost 100, which is connected to 10,000 other vertices, each of cost 1. Then

3

the algorithm would consider all the 10,000 edges, and decide to cover each of them
using the cheaper endpoint, finding a solution of cost 10,000 instead of the optimal
solution of picking the center vertex, which has cost 100.

Indeed, it is rather tricky to approximate the weighted vertex cover problem via a
combinatorial algorithm, although we will develop (helped by linear programming
intuition) such an approximation algorithm by the end of the lecture.

Developing a 2-approximate algorithm for weighted vertex cover via a linear program-
ming relaxation, however, is amazingly simple.

3 A Linear Programming Relaxation of Vertex Cover

Let us apply the methodology described in the first section. Given a graph G = (V, E)
and vertex costs c(·), we can formulate the minimum vertex cover problem for G as
an ILP by using a variable xv for each vertex v, taking the values 0 or 1, with the
interpretation that xv = 0 means that v 6∈ S, and xv = 1 means that v ∈ S. The cost
of the solution, which we want to minimize, is

∑
v∈V xvc(v), and we want xu +xv ≥ 1

for each edge (u, v). This gives the ILP

minimize
∑

v∈V c(v)xv

subject to
xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≤ 1 ∀v ∈ V
xv ∈ N ∀v ∈ V

(2)

Next, we relax the ILP (2) to a linear program.

minimize
∑

v∈V c(v)xv

subject to
xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≤ 1 ∀v ∈ V
xv ≥ 0 ∀v ∈ V

(3)

Let us solve the linear program in polynomial time, and suppose that x∗ is an optimal
solution to the LP (3); how do we “round” it to a 0/1 solution, that is, to a vertex
cover? Let’s do it in the simplest possible way: round each value to the closest integer,
that is, define x′v = 1 if x∗v ≥ 1

2
, and x′v = 0 if x∗v < 1

2
. Now, find the set corresponding

to the integral solution x′, that is S := {v : x′v = 1} and output it. We have:

• The set S is a valid vertex cover, because for each edge (u, v) it is true that
x∗u +x∗v ≥ 1, and so at least one of x∗u or x∗v must be at least 1/2, and so at least
one of u or v belongs to S;

4

• The cost of S is at most twice the optimum, because the cost of S is∑
v∈S

c(v)

=
∑
v∈V

c(v)x′v

≤
∑
v∈V

c(v) · 2 · x∗v

= 2 · opt(LP)

≤ 2 · opt(V C)

And that’s all there is to it! We now have a polynomial-time 2-approximate algorithm
for weighted vertex cover.

4 The Dual of the LP Relaxation

The vertex cover approximation algorithm based on linear programming is very ele-
gant and simple, but it requires the solution of a linear program. Our previous vertex
cover approximation algorithm, instead, had a very fast linear-time implementation.
Can we get a fast linear-time algorithm that works in the weighted case and achieves
a factor of 2 approximation? We will see how to do it, and although the algorithm
will be completely combinatorial, its analysis will use the LP relaxation of vertex
cover.

How should we get started in thinking about a combinatorial approximation algorithm
for weighted vertex cover?

We have made the following point a few times already, but it is good to stress it again:
in order to have any hope to design a provably good approximation algorithm for a
minimization problem, we need to have a good technique to prove lower bounds for
the optimum. Otherwise, we will not be able to prove that the optimum is at least a
constant fraction of the cost of the solution found by our algorithms.

In the unweighted vertex cover problem, we say that if a graph has a matching of size
k, then the optimum vertex cover must contain at least k vertices, and that’s our lower
bound technique. We have already seen examples in which reasoning about matchings
is not effective in proving lower bound to the optimum of weighted instances of vertex
cover.

How else can we prove lower bounds? Well, how did we establish a lower bound to
the optimum in our LP-based 2-approximate algorithm? We used the fact that the
optimum of the linear programming relaxation (3) is a lower bound to the minimum

5

vertex cover optimum. The next idea is to observe that the cost of any feasible
solution to the dual of (3) is a lower bound to the optimum of (3), by weak duality,
and hence a lower bound to the vertex cover optimum as well.

Let us construct the dual of (3). Before starting, we note that if we remove the
xv ≤ 1 constraints we are not changing the problem, because any solution in which
some variables xv are larger than 1 can be changed to a solution in which every xv is
at most one while decreasing the objective function, and without contradicting any
constraint, so that an optimal solution cannot have any xv larger than one. Our
primal is thus the LP in standard form

minimize
∑

v∈V c(v)xv

subject to
xu + xv ≥ 1 ∀(u, v) ∈ E
xv ≥ 0 ∀v ∈ V

(4)

Its dual has one variable y(u,v) for every edge (u, v), and it is

maximize
∑

(u,v)∈E

y(u,v)

subject to ∑
u:(u,v)∈E

y(u,v) ≤ c(v) ∀v ∈ V

y(u,v) ≥ 0 ∀(u, v) ∈ E

(5)

That is, we want to assign a nonnegative “charge” y(u,v) to each edge, such that the
total charge over all edges is as large as possible, but such that, for every vertex, the
total charge of the edges incident on the vertex is at most the cost of the vertex. From
weak duality and from the fact that (4) is a relaxation of vertex cover, we have that
for any such system of charges, the sum of the charges is a lower bound to the cost
of the minimum vertex cover in the weighted graph G = (V, E) with weights c(·).

Example 1 (Matchings) Suppose that we have an unweighted graph G = (V, E),
and that a set of edges M ⊆ E is a matching. Then we can define y(u,v) := 1 if
(u, v) ∈ M and y(u,v) := 0 if (u, v) 6∈ M . This is a feasible solution for (5) of cost
|M |.

This means that any lower bound to the optimum in the unweighted case via match-
ings can also be reformulated as lower bounds via feasible solutions to (5). The latter
approach, however, is much more powerful.

Example 2 Consider the weighted star graph from Section 2. We can define y(a,x) =
1 for each vertex x = b, c, d, e, f , and this is a feasible solution to (5). This proves
that the vertex cover optimum is at least 5.

6

5 Linear-Time 2-Approximation of Weighted Ver-

tex Cover

Our algorithm will construct, in parallel, a valid vertex cover S, in the form of a valid
integral solution x to the ILP formulation of vertex cover (2), and a feasible solution
y to the dual (5) of the linear programming relaxation, such that the cost of y is at
least half the cost S. Before starting, it is helpful to reformulate our old algorithms
in this language

• Input: undirected, unweighted, graph G = (V, E)

• x = (0, · · · , 0)

• y = (0, · · · , 0)

• for each edge (u, v) ∈ E

– if xu < 1 and xv < 1 then

∗ y(u,v) := 1

∗ xu := 1

∗ xv := 1

• S := {v : xv = 1}

• return S,y

Our goal is to modify the above algorithm so that it can deal with vertex weights,
while maintaining the property that it finds an integral feasible x and a dual feasible
y such that

∑
v∈V c(v)xv ≤ 2 ·

∑
(u,v)∈V yu,v. The key property to maintain is that

when we look at the edge (u, v), and we find it uncovered, what we are going to
“spend” in order to cover it will be at most 2yu,v, where yu,v will be a charge that we
assign to (u, v) without violating the constraints of (5).

We will get simpler formulas if we think in terms of a new set of variables pv, which
represent how much we are willing to “pay” in order to put v in the vertex cover; at
the end, if pv = cv then the vertex v is selected, and xv = 1, and if pv < cv then we
are not going to use v in the vertex cover. Thus, in the integral solution, we will have
xv = bpv/c(v)c, and so c(v) · xv ≤ pv and so the total amount we are willing to pay,∑

v pv is an upper bound to the cost of the integral solution
∑

v c(v) · xv.

Initially, we start from the all-zero dual solution y = 0 and from no commitment to
pay for any vertex, p = 0. When we consider an edge (u, v), if pu = c(u) or pv = c(v),
we have committed to pay for at least one of the endpoints of (u, v), and so the edge
will be covered. If pu < c(u) and pv < c(v), we need to commit to pay for at least

7

one of the endpoints of the edge. We need to pay an extra c(u)− pu to make sure u
is in the vertex cover, or an extra c(v)− pv to make sure that v is. We will raise, and
here is the main idea of the algorithm, both the values of pu and pv by the smallest
of the two values. This will guarantee that we cover (u, v) by “fully funding” one of
the endpoints, but it will also put some extra “funding” into the other vertex, which
might be helpful later. We also set y(u,v) to min{c(u)− pu, c(v)− pv}.
Here is the psedocode of the algorithm:

• Input: undirected, unweighted, graph G = (V, E)

• p = (0, · · · , 0)

• y = (0, · · · , 0)

• for each edge (u, v) ∈ E

– if pu < c(u) and pv < c(v) then

∗ y(u,v) := min{c(u)− pu, c(v)− pv}
∗ pu := pu + min{c(u)− pu, c(v)− pv}
∗ pv := pv + min{c(u)− pu, c(v)− pv}

• S := {v : pv ≥ c(v)}

• return S,y

The algorithm outputs a correct vertex cover, because for each edge (u, v), the algo-
rithm makes sure that at least one of pu = c(u) or pv = c(v) is true, and so at least
one of u or v belongs to S at the end.

Clearly, we have

cost(S) =
∑
v∈S

c(v) ≤
∑
v∈V

pv

Next, we claim that the vector y at the end of the algorithm is a feasible solution for
the dual (5). To see this, note that, for every vertex v,

∑
u:(u,v)∈E

y(u,v) = pv

because initially all the y(u,v) and all the pv are zero, and when we assign a value to a
variable y(u,v) we also simultaneously raise pu and pv by the same amount. Also, we
have that, for every vertex v

8

pv ≤ c(v)

by construction, and so the charges y satisfy all the constraints

∑
u:(u,v)∈E

y(u,v) = c(v)

and define a feasible dual solution. We then have

∑
(u,v)∈E

y(u,v) ≤ optV C(G)

by weak duality. Finally, every time we give a value to a y(u,v) variable, we also
raise the values of pu and pv by the same amount, and so the sum of our payment
commitments is exactly twice the sum of the charges y(u,v)∑

v∈V

pv = 2
∑

(u,v)∈E

y(u,v)

Putting all together we have

cost(S) ≤ 2 · optV C(G)

and we have another 2-approximate algorithm for weighted vertex cover!

It was much more complicated than the simple rounding scheme applied to the lin-
ear programming optimum, but it was worth it because now we have a linear-time
algorithm, and we have understood the problem quite a bit better.

9

	Linear Programming Relaxations
	The Weighted Vertex Cover Problem
	A Linear Programming Relaxation of Vertex Cover
	The Dual of the LP Relaxation
	Linear-Time 2-Approximation of Weighted Vertex Cover

