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Lecture 1

In which we describe what this course is about.

1 Overview

This class is about the following topics:

1. Approximation algorithms for graph partitioning problems. We will study ap-
proximation algorithms for the sparsest cut problem, in which one wants to
find a cut (a partition into two sets) of the vertex set of a given graph so that
a minimal number of edges cross the cut compared to the number of pairs of
vertices that are disconnected by the removal of such edges.

This problem is related to estimating the edge expansion of a graph and to find
balanced separators, that is, ways to disconnect a constant fraction of the pairs
of vertices in a graph after removing a minimal number of edges.

Finding balanced separators and sparse cuts arises in clustering problems, in
which the presence of an edge denotes a relation of similarity, and one wants to
partition vertices into few clusters so that, for the most part, vertices in the same
cluster are similar and vertices in different clusters are not. For example, sparse
cut approximation algorithms are used for image segmentation, by reducing the
image segmentation problem to a graph clustering problem in which the vertices
are the pixels of the image and the (weights of the) edges represent similarities
between nearby pixels.

Balanced separators are also useful in the design of divide-and-conquer algo-
rithms for graph problems, in which one finds a small set of edges that discon-
nects the graph, recursively solves the problem on the connected components,
and then patches the partial solutions and the edges of the cut, via either exact
methods (usually dynamic programming) or approximate heuristic. The spar-
sity of the cut determines the running time of the exact algorithms and the
quality of approximation of the heuristic ones.

We will study three approximation algorithms:
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(a) The Spectral Partitioning Algorithm, based on linear algebra;

(b) The Leighton-Rao Algorithm, based on a linear programming relaxation;

(c) The Arora-Rao-Vazirani Algorithm, based on a semidefinite programming
relaxation.

The three approaches are related, because the continuous optimization problem
that underlies the Spectral Partitioning algorithm is a relaxation of the ARV
semidefinite programming relaxation, and so is the Leighton-Rao relaxation.
Rounding the Leighton-Rao and the Arora-Rao-Vazirani relaxations raise inter-
esting problems in metric geometry, some of which are still open.

2. Explicit Constructions of Bounded-Degree Expanders. Expander graphs are
graphs with very strong connectivity and “pseudorandomness” properties. Con-
structions of constant-degree expanders are useful in a variety of applications,
from the design of data structures, to the derandomization of algorithms, from
efficient cryptographic constructions to being building blocks of more complex
quasirandom objects.

There are two families of approaches to the explicit (efficient) construction of
bounded-degree expanders. One is via algebraic constructions, typically ones in
which the expander is constructed as a Cayley graph of a finite group. Usually
these constructions are easy to describe but rather difficult to analyze. The
study of such expanders, and of the related group properties, has become a
very active research program, involving mostly ergodic theorists and number
theorists. There are also combinatorial constructions, which are somewhat more
complicated to describe but considerably simpler to analyze.

3. Bounding the Mixing Time of Random Walks and Approximate Counting and
Sampling. If one takes a random walk in a regular graph that is connected
and not bipartite, then, regardless of the starting vertex, the distribution of
the t-th step of the walk is close to the uniform distribution over the vertices,
provided that t is large enough. It is always sufficient for t to be quadratic in the
number of vertices; in some graphs, however, the distribution is near-uniform
even when t is just poly-logarithmic. Among other applications, the study of
the “mixing time” (the time that it takes to reach the uniform distribution)
of random walks has applications to analyzing the convergence time of certain
randomized algorithms.

The design of approximation algorithms for combinatorial counting problems, in
which one wants to count the number of solutions to a given NP-type problem,
can be reduced to the design of approximately uniform sampling in which one
wants to approximately sample from the set of such solutions. For example, the
task of approximately counting the number of perfect matchings can be reduced
to the task of sampling almost uniformly from the set of perfect matchings of a
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given graph. One can design approximate sampling algorithms by starting from
an arbitrary solution and then making a series of random local changes. The
behavior of the algorithm then corresponds to performing a random walk in the
graph that has a vertex for every possible solution and an edge for each local
change that the algorithm can choose to make. Although the graph can have
an exponential number of vertices in the size of the problem that we want to
solve, it is possible for the approximate sampling algorithm to run in polynomial
time, provided that a random walk in the graph converges to uniform in time
poly-logarithmic in its size.

The study of the mixing time of random walks in graphs is thus a main analysis
tool to bound the running time of approximate sampling algorithms (and, via
reductions, of approximate counting algorithms).

These three research programs are pursued by largely disjoint communities, but share
the same mathematical core.

One direction of Cheeger’s inequality, for example, a basic result in algebraic graph
theory, is useful in the construction of expanders because it establishes that good
edge-expansion (the property that one is usually looking for, but that is a coNP-
complete, and thus rather hard to certify) is implied by good spectral expansion
(a property that is usually easier to establish and that is in P and thus has short
certificates); the other direction of Cheeger’s inequality, that good edge expansion
implies good spectral expansion, is often used in the study of random walks, because
spectral expansion is the property that controls the mixing time of random walks,
and in some cases it is easier to prove that a graph has good spectral expansion
by proving that it has good edge expansion. Both directions are equivalent to the
statement that the nearly-linear-time spectral partitioning algorithm achieves a non-
trivial approximation for the sparsest cut problem.

In this course we will study these three research programs back-to-back, emphasizing
the connections, and providing, when necessary, a “dictionary” to translate the ways
the same mathematical facts are thought about in the three communities.

2 Expander Graphs and Sparse Cuts

Before giving the definition of expander graph, it is helpful to consider examples of
graphs that are not expanders, in order to gain intuition about the type of “bad
examples” that the definition is designed to avoid.

Suppose that a communication network is shaped as a path, with the vertices rep-
resenting the communicating devices and the edges representing the available links.
The clearly undesirable feature of such a configuration is that the failure of a single
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edge can cause the network to be disconnected, and, in particular, the failure of the
middle edge will disconnect half of the vertices from the other half.

This is a situation that can occur in reality. Most of Italian highway traffic is along
the highway that connect Milan to Naples via Bologna, Florence and Rome. The
section between Bologna and Florence goes through relatively high mountain passes,
and snow and ice can cause road closure. When this happens, it is almost impossible
to drive between Northern and Southern Italy. Closer to California, I was once driving
from Banff, a mountain resort town in Alberta which hosts a mathematical institute,
back to the US. Suddenly, traffic on Canada’s highway 1 came to a stop. People from
the other cars, after a while, got out of the cars and started hanging out and chatting
on the side of the road. We asked if there was any other way to go in case whatever
accident was ahead of us would cause a long road closure. They said no, this is the
only highway here. Thankfully we started moving again in half an hour or so.

Now, consider a two-dimensional
√
n ×
√
n grid. The removal of an edge cannot

disconnect the graph, and the removal of a constant number of edges can only discon-
nected a constant number of vertices from the rest of the graph, but it is possible to
remove just

√
n edges, a 1/O(

√
n) fraction of the total, and have half of the vertices

be disconnected from the other half.

A k-dimensional hypercube with n = 2k is considerably better connected than a grid,
although it is still possible to remove a vanishingly small fraction of edges (the edges
of a dimension cut, which are a 1/k = 1/ log2 n fraction of the total number of edges)
and disconnect half of the vertices from the other half.

Clearly, the most reliable network layout is the clique; in a clique, if an adversary
wants to disconnect a p fraction of vertices from the rest of the graph, he has to
remove at least a p · (1− p) fraction of edges from the graph.

This property of the clique will be our “gold standard” for reliability. The expansion
and the sparsest cut parameters of a graph measure how worse a graph is compared
with a clique from this point.

Definition 1 (Sparsest Cut) Let G = (V,E) be a graph and let (S, V − S) be a
partition of the vertices (a cut). Then the sparsity of the cut is

φ(S) :=
E(S, V − S)

|E|
·
(
|S| · |V − S|
|V |2/2

)−1

where E(S, V − S) is the number of edges in E that have one endpoint in S and one
endpoint in V − S.

The sparsest cut is, given a graph, to find the set of minimal sparsity. The sparsity
of a graph G = (V,E) is
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φ(G) := min
S⊆V :S 6=∅,S 6=V

φ(S)

That is, we are looking at the ratio between the fraction of edges that need to be
removed in order to disconnect S from V −S and the fraction of pairs of vertices that
would be so disconnected.

It is more common to define the sparsity as

E(S, V − S)

|S| · |V − S|

without the normalizing factor (V 2/2|E|); the normalized definition used above yields
simpler formulas in some of the applications that we will discuss later.

Note that if G is a d-regular graph, then

φ(S) :=
E(S, V − S)

d
|V | · |S| · |V − S|

In a d-regular graph, the edge expansion of a cut (S, V − S) is the related quantity

h(S) :=
E(S, V − S)

d ·min{|S|, |V − S|}

in which we look at the ratio between the number of edges between S and V −S and
the obvious upper bound given by the total number of edges incident on the smaller
side of the cut.

The edge expansion h(G) of a graph is the minimum of h(S) over all non-trivial
partitions (S, V − S).

(It is common to define the edge expansion without the normalizing factor of d in the
denominator.)

We note that for every regular graph G we have that, for every set S,

φ(S) ≤ h(S) ≤ 2 · φ(S)

and hence

φ(G) ≤ h(G) ≤ 2 · φ(G)

A family of constant degree expanders is a family of (multi-)graphs {Gn}n≥d such
that each graph Gn is a d-regular graph with n vertices and such that there is an
absolute constant h > 0 such that h(Gn) ≥ h for every n.
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Constant-degree graphs of constant expansion are sparse graphs with exceptionally
good connectivity properties. For example, we have the following observation.

Lemma 2 Let G = (V,E) be a regular graph of expansion h. Then, after an ε < h
fraction of the edges are adversarially removed, the graph has a connected component
that spans at least 1− ε/2h fraction of the vertices.

Proof: Let d be the degree of G, and let E ′ ⊆ E be an arbitrary subset of ≤
ε|E| = ε · d · |V |/2 edges. Let C1, . . . , Cm be the connected components of the graph
(V,E − E ′), ordered so that |C1| ≥ |C2| ≥ · · · ≥ |Cm|. We want to prove that
|C1| ≥ |V | · (1− 2ε/h). We have

|E ′| ≥ 1

2

∑
i 6=j

E(Ci, Cj) =
1

2

∑
i

E(Ci, V − Ci)

If |C1| ≤ |V |/2, then we have

|E ′| ≥ 1

2

∑
i

d · h · |Ci| =
1

2
· d · h · |V |

but this is impossible if h > ε.

If |C1| ≥ |V |/2, then define S := C2 ∪ · · · ∪ Cm. We have

|E ′| ≥ E(C1, S) ≥ d · h · |S|

which implies that |S| ≤ ε
2h
· |V | and so C1 ≥

(
1− ε

2h

)
· |V |. �

In words, this means that, in a d-regular expander, the removal of k edges can cause
at most O(k/d) vertices to be disconnected from the remaining “giant component.”
Clearly, it is always possible to disconnect k/d vertices after removing k edges, so the
reliability of an expander is essentially best possible.
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