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Lecture 2

In which we review linear algebra and introduce spectral graph theory.

1 Eigenvalues and Eigenvectors

Spectral graph theory studies how the eigenvalues of the adjacency matrix of a graph,
which are purely algebraic quantities, relate to combinatorial properties of the graph.

We begin with a brief review of linear algebra.

If x = a+ ib is a complex number, then we let x∗ = a− ib denote its conjugate.

If M ∈ Cn×n is a square matrix, λ ∈ C is a scalar, v ∈ Cn − {0} is a non-zero vector
and we have

Mv = λv (1)

then we say that λ is an eigenvalue of M and that v is eigenvector of M corresponding
to the eigenvalue λ.

When (1) is satisfied, then we equivalently have

(M − λI) · v = 0

for a non-zero vector v, which is equivalent to

det(M − λI) = 0 (2)

For a fixed matrix M , the function λ → det(M − λI) is a univariate polynomial
of degree n in λ and so, over the complex numbers, the equation (2) has exactly n
solutions, counting multiplicities.

If G = (V,E) is a graph, then we will be interested in the adjacency matrix A of G,
that is the matrix such that Aij = 1 if (i, j) ∈ E and Aij = 0 otherwise. If G is a
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multigraph or a weighted graph, then Aij is equal to the number of edges between
(i, j), or the weight of the edge (i, j), respectively.

The adjacency matrix of an undirected graph is symmetric, and this implies that its
eigenvalues are all real.

Definition 1 A matrix M ∈ Cn×n is Hermitian if Mij = M∗
ji for every i, j.

Note that a real symmetric matrix is always Hermitian.

Lemma 2 If M is Hermitian, then all the eigenvalues of M are real.

Proof: Let M be an Hermitian matrix and let λ be a scalar and x be a non-zero
vector such that Mx = λx. We will show that λ = λ∗, which implies that λ is a real
number. We define the following inner product operation over vectors in Cn:

〈v,w〉 :=
∑

i

v∗i · wi

Notice that, by definition, we have 〈v,w〉 = (〈w,v〉)∗ and 〈v,v〉 = ||v||2. The lemma
follows by observing that

〈Mx,x〉

=
∑

i

∑
j

M∗
ijx
∗
jxi

=
∑

i

∑
j

Mjixix
∗
j

= 〈x,Mx〉

where we use the fact that M is Hermitian, and that

〈Mx,x〉 = 〈λx,x〉 = λ∗||x||2

and

〈x,Mx〉 = 〈x, λx〉 = λ||x||2

so that λ = λ∗. �

From the discussion so far, we have that if A is the adjacency matrix of an undirected
graph then it has n real eigenvalues, counting multiplicities of the number of solutions
to det(A− λI) = 0.
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If G is a d-regular graph, then instead of working with the adjacency matrix of G it
is somewhat more convenient to work with the normalized matrix M := 1

d
· A.

In the rest of this section we shall prove the following relations between the eigenvalues
of M and certain purely combinatorial properties of G.

Theorem 3 Let G be a d-regular undirected graph, and M = 1
d
· A be its normal-

ized adjacency matrix. Let λ1 ≥ λ2 ≥ · · · ≥ λn be the real eigenvalues of M with
multiplicities. Then

1. λ1 = 1 and λn ≥ −1.

2. λ2 = 1 if and only if G is disconnected.

3. λn = −1 if and only if at least one of the connected components of G is bipartite.

In the next lecture we will begin to explore an “approximate” version of the second
claim, and to show that λ2 is close to 1 if and only if G has a sparse cut.

1.1 More on Eigenvalues and Eigenvectors

In order to relate the eigenvalues of the adjacency matrix of a graph to combinatorial
properties of the graph, we need to first express the eigenvalues and eigenvectors as
solutions to optimization problems, rather than solutions to algebraic equations.

First, we observe that if M is a real symmetric matrix and λ is a real eigenvalue of M ,
then λ admits a real eigenvector. This is because if Mx = λx for some x ∈ Cn, then
we also have Mx′ = λx′, where x′ ∈ Rn is the vector whose i-th coordinate is the
real part of the i-th coordinate of x. Now, if λ is a (real) eigenvalue of a symmetric
real matrix M , then the set {x ∈ Rn : Mx = λx} is a vector subspace of Rn, called
the eigenspace of λ.

Fact 4 If λ 6= λ′ are two distinct eigenvalues of a symmetric real matrix M , then the
eigenspaces of λ and λ′ are orthogonal.

Proof: Let x be an eigenvector of λ and y be an eigenvector of λ′. From the
symmetry of M and the fact that M , x and y all have real entries we get

〈Mx,y〉 = 〈x,My〉

but

〈Mx,y〉 = λ · 〈x,y〉
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and
〈x,My〉 = λ′ · 〈x,y〉

so that
(λ− λ′) · 〈x,y〉 = 0

which implies that 〈x,y〉 = 0, that is, that x and y are orthogonal. �

Definition 5 The algebraic multiplicity of an eigenvalue λ of a matrix M is the
multiplicity of λ as a root of the polynomial det(M − λI). The geometric multiplicity
of λ is the dimension of its eigenspace.

The following is the only result of this section that we state without proof.

Fact 6 If M is a symmetric real matrix and λ is an eigenvalue of M , then the
geometric multiplicity and the algebraic multiplicity of λ are the same.

This gives us the following “normal form” for the eigenvectors of a symmetric real
matrix.

Fact 7 If M ∈ Rn×n is a symmetric real matrix, and λ1, . . . , λn are its eigenvalues
with multiplicities, and v1 is a length-1 eigenvector of λ1, then there are vectors
v2, . . . ,vn such that vi is an eigenvector of λi and v1, . . . ,vn are orthonormal.

Proof: For each eigenvalue, choose an orthonormal basis for its eigenspace. For λ1,
choose the basis so that it includes v1. �

Finally, we get to our goal of seeing eigenvalue and eigenvectors as solutions to con-
tinuous optimization problems.

Lemma 8 If M is a symmetric matrix and λ1 is its largest eigenvalue, then

λ1 = sup
x∈Rn:||x||=1

xTMx

Furthermore, the sup is achieved, and the vectors achieving it are precisely the eigen-
vectors of λ1.

Proof: That the sup is achieved follows from the fact that the set {x ∈ Rn : ||x|| =
1} is compact and that x→ xTMx is a continuous function.

If v1 is a length-1 eigenvector of λ1, then
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sup
x∈Rn:||x||=1

xTMx ≥ vT
1Mv1 = λ1

If y is a length-1 vector that achieves the sup, then let v1, . . . ,vn be as in Fact 7 and
write

y = α1v1 + . . . αnvn

Then

sup
x∈Rn:||x||=1

xTMx = yTMy =
∑

i

α2
iλi

Since
∑

i α
2
i = ||y||2 = 1, we have

sup
x∈Rn:||x||=1

xTMx =
∑

i

α2
iλi ≤ λ1 ·

∑
i

α2
i = λ1

Finally, we see that we have yTMy = λ1 precisely when, for every i such that αi 6= 0
we have λi = λ1, that is, precisely when y is in the eigenspace of λ1. �

Similarly we can prove

Lemma 9 If M is a symmetric matrix, λ1 is its largest eigenvalue, and v1 is an
eigenvector of λ1, then

λ2 = sup
x∈Rn:||x||=1,x⊥v1

xTMx

Furthermore, the sup is achieved, and the vectors achieving it are precisely the eigen-
vectors of λ2. (If λ1 = λ2, then the vectors achieving the sup are the eigenvalues of
λ1 = λ2 which are orthogonal to v1.)

And

Lemma 10 If M is a symmetric matrix and λn is its largest eigenvalue, then

λn = inf
x∈Rn:||x||=1

xTMx

Furthermore, the inf is achieved, and the vectors achieving it are precisely the eigen-
vectors of λn.
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1.2 Proof of Theorem 3

We will make repeated use of the following identity, whose proof is immediate: if M
is the normalized adjacency matrix of a regular graph, and x is any vector, then

∑
i,j

Mi,j(xi − xj)
2 = 2xT x− 2xTMx (3)

That is,

xTMx = xT x− 1

2

∑
i,j

Mi,j(xi − xj)
2 ≤ xT x

And so

λ1 = max
x∈Rn:||x||=1

xTMx ≤ 1

If we take 1 = (1, . . . , 1) to be the all-one vector, we see that 1TM1 = 1, and so 1 is
the largest eigenvalue of M , with 1 being one of the vectors in the eigenspace of 1.

So we have the following formula for λ2:

λ2 = sup
x∈Rn:||x||=1,

P
i xi=0

xTMx

where we equivalently expressed the condition x ⊥ 1 as
∑

i xi = 0.

Using (3), we have

λ2 = 1− inf
x∈Rn:||x||=1,

P
i xi=0

1

2

∑
ij

Mij(xi − xj)
2

So, if λ2 = 1, there must exist a non-zero v ∈ Rn such that
∑

i vi = 0 and
∑

ij Mij(vi−
vj)

2 = 0, but this means that, for every edge (i, j) ∈ E of positive weight we have
vi = vj, and so vi = vj for every i, j which are in the same connected component.
The conditions

∑
i vi = 0 and v 6= 0 imply that v has both positive and negative

coordinates, and so the sets A := {i : vi > 0} and B := {i : vi < 0} are non-empty
and disconnected, and so G is not connected.

Conversely, if G is disconnected, and S and V − S are non-empty sets such that
E(S, V − S) = 0, then we can define v so that vi = |S|/(|V − S|) if i 6∈ S, and
vi = −|V − S|/|S| if ∈ S, so that

∑
i vi = 0. This gives us a non-zero vector such

that
∑

ij Mij(vi − vj)
2 = 0 and, after dividing every coordinate by ||v||, a length-1

vector proving that λ2 ≥ 1.
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Finally, to study λn we observe that for every vector x ∈ Rn we have

∑
i,j

Mi,j(xi + xj)
2 = 2xT x + 2xTMx

and so

λn = min
x∈Rn:||x||=1

xTMx

= min
x∈Rn:||x||=1

−xT x +
1

2

∑
i,j

Mi,j(xi + xj)
2

= −1 + min
x∈Rn:||x||=1

1

2

∑
i,j

Mi,j(xi + xj)
2

From which we see that it is always λn ≥ −1, and that if λn = −1 then there must
be a non-zero vector x such that xi = −xj for every edge (i, j) ∈ E. Let i be a vertex
such that xi = a 6= 0, and define the sets A := {j : xj = a}, B := {j : xj = −a}
and R = {j : xj 6= ±a}. The set A ∪ B is disconnected from the rest of the graph,
because otherwise an edge with an endpoint in A ∪ B and an endpoint in R would
give a positive contribution to

∑
i,j Mi,j(xi + xj)

2; furthermore, every edge incident
on a vertex on A must have the other endpoint in B, and vice versa. Thus, A ∪ B
is a connected component, or a collection of connected components, of G which is
bipartite, with the bipartition A,B.
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