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Lecture 11

In which we introduce the Arora-Rao-Vazirani relaxation of sparsest cut, and discuss
why it is solvable in polynomial time.

1 The Arora-Rao-Vazirani Relaxation

Recall that the sparsest cut φ(G) of a graph G = (V,E) with adjacency matrix A is
defined as

φ(G) = min
S⊆V

1
2|E|
∑

u,v Au,v|1S(u)− 1S(v)|
1
|V |2
∑

u,v |1S(u)− 1S(v)|

and the Leighton-Rao relaxation is obtained by noting that if we define d(u, v) :=
|1S(u)− 1S(v)| then d(·, ·) is a semimetric over V , so that the following quantity is a
relaxation of φ(G):

LR(G) = min
d : V × V → R
d semimetric

1
2|E|
∑

u,v Au,vd(u, v)
1
|V |2
∑

u,v d(u, v)

If G is d-regular, and we call M := 1
d
· A the normalized adjacency matrix of A, and

we let λ1 = 1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of M with multiplicities, then we
proved in a past lecture that

1− λ2 = min
x:V→R

1
2|E|
∑

u,v Au,v|x(u)− x(v)|2
1
|V |2
∑

u,v |x(u)− x(v)|2
(1)

which is also a relaxation of φ(G), because, for every S, every u and every v, |1S(u)−
1S(v)| = |1S(u)− 1S(v)|2.
We note that if we further relax (1) by allowing V to be mapped into a higher
dimension space Rm instead of R, and we replace | · − · | by || · − · ||2, the optimum
remains the same.
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Fact 1

1− λ2 = min
m,x:V→Rm

1
2|E|
∑

u,v Au,v||x(u)− x(v)||2
1
|V |2
∑

u,v ||x(u)− x(v)||2

Proof: For a mapping x : V → Rm, define

δ(x) :=

1
2|E|
∑

u,v Au,v||x(u)− x(v)||2
1
|V |2
∑

u,v ||x(u)− x(v)||2

It is enough to show that, for every x, 1−λ2 ≤ δ(x). Let xi(v) be the i-th coordinate
of x(v). Then

δ(x) =

1
2|E|
∑

i

∑
u,v Au,v|xi(u)− xi(v)|2

1
|V |2
∑

i

∑
u,v |xi(u)− xi(v)|2

≥ min
i

1
2|E|
∑

u,v Au,v|xi(u)− xi(v)|2
1
|V |2
∑

u,v |xi(u)− xi(v)|2

≥ 1− λ2

where the second-to-last inequality follows from the fact, which we have already used
before, that for nonnegative a1, . . . , am and positive b1, . . . , bm we have

a1 + · · · am

b1 + · · ·+ bm
≥ min

i

ai

bi

�

The above observations give the following comparison between the Leighton-Rao re-
laxation and the spectral relaxation: both are obtained by replacing |1S(u) − 1S(v)|
with a “distance function” d(u, v); in the Leighton-Rao relaxation, d(u, v) is con-
strained to satisfy the triangle inequality; in the spectral relaxation, d(u, v) is con-
strained to be the square of the Euclidean distance between x(u) and x(v) for some
mapping x : V → Rm.

The Arora-Rao-Vazirani relaxation is obtained by enforcing both conditions, that is,
by considering distance functions d(u, v) that satisfy the triangle inequality and can
be realized of ||x(u)− x(v)||2 for some mapping x : V → Rm.

Definition 2 A semimetric d : V → V → R is called of negative type if there is a
dimension m and a mapping x : V → Rm such that d(u, v) = ||x(u) − x(v)||2 for
every u, v ∈ V .
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With the above definition, we can formulate the Arora-Rao-Vazirani relaxation as

ARV (G) := min
d : V × V → R

d semimetric of negative type

1
2|E|
∑

u,v Au,vd(u, v)
1
|V |2
∑

u,v d(u, v)
(2)

Remark 3 The relaxation (2) was first proposed by Goemans and Linial. Arora,
Rao and Vazirani were the first to prove that it achieves an approximation guarantee
which is better than the approximation guarantee of the Leighton-Rao relaxation.

We have, by definition,

φ(G) ≤ ARV (G) ≤ min{LR(G), 1− λ2(G)}

and so the approximation results that we have proved for 1 − λ2 and LR apply to
ARV . For every graph G = (V,E)

ARV (G) ≤ O(log |V |) · φ(G)

and for every regular graph

ARV (G) ≤
√

8 · φ(G)

Interestingly, the examples that we have given of graphs for which LR and 1 −
λ2 give poor approximation are complementary. If G is a cycle, then 1 − λ2 is a
poor approximation of φ(G), but LR(G) is a good approximation of φ(G); if G is a
constant-degree expander then LR(G) is a poor approximation of φ(G), but 1 − λ2

is a good approximation.

When Goemans and Linial (separately) proposed to study the relaxation (2), they
conjectured that it would always provide a constant-factor approximation of φ(G).
Unfortunately, the conjecture turned out to be false, but Arora, Rao and Vazirani
were able to prove that (2) does provide a strictly better approximation than the
Leighton-Rao relaxation. In the next lectures, we will present parts of the proof of
the following results.

Theorem 4 There is a universal constant c such that, for every graph G = (V,E),

ARV (G) ≤ c ·
√

log |V | · φ(G)

Theorem 5 There is an absolute constant c and an infinite family of graphs Gn =
(Vn, En) such that

ARV (G) ≥ c · log log |Vn| · φ(G)
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In the rest of this lecture we discuss the polynomial time solvability of (2).

2 The Ellipsoid Algorithm and Semidefinite Pro-

gramming

Definition 6 If C ⊆ Rm is a set, then a separation oracle for C is a procedure that,
on input x ∈ Rm,

• If x ∈ C, outputs “yes”

• If x 6∈ C, outputs coefficients a1, . . . , am, b such that∑
i

xiai < b

but, for every z ∈ C, ∑
i

ziai ≥ b

Note that a set can have a separation oracle only if it is convex. Under certain
additional mild conditions, if C has a polynomial time computable separation oracle,
then the optimization problem

minimize
∑

i cT x
subject to

Ax ≥ b
x ∈ C

is solvable in polynomial time using the Ellipsoid Algorithm.

It remains to see how to put the Arora-Rao-Vazirani relaxation into the above form.

Recall that a matrix X ∈ Rn×n is positive semidefinite if all its eigenvalues are nonneg-
ative. We will use the set of all n×n positive semidefinite matrices as our set C (think-
ing of them as n2-dimensional vectors). If we think of two matrices M,M ′ ∈ Rn×n as
n2-dimensional vectors, then their “inner product” is

M •M ′ :=
∑
i,j

Mi,j ·M ′
i,j

Lemma 7 The set of n × n positive semidefinite matrices has a separation oracle
computable in time polynomial in n.
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Proof: Given a symmetric matrix X, its smallest eigenvalue is

min
z∈Rn, ||z||=1

zTXz

the vector achieving the minimum is a corresponding eigenvector, and both the small-
est eigenvalue and the corresponding eigenvector can be computed in polynomial time.

If we find that the smallest eigenvalue of X is non-negative, then we answer “yes.”
Otherwise, if z is an eigenvector of the smallest eigenvalue we output the matrix
A = zT z. We see that we have

A •X = zTXz < 0

but that, for every positive semidefinite matrix M , we have

A •M = zTMz ≥ 0

�

This implies that any optimization problem of the following form can be solved in
polynomial time

minimize C •X
subject to

A1 •X ≥ b1
· · ·
Am •X ≥ bm
X � 0

(3)

where C,A1, . . . , Am are square matrices of coefficients, b1, . . . , bm are scalars, and X
is a square matrix of variables. An optimization problem like the one above is called
a semidefinite program.

It remains to see how to cast the Arora-Rao-Vazirani relaxation as a semidefinite
program.

Lemma 8 For a symmetric matrix M ∈ Rn×n, the following properties are equiva-
lent:

1. M is positive semidefinite;

2. there are vectors x1, . . . ,xn ∈ Rd such that, for all i, j, Mi,j = 〈xi,xj〉;

3. for every vector z ∈ Rn, zTMz ≥ 0
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Proof: That (1) and (3) are equivalent follows from the characterization of the
smallest eigenvalue of M as the minimum of zTMz over all unit vectors z.

To see that (2) ⇒ (3), suppose that vectors x1, . . . ,xn exist as asserted in (2), take
any vector z, and see that

zTMz =
∑
i,j

z(i)Mi,jz(j)

=
∑
i,j,k

z(i)xi(k)xj(k)z(j) =
∑

k

(∑
i

z(i)xi(k)

)2

≥ 0

Finally, to see that (1) ⇒ (2), let λ1, . . . , λn be the eigenvalues of M with multiplici-
ties, and let v1, . . . ,vn be a corresponding orthonormal set of eigenvectors. Then

M =
∑

i

λkvkv
T
k

that is,

Mi,j =
∑

k

λkvk(i)vk(j) = 〈xi,xj〉

if we define x1, . . . ,xn as the vectors such that xi(k) :=
√
λkvk(i). �

This means that the generic semidefinite program (4) can be rewritten as an opti-
mization problem in which the variables are the vectors x1, . . . ,xn as in part (2) of
the above lemma.

minimize
∑

i,j Ci,j〈xi,xj〉
subject to ∑

i,j A
1
i,j〈xi,xj〉 ≥ b1

· · ·∑
i,j A

m
i,j〈xi,xj〉 ≥ bm

xi ∈ Rd ∀i ∈ {1, . . . , n}

(4)

where the dimension d is itself a variable (although one could fix it, without loss of
generality, to be equal to n). In this view, a semidefinite program is an optimization
problem in which we wish to select n vectors such that their pairwise inner products
satisfy certain linear inequalities, while optimizing a cost function that is linear in
their pairwise inner product.

The square of the Euclidean distance between two vectors is a linear function of inner
products
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||x− y||2 = 〈x− y,x− y〉 = 〈x,x〉 − 2〈x,y〉+ 〈y,y〉

and so, in a semidefinite program, we can include expressions that are linear in the
pairwise squared distances (or squared norms) of the vectors. The ARV relaxation
can be written as follows

minimize
∑

u,v Au,v||xu − xv||2
subject to ∑

u,v ||xu − xv||2 = |V |2
2|E|

||xu − xv||2 ≤ ||xu − xw||2 + ||xw − xv||2 ∀u, v, w ∈ V
xu ∈ Rd ∀u ∈ V

and so it is a semidefinite program, and it can be solved in polynomial time.

Remark 9 Our discussion of polynomial time solvability glossed over important is-
sues about numerical precision. To run the Ellipsoid Algorithm one needs, besides
the separation oracle, to be given a ball that is entirely contained in the set of feasible
solutions and a ball that entirely contains the set of feasible solutions, and the run-
ning time of the algorithm is polynomial in the size of the input, polylogarithmic in
the ratio of the volumes of the two balls, and polylogarithmic in the desired amount
of precision. At the end, one doesn’t get an optimal solution, which might not have
a finite-precision exact representation, but an approximation within the desired pre-
cision. The algorithm is able to tolerate a bounded amount of imprecision in the
separation oracle, which is an important feature because we do not have exact algo-
rithms to compute eigenvalues and eigenvectors (the entries in the eigenvector might
not have a finite-precision representation).

The Ellipsoid algorithm is typically not a practical algorithm. Algorithms based on
the interior point method have been adapted to semidefinite programming, and run
both in worst-case polynomial time and in reasonable time in practice.

Arora and Kale have developed an Õ((|V |+ |E|)2/εO(1)) time algorithm to solve the
ARV relaxation within a multiplicative error (1 + ε). The dependency on the error is
worse than that of generic algorithms, which achieve polylogarithmic dependency, but
this is not a problem in this application, because we are going to lose an O(

√
log |V |)

factor in the rounding, so an extra constant factor coming from an approximate
solution of the relaxation is a low-order consideration.
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