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Lecture 14

In which we begin to discuss the Arora-Rao-Vazirani rounding procedure.

Recall that, in a graph G = (V, E') with adjacency matrix A, then ARV relaxation of
the sparsest cut problem is the following semidefinite program.

minimize ﬁ D A Xy — X2
subject to
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If we denote by ARV (G) the optimum of the relaxation, then we claimed that

ARV (G) < ¢(G) < O(y/1og |V]) - ARV (G)

where the first inequality follows from the fact that ARV (G) is a relaxation of ¢(G),
and the second inequality is the result whose proof we begin to discuss today.

1 Rounding the Arora-Rao-Vazirani Relaxation

Given the equivalence between the sparsest cut problem and the “/; relaxation” of
sparsest cut, it will be enough to prove the following result.

Theorem 1 (Rounding of ARV) Let G be a graph, A its adjacency matriz, and
{Xy }vev be a feasible solution to the ARV relaxation.

Then there is a mapping f : V — R such that
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As in the rounding of the Leighton-Rao relaxation via Bourgain’s theorem, we will
identify a set S C V, and define

fs(v) == min [jx; —x, || (1)

Recall that, as we saw in the proof of Bourgain’s embedding theorem, no matter how
we choose the set S we have

[fs(u) = fs(v)] < |l — x| (2)
where we are not using any facts about ||- —-||? other than the fact that, for solutions
of the ARV relaxation, it is a distance function that obeys the triangle inequality.

This means that, in order to prove the theorem, we just have to find a set S C V
such that

Z|fs s(v)] = E:HXu—XvH2 (3)

and this is a considerable simplification because the above expression is completely
independent of the graph! The remaining problem is purely one about geometry.

Recall that if we have a set of vectors {x,},cv such that the distance function
d(u,v) = ||x, — x,||? satisfies the triangle inequality, then we say that d(-,-) is a
(semi-)metric of negative type.

After these preliminaries observations, our goal is to prove the following theorem.

Theorem 2 (Rounding of ARV — Revisited) If d(-,-) is a semimetric of nega-
tive type over a set 'V, then there is a set S such that if we define

fs(v) := min{d(s,v)}

seS

we have

1
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Furthermore, the set S can be found in randomized polynomial time with high proba-
bility given a set of vector {X, fvey such that d(u,v) = ||x, — X,|[*.

Since the statement is scale-invariant, we can restrict ourselves, with no loss of gen-
erality, to the case Y d(u,v) = |V|>.



Remark 3 Let us discuss some intuition before continuing with the proof.

As our experience proving Bourgain's embedding theorem shows us, it is rather difficult
to pick sets such that |fs(u) — fs(v)| is not much smaller than d(u,v). Here we have
a somewhat simpler case to solve because we are not trying to preserve all distances,
but only the average pairwise distance. A simple observation is that if we find a set S
which contains Q(|V|) elements and such that ©(|V|) elements of V' are at distance €2(6)
from S, then we immediately get 3 |fs(u) — fs(v)| > Q(3|V']?), because there will be
Q(|V]?) pairs u, v such that fs(u) = 0 and fs(v) > 4. In particular, if we could find such
a set with § = 1/0O(4/log |V'|) then we would be done. Unfortunately this is too much to
ask for in general, because we always have |fs(u) — fs(v)| < d(u,v), which means that
if we want 7 | fs(u) — fs(v)| to have Q(V?) noticeably large terms we must also have
that d(u,v) is noticeably large for Q(|V'|?) pairs of points, which is not always true.

There is, however, the following argument, which goes back to Leighton and Rao: either
there are Q(|V|) points concentrated in a ball whose radius is a quarter (say) of the
average pairwise distance, and then we can use that ball to get an ¢; mapping with only
constant error; or there are Q(|V|) points in a ball of radius twice the average pairwise
distance, such that the pairwise distances of the points in the ball account for a constant
fraction of all pairwise distances. In particular, the sum of pairwise distances includes
Q(|V']?) terms which are Q(1).

After we do this reduction and some scaling, we are left with the task of proving the
following theorem: suppose we are given an n-point negative type metric in which the
points are contained in a ball of radius 1 and are such that the sum of pairwise distances
is Q(n?); then there is a subset S of size 2(n) such that there are Q(n) points whose
distance from the set is 1/O(y/logn). This theorem is the main result of the Arora-Rao-
Vazirani paper. (Strictly speaking, this form of the theorem was proved later by Lee —
Arora, Rao and Vazirani had a slightly weaker formulation.)

We begin by considering the case in which a constant fraction of the points are
concentrated in a small ball.

Definition 4 (Ball) For a point z € V' and a radius r > 0, the ball of radius r and
center z is the set

B(z,r) :={v:d(z,v) <r}

Lemma 5 For every vertex z, if we define S := B(z,1/4), then
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PROOF: Our first calculation is to show that the typical value of fg(u) is rather large.
We note that for every two vertices u and v, if we call a a closest vertex in S to wu,
and b a closest vertex to v in S, we have

d(u,v) < d(u,a) +d(a,z)+ d(z,b) + d(b,v)
< fs(u) + fs(v) + 5

and so
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Now we can get a lower bound to the sum of ¢; distances given by the embedding

fs(:).
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This means that if there is a vertex z such that |B(z,1/4)] = Q(|V]), or even

|B(z,1/4)| = Q(|V|/y/log |V|), then we are done.

Otherwise, we will find a set of Q(|V]) vertices such that their average pairwise dis-
tances are within a constant factor of their maximum pairwise distances, and then we
will work on finding an embedding for such a set of points. (The condition that the
average distance is a constant fraction of the maximal distance will be very helpful
in subsequent calculations.)

Lemma 6 Suppose that for every vertexr z we have |B(z,1/4)| < |V|/4. Then there
is a vertexr w such that, if we set S = B(w,2), we have
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o S| =3[Vl
hd Zu,UES d(u7v) Z %'SP

PROOF: Let w be a vertex that maximizes | B(w, 2)|; then |B(w, 2)| > |V|/2, because
if we had |B(u,2)| < |V|/2 for every vertex u, then we would have

> d(u,v) > "2 (V= B(w,2)]) > [V

Regarding the sum of pairwise distances of elements of S, we have

Z d(u,v) > ZiﬂS—B(u, 1/4)) > 19| - % . |_§|

u,veS u€es
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The proof of the main theorem now reduces to proving the following geometric fact.

Theorem 7 Let d be a negative-type metric over a set V such that the points are
contained in a unit ball and have constant average distance, that is,

e there is a vertex z such that d(v,z) <1 for everyv € V
hd Zume\/ d(U,U) =>cC: |V|2

Then there are sets S, T C V such that
o |S,IT] > Q(V]);

o for every u € S and every v € S, d(u,v) > 1/0(y/log |V )

where the multiplicative factors hidden in the O(-) and §)(-) notations depend only on
c.
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