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Lecture 14

In which we begin to discuss the Arora-Rao-Vazirani rounding procedure.

Recall that, in a graph G = (V,E) with adjacency matrix A, then ARV relaxation of
the sparsest cut problem is the following semidefinite program.

minimize 1
2|E|

∑
u,v Au,v||xu − xv||2

subject to ∑
u,v ||xu − xv||2 = |V |2

||xu − xv||2 ≤ ||xu − xw||2 + ||xw − xv||2 ∀u, v, w ∈ V
xu ∈ Rd ∀u ∈ V

If we denote by ARV (G) the optimum of the relaxation, then we claimed that

ARV (G) ≤ φ(G) ≤ O(
√

log |V |) · ARV (G)

where the first inequality follows from the fact that ARV (G) is a relaxation of φ(G),
and the second inequality is the result whose proof we begin to discuss today.

1 Rounding the Arora-Rao-Vazirani Relaxation

Given the equivalence between the sparsest cut problem and the “`1 relaxation” of
sparsest cut, it will be enough to prove the following result.

Theorem 1 (Rounding of ARV) Let G be a graph, A its adjacency matrix, and
{xv}v∈V be a feasible solution to the ARV relaxation.

Then there is a mapping f : V → R such that∑
u,v Au,v|f(u)− f(v)|∑

u,v |f(u)− f(v)|
≤ O(

√
log |V |) ·

∑
u,v Au,v||xu − xv||2∑

u,v ||xu − xv||2
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As in the rounding of the Leighton-Rao relaxation via Bourgain’s theorem, we will
identify a set S ⊆ V , and define

fS(v) := min
s∈S
||xs − xv||2 (1)

Recall that, as we saw in the proof of Bourgain’s embedding theorem, no matter how
we choose the set S we have

|fS(u)− fS(v)| ≤ ||xu − xv||2 (2)

where we are not using any facts about || ·−· ||2 other than the fact that, for solutions
of the ARV relaxation, it is a distance function that obeys the triangle inequality.

This means that, in order to prove the theorem, we just have to find a set S ⊆ V
such that

∑
u,v

|fS(u)− fS(v)| ≥ 1

O(
√

log |V |)
·
∑
u,v

||xu − xv||2 (3)

and this is a considerable simplification because the above expression is completely
independent of the graph! The remaining problem is purely one about geometry.

Recall that if we have a set of vectors {xv}v∈V such that the distance function
d(u, v) := ||xu − xv||2 satisfies the triangle inequality, then we say that d(·, ·) is a
(semi-)metric of negative type.

After these preliminaries observations, our goal is to prove the following theorem.

Theorem 2 (Rounding of ARV – Revisited) If d(·, ·) is a semimetric of nega-
tive type over a set V , then there is a set S such that if we define

fS(v) := min
s∈S
{d(s, v)}

we have ∑
u,v

|fS(u)− fS(v)| ≥ 1

O(
√

log |V |)
·
∑
u,v

d(u, v)

Furthermore, the set S can be found in randomized polynomial time with high proba-
bility given a set of vector {xv}v∈V such that d(u, v) = ||xu − xv||2.

Since the statement is scale-invariant, we can restrict ourselves, with no loss of gen-
erality, to the case

∑
u,v d(u, v) = |V |2.
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Remark 3 Let us discuss some intuition before continuing with the proof.

As our experience proving Bourgain’s embedding theorem shows us, it is rather difficult
to pick sets such that |fS(u) − fS(v)| is not much smaller than d(u, v). Here we have
a somewhat simpler case to solve because we are not trying to preserve all distances,
but only the average pairwise distance. A simple observation is that if we find a set S
which contains Ω(|V |) elements and such that Ω(|V |) elements of V are at distance Ω(δ)
from S, then we immediately get

∑
u,v |fS(u)− fS(v)| ≥ Ω(δ|V |2), because there will be

Ω(|V |2) pairs u, v such that fS(u) = 0 and fS(v) ≥ δ. In particular, if we could find such
a set with δ = 1/O(

√
log |V |) then we would be done. Unfortunately this is too much to

ask for in general, because we always have |fS(u)− fS(v)| ≤ d(u, v), which means that
if we want

∑
u,v |fS(u)− fS(v)| to have Ω(V 2) noticeably large terms we must also have

that d(u, v) is noticeably large for Ω(|V |2) pairs of points, which is not always true.

There is, however, the following argument, which goes back to Leighton and Rao: either
there are Ω(|V |) points concentrated in a ball whose radius is a quarter (say) of the
average pairwise distance, and then we can use that ball to get an `1 mapping with only
constant error; or there are Ω(|V |) points in a ball of radius twice the average pairwise
distance, such that the pairwise distances of the points in the ball account for a constant
fraction of all pairwise distances. In particular, the sum of pairwise distances includes
Ω(|V |2) terms which are Ω(1).

After we do this reduction and some scaling, we are left with the task of proving the
following theorem: suppose we are given an n-point negative type metric in which the
points are contained in a ball of radius 1 and are such that the sum of pairwise distances
is Ω(n2); then there is a subset S of size Ω(n) such that there are Ω(n) points whose
distance from the set is 1/O(

√
log n). This theorem is the main result of the Arora-Rao-

Vazirani paper. (Strictly speaking, this form of the theorem was proved later by Lee –
Arora, Rao and Vazirani had a slightly weaker formulation.)

We begin by considering the case in which a constant fraction of the points are
concentrated in a small ball.

Definition 4 (Ball) For a point z ∈ V and a radius r > 0, the ball of radius r and
center z is the set

B(z, r) := {v : d(z, v) ≤ r}

Lemma 5 For every vertex z, if we define S := B(z, 1/4), then

∑
u,v

|fS(u)− fS(v)| ≥ |S|
2|V |

∑
u,v

d(u, v)
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Proof: Our first calculation is to show that the typical value of fS(u) is rather large.
We note that for every two vertices u and v, if we call a a closest vertex in S to u,
and b a closest vertex to v in S, we have

d(u, v) ≤ d(u, a) + d(a, z) + d(z, b) + d(b, v)

≤ fS(u) + fS(v) +
1

2

and so

|V |2 =
∑
u,v

d(u, v) ≤ 2|V | ·
∑

v

fS(v) +
|V |2

2

that is,

∑
v

fS(v) ≥ |V |
2

Now we can get a lower bound to the sum of `1 distances given by the embedding
fS(·).

∑
u,v

|fS(u)− fS(v)|

≥
∑

u∈S,v∈V

|fS(v)|

= |S|
∑

v

fS(v)

≥ 1

2
|S| · |V |

�

This means that if there is a vertex z such that |B(z, 1/4)| = Ω(|V |), or even
|B(z, 1/4)| = Ω(|V |/

√
log |V |), then we are done.

Otherwise, we will find a set of Ω(|V |) vertices such that their average pairwise dis-
tances are within a constant factor of their maximum pairwise distances, and then we
will work on finding an embedding for such a set of points. (The condition that the
average distance is a constant fraction of the maximal distance will be very helpful
in subsequent calculations.)

Lemma 6 Suppose that for every vertex z we have |B(z, 1/4)| ≤ |V |/4. Then there
is a vertex w such that, if we set S = B(w, 2), we have
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• |S| ≥ 1
2
· |V |

•
∑

u,v∈S d(u, v) ≥ 1
8
|S|2

Proof: Let w be a vertex that maximizes |B(w, 2)|; then |B(w, 2)| ≥ |V |/2, because
if we had |B(u, 2)| < |V |/2 for every vertex u, then we would have

∑
u,v

d(u, v) >
∑

u

2 · (|V −B(u, 2)|) > |V |2

Regarding the sum of pairwise distances of elements of S, we have∑
u,v∈S

d(u, v) >
∑
u∈S

1

4
(|S −B(u, 1/4)|) ≥ |S| · 1

4
· |S|

2

�

The proof of the main theorem now reduces to proving the following geometric fact.

Theorem 7 Let d be a negative-type metric over a set V such that the points are
contained in a unit ball and have constant average distance, that is,

• there is a vertex z such that d(v, z) ≤ 1 for every v ∈ V

•
∑

u,v∈V d(u, v) ≥ c · |V |2

Then there are sets S, T ⊆ V such that

• |S|, |T | ≥ Ω(|V |);

• for every u ∈ S and every v ∈ S, d(u, v) ≥ 1/O(
√

log |V |)

where the multiplicative factors hidden in the O(·) and Ω(·) notations depend only on
c.
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