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Lecture 17

In which we define and analyze the zig-zag graph product.

1 Replacement Product and Zig-Zag Product

In the previous lecture, we claimed it is possible to “combine” a d-regular graph on
D vertices and a D-regular graph on N vertices to obtain a d2-regular graph on ND
vertices which is a good expander if the two starting graphs are. Let the two starting
graphs be denoted by H and G respectively. Then, the resulting graph, called the
zig-zag product of the two graphs is denoted by G z©H.

Using λ(G) to denote the eigenvalue with the second-largest absolute value for a
graph G, we claimed that if λ(H) ≤ b and λ(G) ≤ a, then λ(G z©H) ≤ a+ 2b+ b2. In
this lecture we shall describe the construction for the zig-zag product and prove this
claim.

2 Replacement product of two graphs

We first describe a simpler product for a “small” d-regular graph on D vertices (de-
noted by H) and a “large” D-regular graph on N vertices (denoted by G). Assume
that for each vertex of G, there is some ordering on its D neighbors. Then we con-
struct the replacement product (see figure) G r©H as follows:

• Replace each vertex of G with a copy of H (henceforth called a cloud). For
v ∈ V (G), i ∈ V (H), let (v, i) denote the ith vertex in the vth cloud.

• Let (u, v) ∈ E(G) be such that v is the i-th neighbor of u and u is the j-th
neighbor of v. Then ((u, i), (v, j)) ∈ E(G r©H). Also, if (i, j) ∈ E(H), then
∀u ∈ V (G) ((u, i), (u, j)) ∈ E(G r©H).

Note that the replacement product constructed as above has ND vertices and is
(d+ 1)-regular.
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3 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product G z©H is constructed as
follows (see figure):

• The vertex set V (G z©H) is the same as in the case of the replacement product.

• ((u, i), (v, j)) ∈ E(G z©H) if there exist ` and k such that ((u, i)(u, `), ((u, `), (v, k))
and ((v, k), (v, j)) are in E(G r©H) i.e. (v, j) can be reached from (u, i) by tak-
ing a step in the first cloud, then a step between the clouds and then a step in
the second cloud (hence the name!).
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It is easy to see that the zig-zag product is a d2-regular graph on ND vertices.

Let M ∈ R([N ]×[D])×([N ]×[D]) be the normalized adjacency matrix of G z©H. Using the
fact that each edge in G r©H is made up of three steps in G r©H, we can write M as
BAB, where

B[(u, i), (v, j)] =

{
0 if u 6= v
MH [i, j] if u = v

And A[(u, i), (v, j)] = 1 if u is the j-th neighbor of v and v is the i-th neighbor of u,
and A[(u, i), (v, j)] = 0 otherwise.

Note that A is the adjacency matrix for a matching and is hence a permutation
matrix.

4 Preliminaries on Matrix Norms

Recall that, instead of bounding λ2, we will bound the following parameter (thus
proving a stronger result).

Definition 1 Let M be the normalized adjacency matrix of a graph G = (V,E), and
λ1 ≥ . . . ≥ λn be its eigenvalues with multiplicities. Then we use the notation

λ(M) := max
i=2,...,n

{|λi|} = max{λ2,−λn}
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The parameter λ has the following equivalent characterizations.

Fact 2

λ(M) = max
x∈RV −{0},x⊥1

||Mx||
||x||

= max
x∈Rv ,x⊥1,||x||=1

||Mx||

Another equivalent characterization, which will be useful in several contexts, can be
given using the following matrix norm.

Definition 3 (Spectral Norm) The spectral norm of a matrix M ∈ Rn×n is defined
as

||M || = max
x∈RV ,||x||=1

||Mx||

If M is symmetric with eigenvalues λ1, . . . , λn, then the spectral norm is maxi |λi|.
Note that M is indeed a norm, that is, for every two square real matrices A,B we have
||A+B|| ≤ ||A||+ ||B|| and for every matrix A and scalar α we have ||αA|| = α||A||.
In addition, it has the following useful property:

Fact 4 For every two matrices A,B ∈ Rn×n we have

||AB|| ≤ ||A|| · ||B||

Proof: For every vector x we have

||ABx|| ≤ ||A|| · ||Bx|| ≤ ||A|| · ||B|| · ||x||
where the first inequality is due to the fact that ||Az|| ≤ ||A|| · ||z|| for every vector
z, and the second inequality is due to the fact that ||Bx|| ≤ ||B|| · ||x||. So we have

min
x∈Rn,x 6=0

�

We can use the spectral norm to provide another characterization of the parameter
λ(M) of the normalized adjacency matrix of a graph.

Lemma 5 Let G be a regular graph and M ∈ Rn×n be its normalized adjacency
matrix. Then

λ(M) = ||M − 1

n
J ||

where J is the matrix with a 1 in each entry.
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Proof: Let λ1 = 1 ≥ λ2 ≥ · · ·λn be the eigenvalues of M and v1 = 1√
n
1, v2, . . ., vn

a corresponding system of orthonormal eigenvector. Then we can write

M = λ1v1v
T
1 + · · ·+ λnvnvT

n

Noting that v1v
T
1 = 1

n
J , we have

M − 1

n
J = 0 · v1v

T
2 +

n∑
i=2

λiviv
T
i

and so v1, . . . ,vn is also a system of eigenvectors for M − 1
n
J , with corresponding

eigenvalues 0, λ2, . . . , λn, meaning that

||M − 1

n
J || = max{0, λ2, . . . , λn} = λ(M)

�

The above lemma has several applications. It states that, according to a certain
definition of distance, when a graph is a good expander then it is close to a clique.
(The matrix 1

n
J is the normalized adjacency matrix of a clique with self-loops.) The

proof of several results about expanders is based on noticing that the result is trivial
for cliques, and then on “approximating” the given expander by a clique using the
above lemma.

We need one more definition before we can continue with the analysis of the zig-zag
graph product.

Definition 6 (Tensor Product) Let A ∈ RN×N and B ∈ RD×D be two matrices.
Then A ⊗ B ∈ RND×ND is a matrix whose rows and columns are indexed by pairs
(u, i) ∈ [N ]× [D] such that

(A⊗B)(u,i),(v,j) = Au,v ·Bi,j

For example I ⊗M is a block-diagonal matrix in which every block is a copy of M .

5 Analysis of the Zig-Zag Product

Suppose that G and H are identical cliques with self-loops, that is, are both n-regular
graphs with self-loops. Then the zig-zag product of G and H is well-defined, because
the degree of G is equal to the number of vertices of H. The resulting graph G z©H is
a n2-regular graph with n2 vertices, and an inspection of the definitions reveals that
G z©H is indeed a clique (with self-loops) with n2 vertices.
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The intuition for our analysis is that we want to show that the zig-zag graph product
“preserves” distances measured in the matrix norm, and so if G is close (in matrix
norm) to a clique and H is close to a clique, then G z©H is close to the zig-zag product
of two cliques, that is, to a clique. (Strictly speaking, what we just said does not make
sense, because we cannot take the zig-zag product of the clique that G is close to and
of the clique that H is close to, because they do not have the right degree and number
of vertices. The proof, however, follows quite closely this intuition.)

Theorem 7 If λ(MG) = a and λ(MH) = b, then

λ(G z©H) ≤ a+ 2b+ b2

Proof: Let M be the normalized adjacency matrix of G z©H, and let x be a unit
vector such that x ⊥ 1 and

λ(M) = ||Mx||

Recall that we defined a decomposition

M = BAB

where A is a permutation matrix, and B = I ⊗MH . Let us write E := MH − 1
D
J ,

then B = I ⊗ 1
D
J + I ⊗ E. Let us call J̄ := I ⊗ 1

D
J and Ē := I ⊗ E.

First, we argue that the matrix norm of Ē is small. Take any vector z ∈ RND

and write is as z = (z1, . . . , zN), where, for each u ∈ [N ], zu is the D-dimensional
restriction of z to the coordinates in the cloud of u. Then

||(I ⊗ E)z||2 =
∑

u

||Ezu||2 ≤
∑

u

||E||2 · ||zu||2 = ||E||2 · ||z||2

and so we have
||I ⊗ E|| ≤ ||E|| ≤ b

Then we have

BAB = (J̄ + Ē)A(J̄ + Ē)

= J̄AJ̄ + J̄AĒ + ĒAJ̄ + ĒAĀ

and so, using the triangle inequality and the property of the matrix norm, we have

||BABx|| ≤ ||J̄AJ̄x||+ ||ĒAJ̄ ||+ ||J̄AĒ||+ ||ĒAĒ||

where
||ĒAJ̄ || ≤ ||Ē|| · ||A|| · ||J̄ || ≤ ||Ē|| ≤ b
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||J̄AĒ|| ≤ ||J̄ || · ||A|| · ||Ē|| ≤ ||Ē|| ≤ b

||ĒAĒ|| ≤ ||Ē|| · ||A|| · ||Ē|| ≤ ||Ē||2 ≤ b2

It remains to prove that ||J̄AJ̄x|| ≤ a. If we let AG = DMG be the adjacency matrix
of G, then we can see that

(J̄AJ̄)(u,i),(v,j) =
1

D2
(AG)u,v =

1

D
(MG)u,v = (MG ⊗

1

D
J)(u,i),(v,j)

That is,

J̄AJ̄ = MG ⊗
1

D
J

Finally, we write x = (x1, . . . ,xN), where xu is the D-dimensional vector of entries
corresponding to the cloud of u, we call yu :=

∑
i xu(i)/D, and we note that, by

Cauchy-Schwarz:

||y||2 =
∑

u

(∑
i

1

D
xu,i

)2

≤
∑

u

(∑
i

1

D

2
)
·

(∑
i

x2
u,i

)
=

1

D
||x||2

The final calculation is:

||J̄AJ̄x||2 =

∣∣∣∣|(MG ⊗
1

D
J

)
x

∣∣∣∣ |2
=
∑
u,i

(∑
v,j

1

D
(MG)u,vxu,i

)2

=
∑
u,i

(∑
v

(MG)u,vyu

)2

= D ·
∑

u

(∑
v

(MG)u,vyu

)2

= D · ||MGy||2

≤ D · a2 · ||y||2

≤ a2 · ||x2||2

�
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