Lecture 17

In which we define and analyze the zig-zag graph product.

1 Replacement Product and Zig-Zag Product

In the previous lecture, we claimed it is possible to "combine" a d-regular graph on D vertices and a D-regular graph on N vertices to obtain a d^{2}-regular graph on $N D$ vertices which is a good expander if the two starting graphs are. Let the two starting graphs be denoted by H and G respectively. Then, the resulting graph, called the zig-zag product of the two graphs is denoted by $G(2) H$.
Using $\lambda(G)$ to denote the eigenvalue with the second-largest absolute value for a graph G, we claimed that if $\lambda(H) \leq b$ and $\lambda(G) \leq a$, then $\lambda(G(2) H) \leq a+2 b+b^{2}$. In this lecture we shall describe the construction for the zig-zag product and prove this claim.

2 Replacement product of two graphs

We first describe a simpler product for a "small" d-regular graph on D vertices (denoted by H) and a "large" D-regular graph on N vertices (denoted by G). Assume that for each vertex of G, there is some ordering on its D neighbors. Then we construct the replacement product (see figure) $G \odot H$ as follows:

- Replace each vertex of G with a copy of H (henceforth called a cloud). For $v \in V(G), i \in V(H)$, let (v, i) denote the $i^{\text {th }}$ vertex in the $v^{t h}$ cloud.
- Let $(u, v) \in E(G)$ be such that v is the i-th neighbor of u and u is the j-th neighbor of v. Then $((u, i),(v, j)) \in E(G \lessdot H)$. Also, if $(i, j) \in E(H)$, then $\forall u \in V(G)((u, i),(u, j)) \in E(G\ulcorner H)$.

Note that the replacement product constructed as above has $N D$ vertices and is $(d+1)$-regular.

3 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product $G(2) H$ is constructed as follows (see figure):

- The vertex set $V(G(2) H)$ is the same as in the case of the replacement product.
- $((u, i),(v, j)) \in E(G(Z) H)$ if there exist ℓ and k such that $((u, i)(u, \ell),((u, \ell),(v, k))$ and $((v, k),(v, j))$ are in $E(G ® H)$ i.e. (v, j) can be reached from (u, i) by taking a step in the first cloud, then a step between the clouds and then a step in the second cloud (hence the name!).

It is easy to see that the zig-zag product is a d^{2}-regular graph on $N D$ vertices.
Let $M \in \mathbb{R}^{([N] \times[D]) \times([N] \times[D])}$ be the normalized adjacency matrix of $G(2) H$. Using the fact that each edge in $G \odot H$ is made up of three steps in $G ® H$, we can write M as $B A B$, where

$$
B[(u, i),(v, j)]= \begin{cases}0 & \text { if } u \neq v \\ M_{H}[i, j] & \text { if } u=v\end{cases}
$$

And $A[(u, i),(v, j)]=1$ if u is the j-th neighbor of v and v is the i-th neighbor of u, and $A[(u, i),(v, j)]=0$ otherwise.
Note that A is the adjacency matrix for a matching and is hence a permutation matrix.

4 Preliminaries on Matrix Norms

Recall that, instead of bounding λ_{2}, we will bound the following parameter (thus proving a stronger result).

Definition 1 Let M be the normalized adjacency matrix of a graph $G=(V, E)$, and $\lambda_{1} \geq \ldots \geq \lambda_{n}$ be its eigenvalues with multiplicities. Then we use the notation

$$
\lambda(M):=\max _{i=2, \ldots, n}\left\{\left|\lambda_{i}\right|\right\}=\max \left\{\lambda_{2},-\lambda_{n}\right\}
$$

The parameter λ has the following equivalent characterizations.
Fact 2

$$
\lambda(M)=\max _{\mathbf{x} \in \mathbb{R}^{V}-\{\mathbf{0}\}, \mathbf{x} \perp \mathbf{1}} \frac{\|M x\|}{\|x\|}=\max _{\mathbf{x} \in \mathbb{R}^{v}, \mathbf{x} \perp \mathbf{1},\|\mathbf{x}\|=1}\|M x\|
$$

Another equivalent characterization, which will be useful in several contexts, can be given using the following matrix norm.

Definition 3 (Spectral Norm) The spectral norm of a matrix $M \in \mathbb{R}^{n \times n}$ is defined as

$$
\|M\|=\max _{\mathbf{x} \in \mathbb{R}^{V},\|\mathbf{x}\|=1}\|M x\|
$$

If M is symmetric with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$, then the spectral norm is $\max _{i}\left|\lambda_{i}\right|$. Note that M is indeed a norm, that is, for every two square real matrices A, B we have $\|A+B\| \leq\|A\|+\|B\|$ and for every matrix A and scalar α we have $\|\alpha A\|=\alpha\|A\|$. In addition, it has the following useful property:

Fact 4 For every two matrices $A, B \in \mathbb{R}^{n \times n}$ we have

$$
\|A B\| \leq\|A\| \cdot\|B\|
$$

Proof: For every vector x we have

$$
\|A B \mathbf{x}\| \leq\|A\| \cdot\|B \mathbf{x}\| \leq\|A\| \cdot\|B\| \cdot\|\mathbf{x}\|
$$

where the first inequality is due to the fact that $\|A z\| \leq\|A\| \cdot\|\mathbf{z}\|$ for every vector \mathbf{z}, and the second inequality is due to the fact that $\|B \mathbf{x}\| \leq\|B\| \cdot\|\mathbf{x}\|$. So we have

$$
\min _{x \in \mathbb{R}^{n}, \mathbf{x} \neq \mathbf{0}}
$$

We can use the spectral norm to provide another characterization of the parameter $\lambda(M)$ of the normalized adjacency matrix of a graph.

Lemma 5 Let G be a regular graph and $M \in \mathbb{R}^{n \times n}$ be its normalized adjacency matrix. Then

$$
\lambda(M)=\left\|M-\frac{1}{n} J\right\|
$$

where J is the matrix with a 1 in each entry.

Proof: Let $\lambda_{1}=1 \geq \lambda_{2} \geq \cdots \lambda_{n}$ be the eigenvalues of M and $\mathbf{v}_{1}=\frac{1}{\sqrt{n}} \mathbf{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ a corresponding system of orthonormal eigenvector. Then we can write

$$
M=\lambda_{1} \mathbf{v}_{1} \mathbf{v}_{1}^{T}+\cdots+\lambda_{n} \mathbf{v}_{n} \mathbf{v}_{n}^{T}
$$

Noting that $\mathbf{v}_{1} \mathbf{v}_{1}^{T}=\frac{1}{n} J$, we have

$$
M-\frac{1}{n} J=0 \cdot \mathbf{v}_{1} \mathbf{v}_{2}^{T}+\sum_{i=2}^{n} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{T}
$$

and so $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ is also a system of eigenvectors for $M-\frac{1}{n} J$, with corresponding eigenvalues $0, \lambda_{2}, \ldots, \lambda_{n}$, meaning that

$$
\left\|M-\frac{1}{n} J\right\|=\max \left\{0, \lambda_{2}, \ldots, \lambda_{n}\right\}=\lambda(M)
$$

The above lemma has several applications. It states that, according to a certain definition of distance, when a graph is a good expander then it is close to a clique. (The matrix $\frac{1}{n} J$ is the normalized adjacency matrix of a clique with self-loops.) The proof of several results about expanders is based on noticing that the result is trivial for cliques, and then on "approximating" the given expander by a clique using the above lemma.
We need one more definition before we can continue with the analysis of the zig-zag graph product.

Definition 6 (Tensor Product) Let $A \in \mathbb{R}^{N \times N}$ and $B \in \mathbb{R}^{D \times D}$ be two matrices. Then $A \otimes B \in \mathbb{R}^{N D \times N D}$ is a matrix whose rows and columns are indexed by pairs $(u, i) \in[N] \times[D]$ such that

$$
(A \otimes B)_{(u, i),(v, j)}=A_{u, v} \cdot B_{i, j}
$$

For example $I \otimes M$ is a block-diagonal matrix in which every block is a copy of M.

5 Analysis of the Zig-Zag Product

Suppose that G and H are identical cliques with self-loops, that is, are both n-regular graphs with self-loops. Then the zig-zag product of G and H is well-defined, because the degree of G is equal to the number of vertices of H. The resulting graph $G(2) H$ is a n^{2}-regular graph with n^{2} vertices, and an inspection of the definitions reveals that $G(2) H$ is indeed a clique (with self-loops) with n^{2} vertices.

The intuition for our analysis is that we want to show that the zig-zag graph product "preserves" distances measured in the matrix norm, and so if G is close (in matrix norm) to a clique and H is close to a clique, then $G(2) H$ is close to the zig-zag product of two cliques, that is, to a clique. (Strictly speaking, what we just said does not make sense, because we cannot take the zig-zag product of the clique that G is close to and of the clique that H is close to, because they do not have the right degree and number of vertices. The proof, however, follows quite closely this intuition.)

Theorem 7 If $\lambda\left(M_{G}\right)=a$ and $\lambda\left(M_{H}\right)=b$, then

$$
\lambda(G(2) H) \leq a+2 b+b^{2}
$$

Proof: Let M be the normalized adjacency matrix of $G(2) H$, and let \mathbf{x} be a unit vector such that $\mathbf{x} \perp \mathbf{1}$ and

$$
\lambda(M)=\|M \mathbf{x}\|
$$

Recall that we defined a decomposition

$$
M=B A B
$$

where A is a permutation matrix, and $B=I \otimes M_{H}$. Let us write $E:=M_{H}-\frac{1}{D} J$, then $B=I \otimes \frac{1}{D} J+I \otimes E$. Let us call $\bar{J}:=I \otimes \frac{1}{D} J$ and $\bar{E}:=I \otimes E$.
First, we argue that the matrix norm of \bar{E} is small. Take any vector $\mathbf{z} \in \mathbb{R}^{N D}$ and write is as $\mathbf{z}=\left(\mathbf{z}_{1}, \ldots, \mathbf{z}_{N}\right)$, where, for each $u \in[N], \mathbf{z}_{u}$ is the D-dimensional restriction of \mathbf{z} to the coordinates in the cloud of u. Then

$$
\|(I \otimes E) \mathbf{z}\|^{2}=\sum_{u}\left\|E \mathbf{z}_{u}\right\|^{2} \leq \sum_{u}\|E\|^{2} \cdot\left\|\mathbf{z}_{u}\right\|^{2}=\|E\|^{2} \cdot\|\mathbf{z}\|^{2}
$$

and so we have

$$
\|I \otimes E\| \leq\|E\| \leq b
$$

Then we have

$$
\begin{aligned}
& B A B=(\bar{J}+\bar{E}) A(\bar{J}+\bar{E}) \\
= & \bar{J} A \bar{J}+\bar{J} A \bar{E}+\bar{E} A \bar{J}+\bar{E} A \bar{A}
\end{aligned}
$$

and so, using the triangle inequality and the property of the matrix norm, we have

$$
\|B A B \mathbf{x}\| \leq\|\bar{J} A \bar{J} \mathbf{x}\|+\|\bar{E} A \bar{J}\|+\|\bar{J} A \bar{E}\|+\|\bar{E} A \bar{E}\|
$$

where

$$
\|\bar{E} A \bar{J}\| \leq\|\bar{E}\| \cdot\|A\| \cdot\|\bar{J}\| \leq\|\bar{E}\| \leq b
$$

$$
\begin{gathered}
\|\bar{J} A \bar{E}\| \leq\|\bar{J}\| \cdot\|A\| \cdot\|\bar{E}\| \leq\|\bar{E}\| \leq b \\
\|\bar{E} A \bar{E}\| \leq\|\bar{E}\| \cdot\|A\| \cdot\|\bar{E}\| \leq\|\bar{E}\|^{2} \leq b^{2}
\end{gathered}
$$

It remains to prove that $\|\bar{J} A \bar{J} \mathbf{x}\| \leq a$. If we let $A_{G}=D M_{G}$ be the adjacency matrix of G, then we can see that

$$
(\bar{J} A \bar{J})_{(u, i),(v, j)}=\frac{1}{D^{2}}\left(A_{G}\right)_{u, v}=\frac{1}{D}\left(M_{G}\right)_{u, v}=\left(M_{G} \otimes \frac{1}{D} J\right)_{(u, i),(v, j)}
$$

That is,

$$
\bar{J} A \bar{J}=M_{G} \otimes \frac{1}{D} J
$$

Finally, we write $\mathbf{x}=\left(\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right)$, where \mathbf{x}_{u} is the D-dimensional vector of entries corresponding to the cloud of u, we call $y_{u}:=\sum_{i} \mathbf{x}_{u}(i) / D$, and we note that, by Cauchy-Schwarz:

$$
\|\mathbf{y}\|^{2}=\sum_{u}\left(\sum_{i} \frac{1}{D} \mathbf{x}_{u, i}\right)^{2} \leq \sum_{u}\left(\sum_{i} \frac{1}{D}^{2}\right) \cdot\left(\sum_{i} \mathbf{x}_{u, i}^{2}\right)=\frac{1}{D}\|\mathbf{x}\|^{2}
$$

The final calculation is:

$$
\begin{gathered}
\|\bar{J} A \bar{J} \mathbf{x}\|^{2}=\left|\left|\left(M_{G} \otimes \frac{1}{D} J\right) \mathbf{x}\right|\right|^{2} \\
=\sum_{u, i}\left(\sum_{v, j} \frac{1}{D}\left(M_{G}\right)_{u, v} \mathbf{x}_{u, i}\right)^{2} \\
=\sum_{u, i}\left(\sum_{v}\left(M_{G}\right)_{u, v} y_{u}\right)^{2} \\
=D \cdot \sum_{u}\left(\sum_{v}\left(M_{G}\right)_{u, v} y_{u}\right)^{2} \\
=D \cdot\left\|M_{G} \mathbf{y}\right\|^{2} \\
\leq D \cdot a^{2} \cdot\|\mathbf{y}\|^{2} \\
\leq a^{2} \cdot\left\|\mathbf{x}^{2}\right\|^{2}
\end{gathered}
$$

