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Lecture 17

In which we define and analyze the zig-zag graph product.

1 Replacement Product and Zig-Zag Product

In the previous lecture, we claimed it is possible to “combine” a d-regular graph on
D vertices and a D-regular graph on N vertices to obtain a d?-regular graph on N D
vertices which is a good expander if the two starting graphs are. Let the two starting
graphs be denoted by H and G respectively. Then, the resulting graph, called the
zig-zag product of the two graphs is denoted by G@)H.

Using A(G) to denote the eigenvalue with the second-largest absolute value for a
graph G, we claimed that if \(H) < b and A(G) < a, then A\(G@H) < a+2b+b?. In
this lecture we shall describe the construction for the zig-zag product and prove this
claim.

2 Replacement product of two graphs

We first describe a simpler product for a “small” d-regular graph on D vertices (de-
noted by H) and a “large” D-regular graph on N vertices (denoted by G). Assume
that for each vertex of GG, there is some ordering on its D neighbors. Then we con-
struct the replacement product (see figure) G@H as follows:

e Replace each vertex of G with a copy of H (henceforth called a cloud). For
v € V(G),i € V(H), let (v,i) denote the i*" vertex in the v cloud.

e Let (u,v) € E(G) be such that v is the i-th neighbor of v and u is the j-th
neighbor of v. Then ((u,?),(v,j)) € E(G@®H). Also, if (i,j) € E(H), then
Vu € V(G) (1), (u, ) € E(GOH).

Note that the replacement product constructed as above has ND vertices and is
(d 4 1)-regular.
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3 Zig-zag product of two graphs

Given two graphs G and H as above, the zig-zag product G@H is constructed as
follows (see figure):

o The vertex set V(G®@H ) is the same as in the case of the replacement product.

o ((u,1),(v,7)) € E(G@H) if there exist £ and k such that ((u,)(u, ), ((u, ), (v,k))
and ((v, k), (v,j)) are in E(G@H) i.e. (v,j) can be reached from (u,i) by tak-
ing a step in the first cloud, then a step between the clouds and then a step in
the second cloud (hence the name!).
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It is easy to see that the zig-zag product is a d?-regular graph on N D vertices.

Let M € RUNIXIPDX(INIX[P]) he the normalized adjacency matrix of G@H. Using the
fact that each edge in G@)H is made up of three steps in G@)H, we can write M as
BAB, where

0= Uy

And A[(u,1i), (v,j)] = 1 if u is the j-th neighbor of v and v is the i-th neighbor of u,
and A[(u,1), (v,j)] = 0 otherwise.

Note that A is the adjacency matrix for a matching and is hence a permutation
matrix.

4 Preliminaries on Matrix Norms

Recall that, instead of bounding As, we will bound the following parameter (thus
proving a stronger result).

Definition 1 Let M be the normalized adjacency matriz of a graph G = (V, E), and
AL > ... > N\, be its eigenvalues with multiplicities. Then we use the notation

AM) = max {I\i|} = max{ s, =\, }



The parameter A has the following equivalent characterizations.

Fact 2 M
AM) = max M| = max || M ||
N 3 SR [ QS MU

Another equivalent characterization, which will be useful in several contexts, can be
given using the following matrix norm.

Definition 3 (Spectral Norm) The spectral norm of a matriz M € R™*" is defined

as
IM|] = max |[Maz]]
x€RY,||x||=1
If M is symmetric with eigenvalues Aq,...,\,, then the spectral norm is max; |\;|.

Note that M is indeed a norm, that is, for every two square real matrices A, B we have
||A+ B|| < ||A]|+||B]| and for every matrix A and scalar a we have ||aA|| = a||A]|.
In addition, it has the following useful property:

Fact 4 For every two matrices A, B € R™™"™ we have

|AB[| < [|A[l - [|B]]
PROOF: For every vector x we have

| ABx]| < [[A]] - [[Bx|| < [[A[| - || BI| - |x]]

where the first inequality is due to the fact that ||Az|| < [|A]|| - ||z|| for every vector
z, and the second inequality is due to the fact that ||Bx|| < ||B]| - ||x]||. So we have

min
xER™ x40

O

We can use the spectral norm to provide another characterization of the parameter
A(M) of the normalized adjacency matrix of a graph.

Lemma 5 Let G be a reqular graph and M € R™ "™ be ilts normalized adjacency
matriz. Then

1
AM) = (1M = |

where J is the matriz with a 1 in each entry.
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PROOF: Let Ay =1 > Ay > --- )\, be the eigenvalues of M and v; = \/Lﬁl, Vo, ...y Vi
a corresponding system of orthonormal eigenvector. Then we can write

M = M\vivi + -+ A\ v, vl

Noting that v;vl = %J, we have

1 n
M — ﬁJ =0- Vlvg —+ Z)\IVZV?
=2
and so vy,...,Vv, is also a system of eigenvectors for M — %J , with corresponding
eigenvalues 0, Ag, ..., \,, meaning that

1
1M = = 7| = max{0. Ao, ..., Au} = A(M)
O

The above lemma has several applications. It states that, according to a certain
definition of distance, when a graph is a good expander then it is close to a clique.
(The matrix %J is the normalized adjacency matrix of a clique with self-loops.) The
proof of several results about expanders is based on noticing that the result is trivial
for cliques, and then on “approximating” the given expander by a clique using the
above lemma.

We need one more definition before we can continue with the analysis of the zig-zag
graph product.

Definition 6 (Tensor Product) Let A € RV and B € RP*P be two matrices.
Then A ® B € RNPXND s 4 matriz whose rows and columns are indexed by pairs
(u,i) € [N] x [D] such that

(A® By, (ws) = Auw - Bij

For example I ® M is a block-diagonal matrix in which every block is a copy of M.

5 Analysis of the Zig-Zag Product

Suppose that G and H are identical cliques with self-loops, that is, are both n-regular
graphs with self-loops. Then the zig-zag product of G and H is well-defined, because
the degree of GG is equal to the number of vertices of H. The resulting graph G@ H is
a n2-regular graph with n? vertices, and an inspection of the definitions reveals that
G@H is indeed a clique (with self-loops) with n? vertices.
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The intuition for our analysis is that we want to show that the zig-zag graph product
“preserves” distances measured in the matrix norm, and so if G is close (in matrix
norm) to a clique and H is close to a clique, then G@H is close to the zig-zag product
of two cliques, that is, to a clique. (Strictly speaking, what we just said does not make
sense, because we cannot take the zig-zag product of the clique that G is close to and
of the clique that H is close to, because they do not have the right degree and number
of vertices. The proof, however, follows quite closely this intuition.)

Theorem 7 If A\(Mg) = a and \(Myg) = b, then

MG@H) <a+2b+b°

PrOOF: Let M be the normalized adjacency matrix of G@H, and let x be a unit
vector such that x L 1 and

A(M) = [|Mx]|

Recall that we defined a decomposition
M = BAB

where A is a permutation matrix, and B =1® Mp. Let us write £ := My — %J,
thenB:I®%J—|—[®E. Let uscallJ:z[@%JandE:zI@E.

First, we argue that the matrix norm of E is small. Take any vector z € RNV
and write is as z = (2z1,...,2zx), where, for each u € [N], z, is the D-dimensional
restriction of z to the coordinates in the cloud of u. Then

I(I® Bl =) |Ez|® < Y IEIP - llzal* = [|EI* - ||zl

and so we have
[ E|| <[|E||<b

Then we have
BAB = (J+ E)A(J+E)
= JAJ + JAE + EAJ + EAA
and so, using the triangle inequality and the property of the matrix norm, we have
|BABx|| < [|[JAJx|| + [|[EAJ|| + || JAE|| + || EAE]]

where

IEAJ| < IE][- [JAIl-[I7]] < ||EIl < b



ITAE(| < |1 |l - [|E]] < ||EIl < b
|EAE|| < ||E|| - [|All - | EIl < || E||* < b*

It remains to prove that ||JAJx|| < a. If we let Ag = DMg be the adjacency matrix
of GG, then we can see that

_ 1 1 1
(JAT) i) = 7z (Ac)uw = 1 (Me)uo = (Ma ® 55 wi) w)
That is,
N 1
JAJ = Mg ® EJ
Finally, we write x = (x3,...,Xy), where x,, is the D-dimensional vector of entries

corresponding to the cloud of u, we call y, := >, x,(i)/D, and we note that, by
Cauchy-Schwarz:

2 2
MDY (Z %x> <y (Z% ) ~ (Zx) = Sl
The final calculation is:

- - 1
| JAJTx||* = ‘| (MG ® EJ> X

— ; (Z (Mg wxm>2

| 2

—z(z Mawyu)Q
=D- Z (Z (Mg uvyu>2

=D |[Mcy]|*
<D-a*-|lyl]
< a® - |lx*f?
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