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ABSTRACT

The diameter and the radius of a graph are fundamental
topological parameters that have many important practi-
cal applications in real world networks. The fastest com-
binatorial algorithm for both parameters works by solving
the all-pairs shortest paths problem (APSP) and has a run-
ning time of O(mn) in m-edge, n-node graphs. In a seminal
paper, Aingworth, Chekuri, Indyk and Motwani [SODA’96
and SICOMP’99] presented an algorithm that computes in
O(m+/n +n?) time an estimate D for the diameter D, such
that |2/3D| < D < D. Their paper spawned a long line of
research on approximate APSP. For the specific problem of
diameter approximation, however, no improvement has been
achieved in over 15 years.

Our paper presents the first improvement over the diame-
ter approximation algorithm of Aingworth et al. , producing
an algorithm with the same estimate but with an expected
running time of é(m\/ﬁ) We thus show that for all sparse
enough graphs, the diameter can be 3/2-approximated in
o(n2) time. Our algorithm is obtained using a surprisingly
simple method of neighborhood depth estimation that is
strong enough to also approximate, in the same running
time, the radius and more generally, all of the eccentrici-
ties, i.e. for every node the distance to its furthest node.

We also provide strong evidence that our diameter approx-
imation result may be hard to improve. We show that if for
some constant £ > 0 there is an O(m?~¢) time (3/2 — ¢)-
approximation algorithm for the diameter of undirected un-
weighted graphs, then there is an O*((2 — 0)™) time algo-
rithm for CNF-SAT on n variables for constant 6 > 0, and
the strong exponential time hypothesis of [Impagliazzo, Pa-
turi, Zane JCSS'01] is false.
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Motivated by this negative result, we give several im-
proved diameter approximation algorithms for special cases.
We show for instance that for unweighted graphs of constant
diameter D not divisible by 3, there is an O(m?™*) time al-
gorithm that gives a (3/2 — ¢) approximation for constant
€ > 0. This is interesting since the diameter approximation
problem is hardest to solve for small D.

Categoriesand Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]; G.2.2
[Graph Theory]: Graph algorithms
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1. INTRODUCTION

The diameter and the radius are two of the most basic
graph parameters. The diameter of a graph is the largest
distance between its vertices. The center of a graph is a ver-
tex that minimizes the maximum distance to all other nodes,
and the radius is the distance from the center to the node
furthest from it. Being able to compute the diameter, center
and radius of a graph efficiently has become an increasingly
important problem in the analysis of large networks [35].
The diameter of the web graph for instance is the largest
number of clicks necessary to get from one document to an-
other, and Albert et al. were able to show experimentally
that it is roughly 19 [2]. The problem of computing a center
vertex and the radius of a graph is often studied as a facility
location problem for networks: pick a single vertex facility
so that the maximum distance from a demand point (client)
in the network is minimized.

The algorithmic complexity of the diameter and radius
problems is very well-studied. For special classes of graphs
there are efficient algorithms [21, 19, 15, 11, 12, 5]. E.g. the
radius in chordal graphs can be found in linear time. How-
ever, for general graphs with arbitrary edge weights, the
only known algorithms computing the diameter and radius
exactly compute the distance between every pair of vertices
in the graph, thus solving the all-pairs shortest paths prob-
lem (APSP).

For dense directed unweighted graphs, one can compute
both the diameter and the radius using fast matrix multipli-
cation (this is folklore; for a recent simple algorithm see [17]),
thus obtaining O(n“) time algorithms, where w < 2.38 is the
matrix multiplication exponent [14, 33, 34] and n is the num-
ber of nodes in the graph. It is not known whether APSP



in such graphs can be solved in O(n*) time — the best al-
gorithm is by Zwick [36] running in O(n*®*) time [25], and
hence for directed unweighted graphs diameter and radius
can be solved somewhat faster than APSP. For undirected
unweighted graphs the best known algorithm for diameter
and radius is Seidel’s O(n®) time APSP algorithm [32].

For sparse directed or undirected unweighted graphs, the
best known algorithm (ignoring poly-logarithmic factors)®
for APSP, diameter and radius, does breadth-first search
(BFS) from every node and hence runs in O(mn) time,
where m is the number of edges in the graph. For sparse
graphs with m = O(n), the running time is ©(n?) which
is natural for APSP since the algorithm needs to output n?
distances. However, for the diameter and the radius the out-
put is a single integer, and it is not immediately clear why
one should spend Q(n?) time to compute them.

A natural question is whether one can get substantially
faster diameter and radius algorithms by settling for an ap-
proximation. It is well-known that a 2-approximation for
both the diameter and the radius in an undirected graph
is easy to achieve in O(m + n) time using BFS from an
arbitrary node. On the other hand, for APSP, Dor et al.
[18] show that any (2 — ¢)-approximation algorithm in un-
weighted undirected graphs running in 7'(n) time would im-
ply an O(T'(n)) time algorithm for Boolean matrix multi-
plication (BMM). Hence apriori it could be that (2 — ¢)-
approximating the diameter and radius of a graph may also
require solving BMM.

In a seminal paper from 1996, Aingworth et al. [1] showed
that it is in fact possible to get a subcubic (2 — €) - approx-
imation algorithm for the diameter in both directed and
undirected graphs without resorting to fast matrix multi-
plication. They designed an O(m+/n + n?) time algorithm

computing an estimate D that satisfies [2D/3] < D < D.
Their algorithm has several important and interesting prop-
erties. It is the only known algorithm for approximating
the diameter polynomially faster than O(mn) for every m
that is superlinear in n. It always runs in truly subcubic
time even in dense graphs, and does not explicitly compute
all-pairs approximate shortest paths.

For the radius problem, Berman and Kasiviswanathan [6]
showed that the approach of Aingworth et al. can be used
to obtain in O(m+/n + n?) time an estimate 7 that satisfies
r < # < 3/2r, where r is the radius of the graph. Thus
both radius and diameter admit O(m+/n + n?) time 3/2-
approximations.

Aingworth et al. also presented an algorithm that com-
putes an additive 2-approximation for the APSP problem
in 5(n2'5) time, that is for every u,v € V the algorithm re-
turns a value d(u, v) such that d(u,v) < d(u,v) < d(u,v)+2,
where d(u,v) is the distance between u and v. Their pa-
per spawned a long line of research on distance approxi-
mation. However, none of the following works considered
the specific problems of diameter and radius approxima-
tion, but rather focused on approximation algorithms for
APSP. Dor, Helperin, and Zwick [18] presented an additive
2-approximation for APSP in unweighted undirected graphs
with a running time of O(min{n®?m'/?,n"/3}), thus im-
proving on Aingworth et al. ’s APSP approximation algo-
rithm. Baswana et al. [3] presented an algorithm for un-

!Chan [10] and Blelloch et al. [8] presented algorithms with
O(mn/poly log n) running times.

weighted undirected graphs with an expected running time
of O(m?*®nlogn + n?) that computes an approximation of
all distances with a multiplicative error of 2 and an additive
error of 1. Elkin [20] presented an algorithm for unweighted
undirected graphs with a running time of O(mnf 4 n?*¢)
that approximates the distances with a multiplicative error
of (14 ¢) and an additive error that is a function of ¢, p
and €. Cohen and Zwick [13] extended the results of [18]
to weighted graphs. Baswana and Kavitha [4] presented an
O(m+/n+n?) time multiplicative 2-approximation algorithm
and an O(m?/3n+n?) time 7/3-approximation algorithm for
APSP in weighted undirected graphs.

Since Aingworth et al. ’s paper, the only paper that con-
siders the diameter approximation problem directly is by
Boitmanis et al. [9]. They presented an algorithm with
6(m\/ﬁ) running time that computes the diameter with an
additive error of y/n. Although such an additive error could
be small for graphs with large diameter, it is prohibitive
when it comes to graphs with small diameter.

A simple random sampling argument shows that for all
graphs with diameter at least n’, there is an O(mn'~°®/c)
time (1 + e)-approximation algorithm for all € > 0. Hence
diameter approximation is hardest for graphs with small di-
ameter. For such graphs the additive approximation of Boit-
manis et al. presents no significant approximation guarantee.

Our contributions.

We give the first improvement over the diameter approxi-
mation algorithm of Aingworth et al. for sparse graphs. We
present an algorithm with a slightly better approximation
and an expected running time of O(m+/n). This is always
faster than runtime of [1] for m = o(n*).

THEOREM 1. Let G = (V,E) be a directed or an undi-
rected unweighted graph with diameter D = 3h + z, where
h >0 and z € {0,1, 2} In O(m+/n) expected time one can
compute an estimate D of D such that 2h + z < D<D for
2€{0,1} and 2h +1< D < D for z = 2.

We obtain our efficient algorithm by a surprisingly simple
node sampling technique that allows us to replace an expen-
sive neighborhood computation with a cheap estimate.

The diameter and radius are the maximum and minimum
eccentricities in the graph, respectively. In an unweighted
graph, the eccentricity of a vertex is the distance to its fur-
thest node. Our techniques are general enough that we can
obtain good estimatesgf all n eccentricities in an undirected
unweighted graph in O(m+/n) time. We prove:

THEOREM 2. Let G = (V, E) be an undirected unweighted
graph with diameter D and radius r. In O(my/n) exzpected
time one can compute for every node v € V an estimate é(v)
of its eccentricity ecc(v) such that:

max{r, 2/3ecc(v)} < é(v) < min{D, 3/2ecc(v)}.

We note that until now the only known approximation al-
gorithm for all node eccentricities that runs in o(n?) time
for sparse graphs is the simple 2-approximation algorithm
for radius and diameter that runs BFS from a single node.
That algorithm only achieves estimates é(v) for which

max{r, ecc(v)/2} < é(v) < min{D, 2ecc(v)}.



Our approximation algorithm for radius follows directly
from Theorem 2 by taking # = min, é(v). We obtain:

THEOREM 3. In O(my/n) expected time one can compute
an estimate 7 of the radius r of an undirected unweighted
graph such that r <7 < 3/2r.

Our diameter, radius and eccentricity algorithms natu-
rally extend to graphs with nonnegative edge weights, simi-
lar to the algorithm of Aingworth et al.

A natural question is whether there is an almost linear
time approximation scheme for the diameter problem: an al-
gorithm that for any constant € > 0 runs in O(m) time and
returns an estimate D such that (1 —e)D < D < D. Bern-
stein [7] showed that related problems in directed graphs
such as the second shortest path between two nodes and
the replacement paths problem admit such approximation
schemes. Such an algorithm for diameter would be of im-
mense interest, and has not so far been explicitly ruled out,
even conditionally.

Here we give strong evidence that a fast (3/2 —¢) - di-
ameter approximation algorithm may be very hard to find,
even for undirected unweighted graphs. We prove:

THEOREM 4. Suppose there is a constant € > 0 so that
there is a (3/2 — g)-approzimation algorithm for the diam-
eter in m-edge undirected unweighted graphs that runs in
O(m?*7¢) time for every m. Then, SAT for CNF formulas
on n variables can be solved in O*((2 — 6)™) time for some
constant 6 > 0.

The fastest known algorithm for CNF-SAT is the exhaus-
tive search algorithm that runs in O*(2") time by trying all
possible 2™ assignments to the variables. It is a major open
problem whether there is a faster algorithm. Several other
NP-hard problems are known to be equivalent to CNF-SAT
so that if one of these problems has a faster algorithm than
exhaustive search, then all of them do [16]. Hence, our result
has the following surprising implication: if the diameter can
be approximated fast enough, then problems such as Hitting
Set, Set Splitting, or NAE-SAT, all seemingly unrelated to
the diameter, can be solved faster than exhaustive search.

The strong exponential time hypothesis (SETH) of Im-
pagliazzo, Paturi, and Zane [23, 24] implies that there is no
improved O*((2 — §)") time algorithm for CNF-SAT, and
hence our result also implies that there is no (3/2 — ¢)-
approximation algorithm for the diameter approximation
running in O(m?~¢) time unless SETH fails. (We elaborate
on this hypothesis later on in the paper.)

We prove Theorem 4 by showing that any O(n*~¢) time
algorithm that distinguishes whether the diameter of a given
sparse (m = O(n)) undirected unweighted graph is 2 or at
least 3 would imply an improved CNF-SAT algorithm. This
implies that unless SETH fails, O(n?) time is essentially re-
quired to get a (3/2—¢)-approximation algorithm for the di-
ameter in sparse graphs, within n°) factors. Hence, within
n°M factors, the time for (3/2 — )-approximating the di-
ameter in a sparse graph is the same as the time required
for computing APSP exactly!

In their paper, Aingworth et al. showed that one can dis-
tinguish between graphs of diameter 2 and 4 in O(my/n)
time, whereas we show that distinguishing between 2 and
3 fast may be difficult. We further explore which graph

diameters can be efficiently distinguished, and prove the fol-
lowing two theorems that improve upon the approximation
of Aingworth et al. algorithm.

THEOREM 5. Let G = (V, E) be a directed or undirected
unwetghted graph with diameter D = 3h + z, where h > 0
and z € {0,1,2}. There is an O(m*>n*/3) time algorithm
that reports an estimate D such that 2h + z < D < D.

THEOREM 6. There is an O(m?/*n*/®) time algorithm that
when run on an undirected unweighted graph with diameter
D, reports an estimate D with |4D/5] < D < D.

Theorem 5 shows for instance that one can efficiently dis-
tinguish between directed or undirected graphs of diameter
3 and 5, and Theorem 6 obtains a 5/4-approximation for
the diameter that runs in O(mn/n®) time for some constant
€ > 0 in all undirected graphs with a superlinear number of
edges. The previous best approximation quality achievable
polynomially faster than O(mn) time for such graphs was
Aingworth et al. ’s 3/2-approximation.

We further investigate whether one can ever obtain a (3/2—
¢)-approximation for the diameter in O(m?~¢) time, and
show that this is indeed possible for graphs with constant
diameter that is not divisible by 3. This is intriguing since,
as we pointed out earlier, the diameter approximation prob-
lem is hardest for graphs with small diameter. We prove:

THEOREM 7. There is an O(m?*~Y "3 time determin-
istic algorithm that computes an estimate D with [2D /3] <

D<D for all m-edge unweighted graphs of diameter D =
3h+z with h > 0 and z € {0,1,2}. In particular, D > 2h+z.

Notation.

Let G = (V, E) denote a graph. It can be directed or
undirected; this will be specified in each context. If the
graph is weighted, then there is a function on the edges
w: E — Q% U{0}. Unless explicitly specified, the graphs
we consider are unweighted.

For any u,v € V, let d(u,v) denote the distance from u
to v in G. Let BFS™(v) and BFsout (v) be the incoming
and outgoing breadth-first search (BFS) trees of v, respec-
tively, that is the BFS trees starting at v in G and in G with
the edges reversed. Let d™(v) be the depth of BFS™(v),

i.e. the largest distance from a vertex of BFS™(v) to v.
Similarly, let dout (v) be the depth of BFSOUt (v).

In an unweighted graph, the eccentricity of a vertex v de-
noted with ecc(v) is the depth of its BFS tree BFS(v). In
a weighted graph, the eccentricity ecc(v) of v is the max-
imum over all w € V of d(v,u). The radius of a graph is
r = minyecy ecc(v), and the diameter is D = max,ev ecc(v).

For h < d™(v), let BFS™(v,h) be the vertices in the
first h levels of BFS™(v). Similarly, for h < dout(v),
let BFSOUt(v,h) be the vertices in the first h levels of
BFS"(v).

Let N2™(v) (NSOut (v)) be the set of the s closest incoming
(outgoing) vertices of v, where ties are broken by taking the
vertex with the smaller id. We assume throughout the paper
that for each v and each s < n, |[N(v)| = |Ngut(v)\ = s,
as otherwise the diameter of the graph would be oo, and this

can be checked with two BFS runs from and to an arbitrary
node. For undirected graphs Ns(v) = NIV (v) = NOV7 (v).



Let d2(v) be the largest distance from a vertex of N (v)
to v, and do" (v) be the largest distance from v to a ver-
tex of N;mt(v). Let d' = max,ev d*(v) and aoUt =
maxycv d?m (v).

For a set S C V and a vertex v € V we define ps(v) to
be a vertex of S such that d(v,ps(v)) < d(v,w) for every
w € S, i.e. the closest vertex of S to v.

For a degree A we define pa(v) to be the closest vertex
to v of degree at least A, that is, d(v,pa(v)) < d(v,w) for
every w € V of degree at least A.

We use the following standard notation for running times.
For a function of n, f(n), O(f(n)) denotes O(f(n)poly logn)
and O*(f(n)) denotes O(f(n)poly(n)).

We write whp to mean with high probability, i.e. with
probability at least 1 — 1/poly(n).

2. DIAMETER

In this section we present the proof of Theorem 1. We
first revisit the algorithm of Aingworth et al. and tighten
its approximation analysis. We then present our new neigh-
borhood estimation approach that is at the basis of our im-
proved algorithm.

2.1 Thealgorithm of Aingworth et ai.

The algorithm of Aingworth, Chekuri, Indyk and Mot-
wani [1], computes a (roughly) 3/2-approximation of the di-
ameter of a directed (or undirected) graph in O(m/n 4 n?)
time. Let s be a given parameter in [1,n]. The algorithm
works as follows. First, it computes N2 ut (v) for every v €
V. Then, for a vertex w, where dgut(w) = d°" it com-
putes BFSOUt (w) and for every u € Nout (w) it computes
BFS’in(u). Next, it computes a set S that hits NOU (v) for
every v € V and for every u € S it computes BFSOHt(u).
As an estimate, the algorithm returns the depth of the deep-
est computed BF'S tree. The next lemma appears in [1]. We
state it for completeness.

LEMMA 1. The algorithm runtime is O(ns?+(n/s+s)m).

Aingworth et al. set s = /n and obtain their running
time. We note that if one sets s = m'/? instead, one can
get a runtime of 6(m2/ 3n) that is better for sparse graphs;
we later show that both of these runtimes can be improved
using our new method.

We now analyze the quality of the estimate returned by
the algorithm. Aingworth et al. [1] proved that this estimate
is at least |2D/3] in graphs with diameter D. Here we
present a tighter analysis.

LEMMA 2. Let G = (V, E) be a directed graph with diam-
eter D = 3h+z, where h > 0 and z € {0,1,2}. Let D be the
estimate returned by the algorithm. For z € {0,1}, we have
2h+z§ﬁ§D. For z = 2, we have that 2h + 1 SﬁSD.

PROOF. Let a,b € V such that d(a,b) = D. First notice
that the algorithm always returns the depth of some shortest
paths tree and hence D < D.

If d°"(w) < h then also d°"f(a) < h and as S hits
Nout (a), one of the BFS trees computed for vertices of S
has depth at least 2h + z. Hence, assume that dgut (w) > h.
We can also assume that dOUt (w) < 2h + z as otherwise

when we compute BFS°U (w), the estimate would become
at least 2h + 2.

As d°Ut (w) < 2h + z, also d(w,b) < 2h + z. Since
aout (w) > h, we have that BFsout (w,h) C Nout (w).
Hence there is a vertex w' € N (w) on the path from w to
b such that d(w,w’) = h and hence d(w’,b) < h + 2. Since
d(a,b) = 3h+z, we must have that d(a,w’) > 2h+1. As the

algorithm computes BFSin(u) for every u € N?ut(w), in

particular, it computes BFS™(w’), and returns an estimate
> 2h+ 1. For z € {0,1}, d(a,w’) > 2h+1 > 2h + 2z and
hence the final estimate returned is always at least 2h + z.
For z = 2 we only have that d(a,w’) > 2h + 1 and if the al-
gorithm returns d(a,w’) as an estimate, it may return 2h+ 1
instead of 2h + z. g

2.2 Improving therunningtime

The algorithm of Aingworth et al. [1] runs in O(ns? +
(n/s + s)m). In this section we show how to get rid of
the ns? term with some randomization, while keeping the
quality of the estimate unchanged. By choosing s = /n, we
get an algorithm running in O(m+/n) time.

The term of ns? in the running time comes from the com-
putation of N;)ut (v) for every v € V. This computation is
done to accomplish two tasks. One task is to obtain dout (v)
for every v € V and then to use it to find a vertex w such
that d(Smt(w) = d°U' A second task is to obtain, deter-
ministically, a hitting set S of size O(n/s) that hits the set

Nfut(v) of every v € V.

Our main idea is to accomplish these two tasks without
explicitly computing Ngut(v) for every v € V. The major
step in our approach is to completely modify the first task
above by picking a different type of vertex to play the role of
w. Making the second task above fast can be accomplished
easily with randomization. We elaborate on this below.

Our algorithm works as follows. First, it computes a hit-
ting set by using randomization, that is, it picks a random
sample S of the vertices of size ©(n/slogn). This guaran-
tees that with high probability (at least 1 — n™¢, for some
constant ¢), SN Nsout(v) # 0, for every v € V. This ac-
complishes the second task above in O(n) time, with high
probability. Similarly to the algorithm of Aingworth et al.
[1], our algorithm computes BFSOUt (v), for every v € S.

We now explain the main idea of our algorithm, i.e. how
to replace the first task above with a much faster step. First,
for every v € V our algorithm computes the closest node of
S, ps(v), to v, by creating a new graph as follows. It adds
an additional vertex r with edges (u,r), for every u € S. It

computes BFS™(r) in this graph. It is easy to see that for
every v € V the last vertex before r on the shortest path
from v to r is pg(v). This step takes O(m) time.

Now, the crucial point of our algorithm is that, as op-
posed to the algorithm of Aingworth et al. that picks a
vertex w such that dSUt(w) = dgut, our algorithm finds
a vertex w € V that is furthest away from S: i.e. such
that d(w, ps(w)) > d(u, ps(u)), for every u € V. The vertex
w plays the same role as its counterpart in [1]: Our algo-
rithm computes BFSout(w) and obtains NOUt (w) from it.

Finally, it computes BFSin(u) for every u € NOUt (w). As
an estimate, the algorithm returns the depth of the deepest
BFS tree that it has computed.



In the next Lemma we analyze the running time of the
algorithm.

LEMMA 3. The algorithm runtime is O((n/s + s)m).

PROOF. A hitting set S is formed in O(n) time. With a
single BFS computation, in O(m) time, we find pg(v) for
every v € V, and hence also find w. The cost of computing
a BFS tree for every v € SU NSOUt(w) is O((n/s + s)m). O

Next, we show that the estimate produced by our algo-
rithm is of the same quality as the estimate produced by
Aingworth et al. algorithm, whp.

LEMMA 4. Let G = (V,E) be a directed (or undirected)
graph with diameter D = 3h + z, where h > 0 and z €
{0,1,2}. Let D be the estimate returned by the above algo-
rithm. With high probability, 2h + z < D < D whenever
z€{0,1}, and 2h +1 < D < D whenever z = 2.

PROOF. Let a,b € V such that d(a,b) = D. Let w be a
vertex that satisfies d(w, ps(w)) > d(u,ps(u)), Vu € V.

If d(w,ps(w)) < h then also d(a,ps(a)) < h. As the
algorithm computes BFSOHt(v) for every v € S, it follows
that BFSOU (ps(a)) is computed as well and its depth is at
least 2h + z as required. Hence, assume that d(w,ps(w)) >
h. We can assume also that d°" (w) < 2h + z since the
algorithm computes BF SO (w) and if aout (w) > 2h + 2
then it computes a BFS tree of depth at least 2h + z.

Since d°"'(w) < 2h + z it follows that d(w,b) < 2h + 2.
Moreover, since d(w,ps(w)) > h and S hits Ngut(w) whp,
we must have that N?ut(w) contains a node at distance > h
from w, and hence BF SO (w,h) C Nout (w). This implies
that there is a vertex w’ € NOUt (w) on the path from w to
b such that d(w,w’) = h and hence d(w’,b) < h + z. Since
d(a,b) = 3h + 2z, we also have that d(a,w’) > 2h + 1.

The algorithm computes BFSin(u) for every u € Nsout(w)7
and in particular, it computes BF'S in(w’), thus returning an
estimate at least d(a,w’) > 2h + 1. Hence for z € {0, 1} the
final estimate is always > 2h + z, and for z = 2 the estimate
could be 2h 4 1 but no less. ]

We now turn to prove Theorem 1 from the introduction.

Reminder of Theorem 1 Let G = (V,E) be a directed
or an undirected graph with diameter D = 3h + z, where
h >0 and z € {0,1,2}. In O(my/n) expected time one can
compute an estimate D of D such that 2h + z < D < D for
z2€{0,1} and2h+1< D < D for z =2.

PRrROOF. From Lemma 3 we have that if we set s = \/n the
algorithm runs in O(m+/n) worst case time. From Lemma 4
we have that whp, the algorithm returns an estimate of the
desired quality. We now show how to convert the algorithm
into a Las-Vegas one so that it always returns an estimate
of the desired quality but the running time is O(m+/n) in
expectation.

Randomization is used only in order to obtain a set that
hits Ngut(v) for every v € V. The only place that the
hitting set affects the quality of the approximation is in
Lemma 4 where we used the fact that, whp, S contains a
node of NOUt (w), so that if d(w, S) > h, NSOUt(w) contains
a node at distance > h from w.

Algorithm 1: Approx-Ecc(G)
Let S be a random sample of ©(n/slogn) nodes.
Let w be such that d(w,ps(w)) > d(u,ps(u)) for all
ueV.
foreach z € N;(w) U S do
| BFS(z).
foreach v € V do
if d(v,v:) < d(ve, w) then
é(v) = max{maxges d(v, q), d(v, w), ecc(ve) }

else

é(v) =
L max{maxgcs d(v, q), d(v, w), minges ecc(s)}

Note that the algorithm computes NOUt (w) and we can
check whether S intersects it in O(s) time. If it does not,
we can rerun the algorithm until we have verified that S N
NOut (w) # 0. In each run, SnNout (w) = 0 holds with very
small probability: S is large enough so that whp it intersects
the s-neighborhoods of all n vertices of the graph. Thus, the
expected running time of the algorithm is O(m+/n) and its
estimate is guaranteed to have the required quality. a

Just as in [1], our algorithm works for graphs with non-
negative weights as well by replacing every use of BFS with
Dijkstra’s algorithm. The proofs are analogous, the running
time is increased by at most a log n factor, and the quality of
the approximation only suffers an additive W term, where
W is the maximum edge weight in the graph. (The same
approximation quality is achieved by Aingworth et al. but
with an O(m+/n 4+ n?) running time.) We obtain:

THEOREM 8. Let G = (V, E) be a directed or an undi-
rected graph with nonnegative edge weights at most W and
diameter D. In 6(m\/ﬁ) expected time one can compute an
estimate D of D such that |2D/3 —W| < D < D.

3. ECCENTRICITIES

In this section we show that our method can be generalized
to compute for every vertex v in an undirected unweighted
graph, a good approximation é(v) of its eccentricity ecc(v).
We prove Theorem 2.

Reminder of Theorem 2 Let G = (V, E) be an undirected
graph with diameter D and radius r. In O(my/n) expected
time one can compute for every node v € V' an estimate é(v)
of its eccentricity ecc(v) such that:

max{r, 2/3ecc(v)} < é(v) < min{D, 3/2ecc(v)}.

We note that our eccentricities algorithm can also be made
to work for undirected graphs with nonnegative weights at
most W by again using Dijkstra’s algorithm in place of
BFS. Then the running time is still O(m+/n) and the ap-
proximation quality becomes 2/3ecc(v) — 2W < é(v) <
3/2ecc(v) + W.

One can immediately obtain our 3/2-approximation of the
radius in unweighted undirected graphs stated in Theorem 3
as a corollary to Theorem 2 by taking # = min, é(v). For
this choice, # > r, and 7 < min, 3/2ecc(v) = 3/2r.



The algorithm starts similarly to the algorithm for diam-
eter. It first picks a random set S on O(y/nlogn) nodes,
and finds the vertex w furthest from S. Then it computes
all BFS trees for the vertices of S U N (w) for s = /n. Let
v € Ng(w) be the closest vertex to v on the shortest path
between w and v. Such a vertex exists since w € Ny(w),
and for every v it can be computed during the computation
of the BFS tree from w.

The main idea in computing estimates for the eccentric-
ities is to compare between d(v,v:) and d(v:,w) for each
v. Let €' (v) = max{maxqes d(v, q),d(v,w)}. The algorithm
sets é(v) as follows:

if d(v,ve) < d(ve, w)

max{e’(v), minges ecc(s)} if d(v,ve) > d(ve, w)

é(v) = { max{e(v), ecc(vt)}

The algorithm is presented in Algorithm 1. It is straight-
forward to see that it runs in 5(m\/ﬁ) time when s is set to
v/n. In the next three lemmas we prove the bounds on the
approximation.

LEMMA 5. For every v € V, é(v) < 3/2ecc(v).

Proor. We divide the proof into two cases:

Case 1: [d(v,v:) < d(v¢,w)] In this case we only need
to show that ecc(v:) < 3/2ece(v) as maxqes d(v, q) < ecc(v)
and d(v,w) < ecc(v). Since d(v,v:) < d(ve,w), it follows
that d(v,v:) < d(v,w)/2, and hence d(v,v:) ecc(v) /2.
From the triangle inequality we have ecc(v¢) < d(ve,v) +
ecc(v), thus, d(vi) < 3/2ecc(v).

Case 2: [d(v,v¢) > d(ve,w)] We only need to show that
minges d(q) < 3/2ecc(v). Since d(v,v:) > d(ve, w), we must
have d(ve, w) < d(v,w)/2 < ecc(v)/2.

Now, since S hits the set Ns(w) with high probability, ev-
ery node at distance < d(w, S) from w is in Ns(w). Consider
the node v; that is after v; on the shortest path between w
and v. Since v; is the closest node to v on the shortest path
between w and v that belongs to Ns(w) it follows that v; ¢
Ns(w). Moreover, since d(w, v;) = d(w,v:)+1 it follows that
d(w,v;) < ecc(v)/2, and so if d(w, S) > ecc(v)/2, then v; €
Ny(w) which would be a contradiction. Hence d(w,S) <
ecc(v)/2. But as w is the vertex that is furthest from S,
d(w,S) > d(v,S) and it follows that d(v,S) < ecc(v)/2.
Now if d(v,q") = d(v,S) and ¢” = argmin, g ecc(q), then
ecc(q") < ece(q) < d(q',v) + ecc(v) < 3/2ecc(v). O

LEMMA 6. For every v € V, é(v) > 2/3ecc(v).

PRrROOF. If max,ecsd(v,q) > 2/3ecc(v) then we are done
since our estimate is always at least as large as this. Hence
assume that for all ¢ € S, d(v,q) < 2/3ecc(v). Let z, be
the other endpoint of the eccentricity path from v. Then,

<
<

d(S,zy) > ecc(v)/3 since ecc(v) < d(v, q¢)+d(q, x») < 2/3ecc(v)

+d(q,z,) for all ¢ € S. Since w is the furthest node from S,
we must also have d(w, S) > ecc(v)/3. Since S hits Ns(w)
with high probability, all nodes at distance < ecc(v)/3 from
w must be in Ns(w). Hence, d(w,v¢) > ecc(v)/3.

Now we have two cases:

Case 1: [d(v,v:) > d(v, w)] Here we return an estimate
that is at least d(v,w) = d(v,v:) + d(ve, w) > 2d(ve, w) >
2/3ecc(v).

Case 2: [d(v,v:) < d(ve,w)] Here d(v,v:) = d(v,w)
d(ve, w) < d(v, w) —ecc(v)/3. Since we are done if d(v, w)
2/3ecc(v), assume that d(v, w) < 2/3ece(v), and so d(v, v¢)
ecc(v)/3. By the triangle inequality, ecc(ve) > ecc(v
d(v,v) > 2/3ecc(v).

w
w
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LEMMA 7. For everyv € V, é(v) € [r, D).

PRrROOF. In all cases, we return a distance in the graph,
so that é(v) < D. Moreover, our algorithm works in such a
way that for every v € V there exists a vertex v’ € V such
that é(v) > ecc(v’), hence, é(v) > r. ]

4. HARDNESSUNDER SETH

Impagliazzo, Paturi, and Zane [23, 24] introduced the Ex-
ponential Time Hypothesis (ETH) and its stronger variant,
the Strong Exponential Time Hypothesis (SETH). These
two complexity hypotheses assume lower bounds on how
fast satisfiability problems can be solved. They have fre-
quently been used as a basis for conditional lower bounds for
other concrete computational problems. ETH states that
3-SAT on n variables and m clauses cannot be solved in
29" poly(m, n) time for some § > 0.

A natural question is how fast can one solve r-SAT as r
grows. Impagliazzo, Paturi, and Zane define:

s, =inf{6 | 3O*(2°") time algorithm solving

r-SAT instances with n variables},

and Seo = lim; 00 Sr.

The sequence s, is clearly nondecreasing. Impagliazzo,
Paturi, and Zane show that if ETH holds, then s, also in-
creases infinitely often. Furthermore, all known algorithms
for 7-SAT nowadays take time O(2"*=¢/™) for some con-
stant ¢ independent of n and r (e.g. [22, 26, 28, 27, 30, 31]).
Because of this, it seems plausible that s.c = 1, and this is
exactly the strong exponential time hypothesis.

HypoTHESIS 1 ([23, 24]). SETH: 55 = 1.

One immediate consequence of SETH is that CNF-SAT
on n variables cannot be solved in 2"*~%)poly(n) time for
any € > 0. The best known algorithm for CNF-SAT is
the O*(2™) time exhaustive search algorithm which tries all
possible 2" assignments to the variables, and it has been a
major open problem to obtain an improvement. Cygan et
al. [16] showed that SETH is also equivalent to the assump-
tion that several other NP-hard problems cannot be solved
faster than by exhaustive search, and the best algorithms
for these problems are the exhaustive search ones.

Assuming SETH, one can prove tight conditional lower
bounds on the complexity of some problems in P as well.
Patragcu and Williams [29] give several tight lower bounds
(matching the known upper bounds) for problems such as
k-dominating set (for any constant k > 3), 2SAT with two
extra unrestricted length clauses, and HornSAT with k extra
unrestricted length clauses.

For constant k, k-dominating set is defined as follows:
given an undirected graph G = (V, E), is there a set S of k
vertices so that every vertex v € V is either in S or has an
edge to some vertex in S7

The best algorithm for k-dominating set for k£ > 7 runs
in n*t°® time, and obtaining O(n*~°) time would break
SETH [29]. The k-dominating set problem is well-studied
in the area of fixed-parameter complexity. It is complete
for W[2], and improving on the n**°) running time is a
major open problem. In this section we will prove that fast
diameter approximation in sparse graphs would not only fal-
sify SETH, but that it would imply faster algorithms for k-



dominating set as well, a problem that could be potentially
harder than CNF-SAT. 2

THEOREM 9. Suppose one can distinguish between diam-
eter 2 and 3 in an m-edge undirected unweighted graph in
time O(m?*~%) for some constant ¢ > 0. Then for all inte-
gers k > 2/, 2k-dominating set can be solved in O (n?F~%)
time. Moreover, CNF-SAT on n variables and m clauses is
in 0(2"(176/2>poly(m7 n)) time, and SETH is false.

Remark: Theorem 9 immediately implies Theorem 4 in
the introduction, as any (3/2 — €)-approximation algorithm
can distinguish between diameter 2 and 3.

PROOF. Given an instance G = (V, E) of 2k-Dominating
set for constant k, we construct an instance of the 2 vs 3
diameter problem and we show that 2k-Dominating set in
n-node graphs can be solved in O*(n?*7%) time for some
constant § > 0 depending on €.

Take all k-subsets of the vertices in V' and add a node for
each of them to the 2 vs 3 instance G’. Add a node for every
vertex in V' — call this set of nodes V' and make V' into a
clique.

For every k-subset S of vertices of V', connect S tov € V'
in G’ iff S does not dominate v in G. While we do this
we check whether each S is a k-dominating set in G, and if
so, we stop. From now on we can assume that none of the
k-subsets S are dominating sets in G.

Now, notice that if S and T are two k-subsets so that
their union is not a (< 2k)-dominating set in G, then the
distance in G’ between S and T is 2: there is some u that
is dominated by neither S nor T and so S —u — T is a path
of length 2. If, on the other hand, S U T is a dominating
set in G, then there is no such path and the shortest path
between S and T in G’ is to go from S to some v that S
doesn’t dominate, then to some u that T' doesn’t dominate
(V' is a clique) and then from u to T

The distance between any u and v in V' is 1, and the
distance between any w and any S is at most 2: go from
to some node v that S doesn’t dominate and then to S.

Hence, if there is no 2k-dominating set in G, then the
diameter of G’ is 2, and if there is one, then the diameter
of G’ is 3. G’ has (}) + n nodes and at most O(n - (})) <
O(n**1) edges.

Since we can solve the diameter problem in O(m?~¢) time,
applying that algorithm to G’ solves 2k-dominating set in G
for any k > 2 in time O(n?*+2-¢k=¢),

We want this to be O(n?*~%) for some § > 0, so it suffices
to pick k so that —0 > 2 — e(k + 1). If we want § = ¢, then
k > 2/e suffices.

To prove the statement for CNF-SAT, one can apply the
reduction from [29], and one would obtain that a O(n?~¢)
time algorithm for diameter approximation would imply an
o* (2"(1_52/4)) time algorithm for CNF-SAT. Here we show
a direct reduction from CNF-SAT to diameter that gives the
runtime given in the theorem.

Given an instance of CNF-SAT on n variables and m
clauses, we first partition the variables into two sets S and
S> on n/2 variables each. Create a vertex for every one
of the 27/2 partial assignments to the variables in S; and

*Patragcu and Williams [29] are able to show that improv-
ing the runtime for k-dominating set can be reduced to im-
proving the known algorithms for a problem related to CNF-
SAT, but that problem could still be harder than CNF-SAT.

similarly a vertex for every assignment to the variables in
S3. Create two nodes t1 and t2 and add an edge to ¢; from
each assignment to the variables of S;. Create a node for
every clause, and connect all clause nodes together with ¢;
and t2 into a clique of size m 4 2. Then, similarly to the
reduction from k-dominating set, connect every assignment
node to the clauses that it does not satisfy. Now, this graph
has diameter 3 iff there are two partial assignments, ¢; to
S1 and ¢2 to S that together form a satisfying assignment
to the CNF formula, i.e. the distance between ¢ and ¢2 in
the graph is 3 iff they form a satisfying assignment, and all
other node distances are < 2. The graph has O(m + 2"/?)
nodes and O(m2™/?) edges. The statement follows. O

5. IMPROVED APPROXIMATIONS

In this section we show that in some cases it is possible to
obtain fast (3/2 — ¢)-approximations for the diameter. We
present two algorithms, one works well for dense graphs and
the other for sparse graphs.

5.1 Densegraphs

Here we prove Theorems 5 and 6. Both theorems rely
on algorithm Approx-Diam(G) that works as follows. First,
it runs the Aingworth et al. algorithm both on the input
graph G and on the input graph with the edge directions
reversed, GT. Let D be the maximum value returned by
these two runs. A byproduct of this step is that for ev-

ery v € V we have computed BFS°Ut (v, aout (v) = 1) and
BFSin(v, disn(v) —1). Next, the algorithm scans all pairs of
vertices u and v and checks whether the following condition
holds: BF SO (u, dgut(u) —1) and BFS™(v,d™(v) —1) are
disjoint and there is no edge between BF' gout (u, dout (u) —
1) and BFSin(v,diSn(v) — 1). Given vertices v and v for
which the condition holds, the algorithm updates D to be the
maximum between its current value and d"t (u) + dP(v).

We start by showing that the estimate reported by the
algorithm is upper-bounded by the graph diameter.

LEMMA 8. Let G = (V, E) be a graph of diameter D. If
D= Approz-Diam/(G), then D<D.

PrOOF. If Approx-Diam(G) returns the value that it gets
from one of the runs of Aingworth et al. algorithm then
the claim follows from Lemma 2. If the algorithm reports
dgm(u) + d(v) for some pair of vertices u,v € V it is
because there is no edge from BFSOU (u,dgut(u) —1) to
BFSin(U,disn(U) — 1), and no vertex in common between
the two trees. This means that there is no path of length at
most dgm(u) + disn (v) — 1 from u to v, and hence, any path
from u to v, and in particular the shortest one, is of length
at least 40U (u) + disn(v) < D as required. O

Next, we lower-bound the diameter estimate D.

LEMMA 9. Let G = (V,E) be a graph of diameter D =
3h + z, where h > 1 and z € {0,1,2}. If D = Approa-
Diam(G) then 2h + z < D < 3h + z.

PROOF. Let a,b € V such that d(a,b) = D. Running the
algorithm of Aingworth et al. for G and the reverse G of
G implies that we get an approximation of 2k + z in the
following cases.



Case 1: [z # 2]. From Lemma 2, we have that the esti-
mate is at least 2h + 2. )

Case 2: [d%"%(a) < h or d(b) < h]. If d®"*(a) < h then
the hitting set computed by the Aingworth et al. algorithm
contains a vertex at distance at most A from a and hence
one of the BFS trees that it computes has depth at least
2h + z. Running the algorithm on G* guarantees that the
same holds when d*(b) < h.

Case 3: [Jw € V s.t. dgut(w) > h+ 2]. In this case let
w be the vertex with the largest dout (w) value. The Aing-
worth et al. algorithm computes BF SO (w). If a°out (w) >
2h + 2 then the claim holds so assume that d°"t (w) <
2h + 1. The algorithm computes BFSin(v) for every v €
BFSOM(w7 h+1) and since d(w, b) < 2h + 1 there is a ver-
tex w' € BFS®"(w, h + 1) such that d(w’,b) < h. As the
algorithm computes BFSin(w') and d(a,w’) > 2h + z the
claim holds.

For the rest of the proof we assume that the three cases
above do not hold, hence, z = 2, dgut(a) = h+1 and
disn(b) = h + 1. The second part of our algorithm searches
for a pair of vertices u, v € V such that there is no edge from
BFSOHt(u, dgut(u) — 1) to BFS™(v,d*(v) — 1) (and no
vertex in common between the two trees). As D = d(a,b) =
3h+2>2h+1, and d®"(a) — 1 = h and d%(b) — 1 = h,
we have that there is no edge from BFSOU (a, dgut(a) -1)
to BFSim(b7 disn(b) —1) (and no vertex in common between
the two trees). Since the estimate reported by the algorithm
is the maximum among values that also include dSUt (a) +

din(b) = 2h + 2, we get that D > 2h + 2, as required. a

Reminder of Theorem 5 Let G = (V,E) be a directed
or undirected unweighted graph with diameter D = 3h + z,
where h > 0 and z € {0,1,2}. There is an O(m*/*n*/?) time
algorithm that reports an estimate D with 2h+ 2 < D <D.

PrOOF. The bounds on the estimate follow from Lemma 9
and Lemma 8. Running the algorithm of Aingworth et al.
takes O(m(s + n/s) + ns?) time. Finding a pair of ver-
tices u,v € V such that there is no edge from BFSOHt(u,
dSUt(u) — 1) to BFS™(v,d™(v) — 1) takes O(n?s?) time.
Setting s = (m/n)'/? gives us the running time. O

We can use Theorem 5 to obtain an even better approxi-
mation for undirected graphs.

Reminder of Theorem 6 There is an O(m?/*n*/3) time
algorithm that in undirected unweighted graphs with diame-
ter D, reports an estimate D with |4D/5] < D < D.

ProoOF. Using [18] we compute the distances between ev-
ery pair of vertices in the graph, with an additive error of 2 in
O(min(n®/2\/m,n"/?)) time. If D is the maximum distance
minus 2 then D—2 < D < D. For every D > 6 we have that
D —2>|4/5D]. Thus, when D > 4 we get an estimate of
at least |4D/5]. If D = 3 then D might be either 3, 4 or 5,
that is, D = 3 4 z, where z € {0,1,2}. If D = 5, an esti-
mate of 3 is not good enough, thus we run Approx-Diam(G).
Let D’ be the estimate reported by Approx-Diam(G). From
Lemma 9 it follows that if D = 5 then D’ > 4 and we
have the required approximation. If D = 2 then D might

be either 2, 3 or 4, and for this case we can just use the
Aingworth et al. algorithm to get an estimate of 3 whenever
D = 4 which gives the desired approximation. a

5.2 Sparsegraphs

We now show that for graphs of constant diameter, it is
sometimes possible to obtain a better than 3/2-approximation
in O(m?~¢) time for constant & > 0.

Our result is based on algorithm Approx-Diam-Sparse(G, 71)
This algorithm is given an estimate  of k so that h > h and
works as follows. Let A be a parameter and let H be the
set of vertices of outdegree at least A. For every vertex of
H, the algorithm computes an outgoing BFS tree. Then,
it computes the distance from every node in V \ H to H.
This is done by adding an extra node r to the graph with
edges from each node of H to r and then computing an in-
coming BFS to r in O(m) time. The distance of a node
v to H is its distance to r, minus 1. The algorithm then
picks the vertex w that is furthest from H and computes
BFS°"(w). Let ' = min{h + 1,d(w, H)}. The algorithm
computes BFS™ (v) for every v € BFSOHt(w, 1'). Finally,
it returns the maximum depth of all computed BFS trees.

We now analyze the quality of the approximation.

LEMMA 10. Let G = (V,E) be a graph of constant di-
ameter D = 3h + z, where h > 0 and z € {0,1,2}. IfD =
Approz-Diam-Sparse(G, h) for h > h, then 2h+2z < D < D.

ProoF. First notice, that in any case the algorithm re-
turns the depth of some BF'S tree in the graph, thus D < D.

Now, let a,b € V such that d(a,b) = D and let H C V be
the set of vertices of outdegree at least A. Let y° € H be the
vertex with the deepest outgoing BFS in H. Let y® be the
vertex with the deepest incoming BFS among the vertices of
BFS"(w, 1), where h' = min{h + 1, d(w, H)}. The algo-
rithm returns as an estimate max(dOUt(yo)7 d°ut (w), d"™(y%)).

If d(a, H) < h, then dout(yo) is at least 2h + z and the
estimate is of the desired quality. So assume that d(a, H) >
h, and hence d(w, H) > d(a, H) > h+ 1. Thus b’ > h + 1,
as we also have i > h by assumption. Assume also that
BFSOHt(w) is of depth at most 2h + z — 1 as if it is of
depth at least 2h 4+ z then the estimate is of the desired
quality. Then, there is a vertex w’ € BFSOut (w,h’) on the
shortest path from w to b with d(w,w’) = h + 1 and hence
d(w',b) < h+z—2. As d(a,b) = 3h + z, we must also have
d(a,w’) > 2h + 2 and as d"™(y") > d(a,w’), the estimate is
of the desired quality. a

Next, we analyze the running time of the algorithm.

LEMMA 11. Let G = (V, E) be a graph of diameter D =
3h + z, where h > 0 and z € {0,1,2}. If h > h, Approz-
Diam-Sparse(G, h) runs in O(m?/A + A" 1m) time.

ProoF. The algorithm computes a BFS tree for every
vertex of H. |H| = O(m/A) since there are at most that
many vertices of outdegree at least A. Hence the BFS com-
putation from H takes O(m?/A) time.

Computing the distances of the nodes in V' \ H to H takes
only O(m) time. Picking the node w at largest distance to
H takes O(n) time. The algorithm computes BRSO (w)

in O(m) time. It then computes BFSin(v) for every v €



BFS®"(w, n') where ' < h + 1. Since we also have that
B < d(w,H), every v € BFS°(w B — 1) has outde-
gree at most A. Thus, [BFSO"W(w, b')| < A" < APHL
The running time of computing BFSin(v) for every v €
BFS°" (4, 1) is hence at most O(mAiLH). o

We now prove Theorem 7 from the introduction.
Reminder of Theorem 7 There is an O(m?>~1/(2h+3)
time deterministic algorithm that computes an estimate D
with [2D/3] < D < D for all m-edge unweighted graphs
of diameter D = 3h + z with h > 0 and z € {0,1,2}. In
particular, D> 2h+ 2.

PROOF. In O(m) time we can get a 2-approximation to
the diameter, i.e. an estimate E with D/2 < F < D. Since
D = 3h + z, we have that (F —2)/3 < h < 2E/3. Setting
h = 2E/3 guarantees that h < h < 2h 4+ 4/3 < 2h + 2, and
hence h < h < 2h + 1.

The quality of the estimate follows from Lemma 10 and by
Lemma 11, the runtime is O(m?/A+mA?" ). Picking A =
m* 2"*3) minimizes the running time at O(m?~/(2"+3)) o
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