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Abstract. The EAP-GPSK protocol is a lightweight, flexible authentication pro-
tocol relying on symmetric key cryptography. It is part of an ongoing IETF
process to develop authentication methods for the EAP framework. We analyze
the protocol and find three weaknesses: a repairable Denial-of-Service attack,
an anomaly with the key derivation function used to create a short-term mas-
ter session key, and a ciphersuite downgrading attack. We propose fixes to these
anomalies, and use a finite-state verification tool to search for remaining prob-
lems after making these repairs. We then prove the fixed version correct using a
protocol verification logic. We discussed the attacks and our suggested fixes with
the authors of the specification document which has subsequently been modified
to include our proposed changes.

1 Introduction

The Extensible Authentication Protocol (EAP) [1] is an authentication framework de-
veloped by the Internet Engineering Task Force (IETF) which runs on the data link
layer and supports a variety of mechanisms for two entities to authenticate themselves
to each other. EAP is not itself an authentication protocol; rather it provides a con-
text in which the entities can negotiate an authentication method such as Generalized
Pre-Shared Key (GPSK) [2]. EAP is currently deployed on Point-to-Point connections,
IEEE 802 wired networks, wireless LAN networks and over the Internet. The GPSK au-
thentication method is a lightweight protocol being developed by the IETF EAP Method
Update (EMU) working group. It uses symmetric cryptography and relies on a pre-
shared key, as suggested by its name, between a server and a peer. The protocol seeks to
minimize the number of messages exchanged, and hence is particularly well-suited for
use in handheld devices where memory and computational resources are a limitation.
The protocol is designed to provide mutual authentication and key agreement between
the server and the peer. In this paper, we report improvements in the protocol and report
on a formal analysis of the GPSK method. The main goal of our analysis is to have
a positive impact on the protocol during a critical stage of the development and stan-
dardization process. As such, our suggested improvements attempt to keep the protocol
largely in tact.
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In this paper, we use finite-state model checking to find errors, and Protocol Com-
position Logic [3, 4] to prove correctness after errors have been found and repaired.
The model checker we use is called Murφ [5]. Murϕ has been successfully used in the
past on a variety of protocols including Kerberos [6], SSL [7], and the 802.11i 4-Way
Handshake [8]. As a model checker, Murϕ is well suited for finding flaws but is insuf-
ficient to prove the correctness of a protocol. So to compliment Murϕ we use Protocol
Composition Logic (PCL) [9] as a proof tool. Murϕ was useful in detecting some of
the problems with the protocol specification as we first encountered it, while PCL was
useful for proving that the fixes we suggested, and which were subsequently adopted,
are correct.

Our analysis uncovered three weaknesses with GPSK. The first is a repairable
Denial-of-Service attack against the peer, in which the attacker forces the peer to ex-
haust its memory thereby blocking the protocol. This attack is virtually identical to one
which was found on the 802.11i 4-Way Handshake [8]. The second weakness is due
to a non-standard use of the key derivation function which is used to create session
keys. Although the non-standard use does not provide an obvious attack we cannot ex-
clude the existence of an attack. In addition, we indicate the difficulties which such
non-standard usage creates when trying to prove the protocol’s correctness. Finally, we
identify a ciphersuite downgrading attack in which the attacker can force the peer to
choose a weak hash function or encryption algorithm. If the ciphersuite is susceptible
to a key-recovery attack then the attacker can learn the session keys and then eavesdrop
on all subsequent communications.

In addition to discovering these weaknesses we also suggest ways to fix them and
prove that our proposed fixes make the protocol secure. As indicated above, we dis-
cussed the weaknesses and our suggested fixes with the authors of the GPSK specifi-
cation. In turn, the authors presented the issues to the EMU working group for open
discussion. They recognized the problems and they have since incorporated our sug-
gested fixes to the most recent protocol specification. Our interaction with the authors
came at a time in which GPSK was mature enough to undergo a thorough analysis, and
yet early enough in the standardization process that it was not widely implemented.

There have been many efforts to develop and use methods for proving security prop-
erties of network protocols. In recent years, most efforts have used the so-called sym-
bolic model, also referred to as the Dolev-Yao model [10–12]. In the symbolic model,
protocol execution and the possible actions of an attacker are characterized using a sym-
bolic model of computation that allows nondeterminism but does not incorporate prob-
ability or computational complexity bounds. In addition to many model checking and
bug-finding efforts, there have been some significant correctness proofs carried using
the symbolic model, including mechanically checked formal proofs [13, 14], unformal-
ized but mathematical proofs about a multiset rewriting model [15–17], and work us-
ing compositional formal logic approaches [18–22]. Several groups of researchers have
taken steps to connect the symbolic model to the probabilistic polynomial-time compu-
tational model used in cryptographic studies, e.g., [23–29, 3, 4, 30]. Protocol Composi-
tion Logic has been used to prove correctness of versions of Kerberos in the symbolic
model [31], and in the computational model [32], with errors in the Diffie-Hellman
variant of Kerberos and proofs of security presented in [33]. Connections between sym-



bolic trace properties and computational soundness properties are developed in [34]. All
these efforts have been aimed at proving security properties for well-established proto-
cols. Unfortunately, protocols such as EAP-GPSK are still being designed with flaws
and weaknesses that are identical to those found and fixed in previous protocols. The
major contribution of this work is to integrate the methods of protocol analysis into the
standardization process before the protocol is deployed in a variety of implementations.

The rest of the paper is structured as follows. Section 2 describes in more detail
the EAP framework and the GPSK method. In Section 3 we present the weaknesses
we found and our suggested fixes. Section 4 describes the role that Murϕ played in
our analysis. In Section 5 we present a proof of correctness of the fixed protocol. We
conclude in Section 6.

2 EAP

The Extensible Authentication Protocol (EAP) [1] is an authentication framework which
is meant to support a variety of authentication methods. No single authentication proto-
col is defined. Instead, it defines message types that allow an authenticator and a peer to
choose and perform an authentication mechanism. EAP is designed to run on the data
link layer where IP connectivity may not be available. It provides support for dupli-
cate elimination and retransmission but relies on lower layers to properly order packets.
The authenticator may act as a pass-through and use a backend authentication server.
This allows an implementation in which only the end server must be configured for a
particular method. The authenticator does not have to be updated with the introduction
of every new authentication method. The distinction between the authenticator and the
authentication server does not arise in our analysis of the GPSK authentication method.
Therefore we will treat the authenticator and the server as one entity referred to simply
as the server.

EAP was designed to work with Point-to-Point connections, and was subsequently
adapted for IEEE 802 wired networks as well as wireless LAN networks and over the
Internet. In each of these settings an attacker may be able to control the network. EAP
assumes an attacker can perform such actions as eavesdropping network traffic, modi-
fying or spoofing packets, and offline dictionary attacks among others. This allows an
attacker to attempt such attacks as person-in-the-middle attacks, ciphersuite downgrad-
ing attacks, and key recovery attacks due to weak key derivation.

An EAP conversation typically consists of three phases: discovery, authentication
and secure association. In the discovery phase the two agents must identify each other
and negotiate an authentication method. Then they carry out the chosen method in the
authentication phase. The secure association phase occurs when the authenticator and
the authentication server are distinct entities and so does not affect the present analysis.
Our focus in the current analysis is on the authentication phase.

2.1 EAP-GPSK

The Generalized Pre-Shared Key (GPSK) protocol [2] is an EAP authentication method
which is meant to be lightweight and flexible. To this end, it uses symmetric cryptog-
raphy relying on a long-term, pre-shared key (denoted by PSK) between a server and



a peer. The use of symmetric cryptogrpahy minimizes the computational resources re-
quired at either end of the communication, making it suitable for smartcards, handheld
devices, or any device in which computational resources and memory are a significant
constraint. To increase efficiency, the protocol also attempts to minimize the number
of round trips. For flexibility the protocol allows for the negotiation of cryptographic
ciphersuites which detail the encryption algorithm (if any), the message integrity mech-
anism and the key derivation algorithm the protocol participants will use. In this way, a
server may authenticate several peers with a variety of local preferences for ciphersuites
which may depend on the peers’ computational constraints.

We show a successful message exchange in Fig. 1 at an abstract level. In the figure,
S represents the server’s ID and P represents the peer’s ID. SNonce and PNonce are
the server and peer nonces, respectively. CSuiteList represents the list of ciphersuites
supported by the server, while CSuiteSel represents the ciphersuite selected by the peer.
The field {Payload}PK represents an optional encrypted payload block that is a generic
mechanism for exchanging confidential data. Higher level protocols may piggy-back on
GPSK using the encrypted payload block to guarantee confidentiality. This means that
sensitive confidential data may be sent as early as Message 2. Messages 2, 3 and 4
each have a keyed message authentication code, MACSK , appended to the end. This is
essentially a keyed hash of the rest of the message, although implementations depend
upon the ciphersuite which is chosen.

[Message 1: S → P]: SNonce, S, CSuiteList
[Message 2: P→ S]: P, S, PNonce, SNonce, CSuiteList, CSuiteSel, {Payload}PK , MACSK

[Message 3: S → P]: PNonce, SNonce, CSuiteSel, {Payload}PK , MACSK

[Message 4: P → S]: {Payload}PK , MACSK

Fig. 1. Successful GPSK message exchange

The keys SK and PK are both derived from a key derivation function KDF-X by
way of an intermediate master key MK. KDF-X takes two arguments, a key and a
seed, and outputs a bit string of length X. The notation KDF-X(Y,Z)[i..j] represents the
i’th through j’th octets (8 bits) of the output of the KDF-X. The PSK has length PL,
while the SK and PK have length KS which is a value specified by the ciphersuite. Key
derivation is defined as follows:

inputString = PNonce || P || SNonce || S.
MK = KDF-KS(0x00, PL || PSK || CSuiteSel || inputString)[0..KS-1].
SK = KDF-{128+2∗KS}(MK, inputString)[128..127+KS].
PK = KDF-{128+2∗KS}(MK, inputString)[128+KS..127+2*KS].

The first 128 octets of KDF-{128+2∗KS}(MK, inputString)[128+KS..127+2*KS] are
divided into two keys which are exported as part of the protocol. They may be used for
key derivation in higher level protocols. Every EAP method which supports key deriva-



tion is required to export such keys, but we omit them because they are not relevant to
the current analysis.

GPSK is intended to provide mutual authentication between the peer and the server.
After a successful message exchange the server should believe the peer is authentic due
to the use of the key SK (derived from the long term key PSK) for the MAC in Mes-
sage 2. Likewise, the peer should believe the server to be authentic due to the use of
SK for the MAC in Message 3. GPSK is also intended to provide session independence.
Even if the master key MK is compromised, this should not help an attacker to com-
promise past or future sessions. As with any symmetric key authentication protocol,
the secrecy of the long-term key PSK is crucial for all of the above properties to hold.
Unlike some protocols, GPSK does not support fast re-keying because the number of
round trips is already at a minimum.

The peer and the server must silently discard any message which is unexpected
(e.g. receiving Message 4 instead of Message 2), doesn’t parse (e.g. the wrong nonce is
returned), or whose MAC is invalid. The only exception is for Message 2. If the server
receives an invalid MAC then it must respond with an EAP failure message. The peer
must always be willing to accept Message 1 from a server since there is no integrity
protection.

3 Anomalies

In our analysis of EAP-GPSK we found a number of anomalies. The first is a potential
Denial-of-Service attack against the peer that is reminiscent of a similar attack found
on the 802.11i 4-Way Handshake. We also identified a possible problem with the way
in which the master key MK is derived. Lastly, we found a potential ciphersuite down-
grading attack. Let us consider these issues one by one.

3.1 Denial-of-Service Attack

There is a simple Denial-of-Service attack that is made possible by the fact that Mes-
sage 1 provides no integrity protection. The result of the attack is a discrepancy be-
tween the SKs held by the peer and the server. This causes the peer to be unable to
validate the MAC in Message 3. The protocol is blocked and the server will timeout
and de-authenticate the peer. Obvious inspection shows that Messages 2, 3 and 4 all
have integrity protection. This means that if an attacker tries to forge these messages
the peer can simply discard them when the MAC does not validate properly. We do not
consider it an attack to cause the peer to attempt to validate a large number of MACs.

For simplicity the attack is explained in a situation where the peer can only maintain
one open conversation with a given server. A message exchange for a successful attack
is shown in Fig. 2. Only the relevant portions of each message are shown. When the
peer receives a legitimate Message 1 from a server it computes the MAC key SK, and
responds with Message 2. At this point the attacker can send a fake Message 1 with a
new nonce. Since the peer can only have one open conversation with the server, and
since the peer must always accept Message 1, the peer will recalculate the MAC key
to a different value SK’ when it receives the fake Message 1 with a new nonce. When



receiving a valid Message 3, the peer can no longer verify the MAC because it was
calculated with the key SK, and the peer is trying to validate it with the new key SK’.
At this point, the protocol can no longer proceed.

[Message 1:S → P]: SNonce, S
[Message 2:P → S]: P, S, PNonce, SNonce, MACSK

[Message 1’:Attacker → P]: SNonce’, S
(The peer chooses a new PNonce’ and calculates SK’.)
[Message 3:S → P]: PNonce, SNonce, MACSK

(The peer uses SK’ to check MACSK and verification fails.)

Fig. 2. A Successful DoS attack on GPSK

If the peer can only hold one open conversation with a server the attack requires a
single, well-timed message from the attacker. This may be prevented by allowing the
peer to maintain several open conversations with a server. However, in this case an at-
tacker can flood the network with Message 1’ to exhaust the peer’s allocated memory.
The fact that GPSK is designed to work well in devices with limited resources makes
this type of attack more feasible than it otherwise might be. The peer’s memory re-
sources are likely to be very restricted, allowing an attacker to fill the peer’s memory
with relatively little effort. The ability to flood the network with fake messages also
reduces the attacker’s reliance on good timing.

One might argue that the attack can be prevented by not allowing the peer to respond
to a new Message 1 when it is waiting for Message 3. However, this is not a viable
option. This solution introduces the possibility that the protocol will be blocked, even
in the absence of an attacker. It also enables another DoS attack which is even easier to
execute as we explain below.

The principal concern, as was explained in [8], is that Message 2 will not reach
the server. Since EAP is frequently run on wireless LANs, packet loss is a legitimate
concern. If the server does not receive Message 2, it will re-transmit Message 1 after
an appropriate timeout. The peer will discard re-transmissions because it is waiting for
Message 3, and the server will never get a response. Alternatively, an attacker can cause
the same problem by sending one fake Message 1 to a peer before the server initiates a
conversation. This will force the peer into a state in which it is waiting for Message 3,
and any attempts by a server to authenticate the peer will be ignored.

This anomaly is virtually identical to a DoS attack found in the 802.11i 4-Way
Handshake and presented in [8]. The solution we propose is therefore analogous to the
solution which was proposed by the authors of [8] and ultimately adopted by the 802.11
working group. The memory exhaustion attack is possible because the peer is forced to
maintain state for each Message 1 it receives. The proposed solution allows the peer to
maintain state for each server regardless of the number of times it receives Message 1.
Since the number of servers associated with a given peer is likely to be small, this should
drastically reduce the memory used by a peer.

The first time a peer receives Message 1 from a server it will choose a fresh PNonce
and remember it. If it receives another Message 1 from the same server before com-



pleting the protocol then the peer will re-use PNonce. Message 2 will remain as it is.
The fact that Message 3 has a MAC whose key depends on the PSK allows the peer
to trust its contents. Instead of storing the SK used in Message 2, the peer will recal-
culate SK when it receives Message 3. This solution requires Message 3 to contain
enough information for the peer to re-compute SK. Currently, Message 3 does not con-
tain the server’s ID which is necessary to compute SK. One way to fix this is to leave
the message format as it is, and change the key derivation. If SK no longer depends on
the server’s ID, then the peer can compute it at this stage. Another option is to add the
server’s ID to Message 3 and leave the key derivation alone. This would also provide the
peer with all the information it needs to re-compute SK. Ultimately, the latter solution
was adopted by the EMU working group.

Let us see how this solution defends against the attack in Fig. 2. When the attacker
sends a fake Message 1, the peer no longer updates its own nonce. The peer will com-
pute a new SK’ for Message 2’ based on the fake SNonce’. It will store neither SNonce’
nor the new SK’. Now when the peer receives a legitimate Message 3, it can verify
that PNonce was correctly returned, and it can use all the information provided to re-
compute SK and verify the dependence on PSK. This will convince the peer that the
legitimate server sent Message 3.

While this solution does not introduce integrity to Message 1, it does prevent the
peer from changing state in response to an unauthenticated message. By re-using PNonce
an attacker can now cause the peer to produce many copies of Message 2 with the same
key by sending many forged copies of Message 1 using the same nonce. If the encrypted
payload changes every time then this gives the attacker access to many different encryp-
tions under the same key. The peer should be aware of this and choose a ciphersuite
which is strong enough to resist cryptanalysis under these conditions.

3.2 Non-standard Key Derivation

The second anomaly we found involved the derivation of the master key MK. Recall
from above that MK is derived by:

MK = KDF-KS(0x00, PL || PSK || CSuiteSel || inputString)

The use of “0x00” as the key to the KDF is not standard. In TLS [35] for example the
master secret, which corresponds to MK, is derived from a KDF which uses the long-
term shared key (pre master secret) as its key input:

master secret = PRF(pre master secret, “master secret”, ClientHello.Random +
ServerHello.Random)

The derivation of MK in GPSK does not provide an obviously reliable way for an
attacker to learn MK or the keys SK and PK. It is unwise, however, to deviate too
much from accepted standard usage which has undergone thorough investigation in
other protocols.

The current derivation poses problems on theoretical grounds as well. Cryptographic
implementations are often accepted because they provide strong guarantees when one



assumes that the implementations satisfy standard assumptions. For example, the key
derivation function for TLS is transparently assumed to act as a pseudo-random func-
tion (PRF). Let us now examine what assumptions about KDF are necessary for the
current implementation to provide strong keys.

The KDF is being used in two different capacities, one for the MK derivation and
another for the SK and PK derivations. In the MK derivation it acts like a hash function
or a randomness extractor whereas in the SK and PK derivations, it acts like a PRF.

The cryptographic security of SK and PK are defined assuming uniformly random
execution of a key generation algorithm. Assuming, for the particular schemes in use for
this protocol, that the keys are sampled uniformly from the key space of a given length,
we would require SK and PK to be computationally indistinguishable from purely ran-
dom numbers of the same length.

Working backwards from the SK and PK derivations, if we model the KDF as a
PRF, we can ensure that SK and PK are computationally indistinguishable from ran-
dom, as long as MK itself is also computationally indistinguishable from random. So
the requirement reduces to ensuring that MK is pseudo-random. What should the KDF
with key 0x00 behave like in order to ensure this? Let us denote by kdf00(y) the func-
tion KDF(0x00, y). We have the following alternatives:

1. kdf00 is a Random Oracle: Then MK would indeed be perfectly random by def-
inition. However, this is a very strong assumption and although a theoretically useful
model, it is unrealizable in practice and its usage is debatable [36].

2. KDF is a PRF: This is too weak. It is possible to construct perfectly valid PRFs
which output a constant if the key is 0x00. This does not violate pseudo-randomness
because a PRF’s output ‘seems’ to be random with a randomly chosen key. The proba-
bility of a key being all 0’s is exponentially small in the security parameter and hence
this is a very low probability event.

3. kdf00 is a pseudo-random generator (PRG): The trouble with this model is that a
PRG’s output is claimed to be pseudo-random only if the input seed is uniformly ran-
dom and unknown. However, for this protocol, parts of the seed are known (the nonces,
IDs, ...) and neither is it uniformly random (IDs and CSuiteSel have structure).

Thus the alternatives that are weaker than the random oracle model do not guarantee
strong keys. Perhaps the simplest solution to the problem is to use PSK as the key when
deriving MK. In that case, if we assume that KDF is a PRF, MK will be indistinguish-
able from a random number of the same length because PSK is random and unknown.
This implies that both SK and PK will be indistinguishable from random.

In talking with the authors of the specification it seems that the reason this ap-
proach was not taken from the start was because different ciphersuites have different
key lengths and PSK might not be the right length for some of them. The working
group finally decided to require PSK to be long enough for all current (and many fu-
ture) ciphersuites. Then PSK will be truncated to be the right length if it is too long for
the chosen ciphersuite.



3.3 Ciphersuite Downgrading Attack

The last anomaly we found was a potential ciphersuite downgrading attack. Just as with
the DoS attack, this also arises from the fact that the first message has no integrity pro-
tection. An attacker who controls the network can modify a legitimate message from a
server. In this case the attacker can change CSuiteList to include only weak ciphersuites.
In particular, the attacker might force the peer to choose a ciphersuite which does not
provide an encryption mechanism, or which provides an encryption algorithm that the
attacker can break in real time. In this case, any data which is passed in the encrypted
payload block in Message 2 can be read by the attacker.

There is an additional concern if the weak ciphersuite is susceptible to a key-
recovery attack. If the attacker is able in real time to recover the session keys based
only on the knowledge of the nonces and the IDs of the peer and the server, then he will
break authentication. The attacker could block Message 2 and replace the peer’s nonce
with a freshly chosen nonce, and compute the corresponding key to create a valid MAC.
In this way the attacker could impersonate both the peer and the server giving him full
control over their communication.

To counteract such an attack the protocol designers have required that CSuiteList in
Message 1 must contain two specified ciphersuites. While this should ensure that some
of the ciphersuites offered meet some minimum strength, it does not ensure that the
peer chooses the strongest ciphersuite which it supports. Although the peer will likely
support both of these ciphersuites it has the freedom to choose a weaker ciphersuite if
it is offered. In addition, one of the required ciphersuites does not support encryption.
Although this ciphersuite is among those required to be supported because it does not
suffer from a key-recovery attack, an unwitting peer may choose this ciphersuite and
still attempt to send confidential data in Message 2.

This attack seems unavoidable as long as Message 1 continues to lack integrity
protection. As long as the peer is allowed to send encrypted data in Message 2 before
the CSuiteList is authenticated, this data might be sent even after choosing a ciphersuite
without support for encryption. However, the damage of this attack can be fully avoided
as long as the peer is aware of the potential problem and chooses a strong ciphersuite.
Also, if the peer wishes to send confidential data, then it must choose a ciphersuite
which supports encryption, and it must wait until Message 4 to send the data. After
discussing the problem with the protocol authors, the specification was amended to
contain warnings for the peer.

4 Model Checking the Protocol

Finite-state verification tools such as Murϕ have proven to be very useful in the analysis
of security protocols. Murϕ was successfully used in [6] to verify small protocols such
as the Needham-Schroeder public key protocol, the Kerberos protocol, and the TMN
cellular telephone protocol. In [7] Murϕ was also successfully applied to the analysis
of the SSL 3.0 handshake protocol using a “rational reconstruction” methodology which
was adopted in [8] to analyze the 802.11i 4-Way Handshake.

Tools such as Murϕ, commonly called model checkers, verify specified properties
of a nondeterministic system by explicitly enumerating all possible execution sequences



and checking for states which violate the specified properties. Although security proto-
cols are infinite systems, many flaws have been found in finite (and very small) approx-
imations to them. While finite verification has been successful in finding bugs, failure
to find a bug does not mean the protocol is secure. Certain simplifications must be made
when creating a model and these may eliminate crucial details. The restriction to a finite
state space with only a small number of participants is also a crucial limitation.

The use of Murϕ for the current analysis served two main goals. First, it was used to
help detect the flaws found in the original specification of GPSK [2]. Second, we used
it to perform a preliminary search for new flaws which may have been introduced by
the fixes we proposed. Since a run of Murϕ in which no flaws are found does not imply
the security of the protocol the next section is dedicated to the describing the process of
giving a formal proof of the security properties.

To use Murϕ to verify the protocol we must create a model of the protocol following
the specification, add a model of an attacker, state the security properties we would like
to check and then run Murϕ on the model. In this last step Murϕ searches through all of
the possible traces of the protocol checking at each step if any of the security properties
fail. If so then it will return the trace which ends in the violation. This allows the user
to see what caused the problem.

In formulating a model of the protocol the honest participants do not stray from
the specification. They act deterministically. We assume that every pair of servers and
clients shares a long term PSK. Since PSK is never used as a key we will assume that
the attacker cannot recover any PSK. The MAC key SK is simply modeled as a list
containing PSK and the inputString. Again, since Murϕ is not well-suited for discov-
ering low level cryptographic attacks we assume that SK will remain secret. Thus our
model contains no mechanism for the attacker to learn SK. Since the encrypted payload
block is not explicitly used as part of the authentication mechanism, we exclude this
component of the messages. For simplicity we model a good ciphersuite list and a bad
one by a 1 or a 0 respectively. We similarly model a good (strong) ciphersuite selection
and a bad one. Since we cannot model the lower level details of the ciphersuites (i.e. the
way they function on bitstrings) this good/bad distinction should be enough to detect a
ciphersuite downgrading attack.

Despite the above restrictions on the attacker, he still can act nondeterministically
in a variety of ways. The attacker can eavesdrop and remember any message sent on
the network. Since there is no encryption used, the attacker can read the plaintext of
any message and decompose it into its various parts. He can block any message, and
he can generate and send any message which is made up of components from other
messages. In particular, this means that an attacker can replay complete messages. Since
SK is assumed to be secure, the attacker will remember and use the MACs he sees as
indecomposable units.

Since PSK is assumed to remain secret the properties we are concerned with in our
analysis are mutual authentication and consistency of the key SK. Namely, at the end of
a session the peer and the server must each believe they are talking to each other, and
they must share the same key SK. We also check to see if the protocol is blocked by the
attacker as it is in the DoS attack. Finally, we have Murϕ print a trace if a ciphersuite
downgrading attack occurs. Once these attacks were detected we added a feature which



allows us to turn these attacks off. This allows us to more efficiently search for other
attacks.

Although Murϕ only creates finite models, it does allow us to specify parameters
which will determine the size of the model. In this way, we can write one model that can
be scaled up or down simply by switching the values of these parameters. In modeling
GPSK we chose to vary the number of peers and the number of servers. We can control
the number of nonces available, the number of sessions to be completed and the number
of distinct actions the attacker may execute.

Murϕ proved useful in successfully detecting and verifying the existence of the DoS
attack as well as the ciphersuite downgrading attack. We then ran Murϕ on the model
with the suggested fixes. Since our proposed fix for the ciphersuite downgrading attack
does not change the message exchange, we simply turn the attack off in order to assume
that the peer chooses a strong ciphersuite. We successfully verified that no errors exist
when there is just one peer and one server engaging in up to 10 sessions. In addition we
verified correctness with one peer and two servers engaging in 3 sessions total as well as
the situation with two peers and one server engaging in up to 3 sessions. In attempting
to verify the case with 2 peers and 2 servers engaging in 2 sessions total we ran out of
memory. While the verification didn’t run to completion Murϕ also failed to find any
flaws before exhausting memory. This may be taken as tentative evidence of a lack of
an attack since Murϕ prints a violating trace as soon as a problem is found. The model
checking of this protocol was very familiar the previous experience of model checking
the 802.11i 4-Way Handshake [8], so we did not investigate it further.

5 Proof of Correctness

In this section, we present a formal correctness proof of EAP-GPSK using Protocol
Composition Logic (PCL) [37–41, 19, 18]. In previous work, PCL has been proved
sound for protocol runs that use any number of principals and sessions, over both sym-
bolic models and (for a subset of the logic at present) over more traditional crypto-
graphic assumptions [3].

5.1 Overview of Proof Method

We begin with a brief discussion of PCL relevant to the analysis of EAP-GPSK.

Modeling protocols. A protocol is defined by a set of roles, each specifying a sequence
of actions to be executed by an honest agent. In PCL, protocol roles are represented
using a simple “protocol programming language” based on cords [37]. The possible
protocol actions include nonce generation, signatures and encryption, communication
steps, and decryption and signature verification via pattern matching. Programs can
also depend on input parameters (typically determined by context or the result of set-up
operations) and provide output parameters to subsequent operations.



Protocol Logic and the Proof System. For a summary of the proof system and the
proof of soundness of the axioms and the rules, we refer the reader to [9, 38, 19]. Most
protocol proofs use formulas of the form θ[P ]Xφ, which means that starting from a state
where formula θ is true, after actions P are executed by the thread X , the formula φ is
true in the resulting state. Formulas φ and ψ typically make assertions about temporal
order of actions (useful for stating authentication) and/or the data accessible to various
principals (useful for stating secrecy).

The proof system extends first-order logic with axioms and proof rules for protocol
actions, temporal reasoning, knowledge, and a specialized form of invariance rule called
the honesty rule. The honesty rule is essential for combining facts about one role with
inferred actions of other roles, in the presence of attackers. Intuitively, if Alice receives
a response from a message sent to Bob, the honesty rule captures Alice’s ability to use
properties of Bob’s role to reason about how Bob generated his reply. In short, if Alice
assumes that Bob is honest, she may use Bob’s role to reason from this assumption.

5.2 Formal Description of EAP-GPSK in the PCL Programming Language

GPSK : Server ≡ [

new SNonce;

send SNonce.Ŝ.CSL;

receive P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1.mac1;

MK := prg PSK;

InputString := PNonce.P̂ .SNonce.Ŝ;

SK := kdf1 InputString, MK;

PK := kdf2 InputString, MK;

pl1 := symdec enc1, PK;

verifymac mac1, P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1, SK;

enc2 := symenc pl2, PK;

mac2 := mac PNonce.SNonce.

CSL.enc2, SK;

send PNonce.SNonce.Ŝ.CSL.enc2.mac2;

receive enc3.mac3;

verifymac mac3, enc3, SK;

pl3 := symdec enc3, PK;

]S

GPSK : Peer ≡ [

receive SNonce.Ŝ.CSL;

new PNonce;

MK := prg PSK;

InputString := PNonce.P̂ .SNonce.Ŝ;

SK := kdf1 InputString, MK;

PK := kdf2 InputString, MK;

enc1 := symenc pl1, PK;

mac1 := mac P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1;

send P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1.mac1;

receive PNonce.SNonce.Ŝ.CSL.

enc2.mac2;

verifymac mac2, PNonce.SNonce.

CSL.enc2, SK;

pl2 := symdec enc2;

enc3 := symenc pl3;

mac3 := mac enc3, SK;

send enc3.mac3;

]P

5.3 EAP-GPSK Security Properties
Setup Assumption. To establish security properties of the EAP-GPSK protocol, we as-
sume that the Server Ŝ and the Peer P̂ in consideration are both honest and the only



parties which know the corresponding shared PSK. However, we allow all other prin-
cipals in the network to be potentially malicious and capable of reading, blocking and
changing messages being transmitted according to the symbolic model of a network
attacker.

φsetup ≡ Honest(P̂ ) ∧ Honest(Ŝ) ∧ (Has(X, PSK) ⊃ X̂ = Ŝ ∨ X̂ = P̂ )

Security Theorems. The secrecy theorem for EAP-GPSK establishes that the sign-
ing and encryption keys SK and PK should not be known to any principal other
than the peer and the server. For server Ŝ and peer P̂ , this property is formulated as
SECgpsk(S, P ) defined as:

SECgpsk(S, P ) ≡ (Has(X, PK) ∨ Has(X, SK)) ⊃ (X̂ = Ŝ ∨ X̂ = P̂ )

Theorem 1 (Secrecy). On execution of the server role, key secrecy holds. Similarly for
the peer role. Formally, EAP-GPSK ` SECserver

pk,sk , SECpeer
pk,sk, where

SECserver
pk,sk ≡ [GPSK : Server]S SECgpsk(S, P )

SECpeer
pk,sk ≡ [GPSK : Peer]P SECgpsk(S, P )

Proof Sketch. We skip the rigorous formal proof here, but the proof intuition is
as follows: PSK is assumed to be known to P̂ and Ŝ only. The keys SK, PK are
derived by using PSK in a key derivation function (MK could be a truncation of
PSK or generated by application of a PRG to PSK, according to the length needed).
The honest parties use SK, PK as only encryption or signature keys - none of the
payloads are derived by a kdf application. This is the intuition why SK, PK remain
secrets. A rigorous proof would employ a stronger induction hypothesis and induction
over all honest party actions. ut

The authentication theorem for EAP-GPSK establishes that on completion of the
protocol, the principals agree on each other’s identity, protocol completion status, the
cryptographic suite list and selection, and each other’s nonces. The authentication prop-
erty for EAP-GPSK is formulated in terms of matching conversations [42]. The basic
idea of matching conversations is that on execution of a server role, we prove that
there exists a role of the intended peer with a corresponding view of the interaction.
For server Ŝ, communicating with client P̂ , matching conversations is formulated as
AUTHgpsk(S, P ) defined below:

AUTHgpsk(S, P ) ≡ (Send(S,msg1) < Receive(P,msg1))∧
(Receive(P, msg1) < Send(P, msg2))∧
(Send(P, msg2) < Receive(S, msg2))∧
(Receive(S,msg2) < Send(S, msg3))

Theorem 2 (Authentication). On execution of the server role, authentication holds.
Similarly for the peer role. Formally, EAP-GPSK ` AUTHserver

peer , AUTHpeer
server,

where

AUTHserver
peer ≡ [GPSK : Server]S ∃η. P = (P̂ , η) ∧AUTHgpsk(S, P )

AUTHpeer
server ≡ [GPSK : Peer]P ∃η. S = (Ŝ, η) ∧AUTHgpsk(S, P )



Proof Sketch. The formal proof in PCL is in Appendix A. We describe the proof
intuition here. We needed to add two new axioms MAC0 and VMAC (also written
in Appendix A) to the extant PCL proof system in order to reason about macs. Axiom
MAC0 says that anybody computing a mac on a message m with key k must possess
both m and k. Axiom VMAC says that if a mac is verified to be correct, it must have
been generated by a mac action.

AUTHserver
peer : The Server verifies the mac1 on msg2 to be a mac with the key SK.

By axiom VMAC, it must have been generated by a mac action and by MAC0, it
must be by someone who has SK. Hence by secrecy, it is either P or S and hence
in either case, an honest party. It is an invariant of the protocol that a mac action on a
message of the form X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc is performed by a thread
of X̂ , captured by Γ1 - hence it must be a thread of P̂ , say P . Also using Γ1 we prove
that P received the first message and generated nonce PNonce and sent it out first
in the message msg2. From the actions of S, we also have that S newly generated
SNonce and sent it out first in msg1. Using this information and axioms FS1,FS2,
we can order the receives and sends as described in AUTHserver

peer .
AUTHpeer

server : The Peer verifies the mac2 on msg3 to be a mac with the key SK.
By axiom VMAC, it must have been generated by a mac action and by MAC0,
it must be by someone who has SK. Hence by secrecy, it is some thread of either P̂
or Ŝ and hence in either case, an honest party. It is an invariant of the protocol that a
mac action on a message of the form Y Nonce.XNonce.Ŷ .CSL.enc, is performed by
a thread of Ŷ , captured by Γ2 - hence it must be a thread of Ŝ, say S.

However this mac does not bind the variables CSS and enc1 sent in msg2. So to
ensure that S received the exact same message that P sent, we use Γ2 to further reason
that S verified a mac on a message of the form msg2 and axioms VMAC,MAC0
again to reason that this mac was generated by threads of Ŝ or P̂ . Now, we can use
Γ1 and the form of msg2 to reason that a thread of P̂ did it which also generated
PNonce - hence by AN1, it must be P itself. Now we use an invariant stating that a
thread generating such a mac does it uniquely, captured by Γ3, thus binding CSS, enc1.
Now we use FS1,FS2 as in the previous proof to establish the order described in
AUTHpeer

server. ut

Discussion. The formal proof presented above applies to the case where fresh nonces
are generated every time. When the peer uses the same nonce repeatedly until it suc-
ceeds in completion we have to use a different form of reasoning to ensure the intended
message ordering. Specifically, the predicate FirstSend(P, PNonce, msg2) does not
necessarily hold anymore. However, we can still appeal to the fact, that a MAC must
have been generated and sent out before it could be received and verified, in order to
order messages. Formalizing this requires the new axiom V MAC ′:

VMAC′ Receive(X, m2) ∧ Contains(m2, m′) ∧ VerifyMac(X, m′, m, k)∧
¬Mac(X, m, k) ⊃ ∃Y, m1. Mac(Y,m, k) ∧ Contains(m1,m′)∧
(Send(Y,m1) < Receive(X, m2))

The proof above uses axioms previously proved sound in the symbolic model. While
proofs for some properties of EAP-GPSK in the computational model could be carried



out in computational PCL ([3, 32]), we currently do not have the technical machinery
to prove message ordering as a consequence of using fresh nonces in CPCL.

6 Conclusions

In this paper we analyzed the EAP-GPSK authentication protocol. We found three
anomalies: a repairable DoS attack, an anomaly in the derivation of the master key
MK, and a potential ciphersuite downgrading attack. While the third anomaly seems
unavoidable, proper awareness of an attacker’s ability to weaken CSuiteList in Mes-
sage 1 should prevent problems from arising.

We found that by flooding the network with fake Message 1’s, an attacker can force
a peer to re-compute the MAC key SK, causing the peer to be unable to correctly process
Message 3 from a legitimate server. This attack is especially worrisome when consid-
ering that GPSK is designed to work on devices with limited memory which can easily
be exhausted. We propose a fix that allows the peer to maintain state per server instead
of state per message.

We identified an anomaly in the derivation of the master key MK. Specifically, MK
was derived using a KDF with constant key 0x00. While this does not provide an obvi-
ous way for an attacker to reliably learn session keys, it is better to use a more standard
implementation.

We used a finite state verification tool named Murϕ to search for new problems
which may have arisen from the fixes we proposed. We found none. Finally we proved
the fixed protocol correct. The analysis was introduced during the standardization pro-
cess. Throughout our analysis we discussed the weaknesses and possible solutions with
the IETF EMU working group. The changes we suggested have subsequently been
adopted by the protocol designers. They have been incorporated in the latest internet
draft.
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A Formal Proofs
New Axioms

MAC0 Mac(X, m, k) ⊃ Has(X, m) ∧ Has(X, k)

VMAC VerifyMac(X, m
′
, m, k) ⊃ ∃Y. Mac(Y, m, k) ∧m

′
= MAC[k](m)



Invariants

Γ1 ≡ Mac(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc, K) ⊃
Ẑ = X̂ ∧ (Receive(Z, Y Nonce.Ŷ .CSL) <

Send(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc.mac))∧
mac = MAC[K](X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc)∧
FirstSend(Z, XNonce, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc.mac)

Γ2 ≡ Mac(Z, Y Nonce.XNonce.Ŷ .CSL.enc, SK) ∧ SK = KDF1[K](Y Nonce.Ŷ .XNonce.X̂) ⊃
Ẑ = Ŷ ∧ ∃CSS

′
, enc1. (Send(Z, Y Nonce.Ŷ .CSL) <

Receive(Z, Ŷ .X̂.Y Nonce.XNonce.CSL.CSS
′
.enc1.mac1) <

Send(Z, Y Nonce.XNonce.CSL.enc.mac))∧
mac1 = MAC[SK](Ŷ .X̂.Y Nonce.XNonce.CSL.CSS

′
.enc1)∧

mac = MAC[SK](Y Nonce.XNonce.CSL.enc)∧
VerifyMac(Z, mac1, Ŷ .X̂.Y Nonce.XNonce.CSL.CSS

′
.enc1, SK)∧

FirstSend(Z, Y Nonce, Y Nonce.Ŷ .CSL)

Γ3 ≡ Mac(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS.enc, K)∧
Mac(Z, X̂.Ŷ .XNonce.Y Nonce.CSL.CSS

′
.enc

′
, K) ⊃ CSS = CSS

′ ∧ enc = enc
′

Formal Proof of AUTHserver
peer

AA1 [GPSK : Server]S VerifyMac(S, mac1, P̂ .Ŝ.PNonce.SNonce.

CSL.CSS.enc1, SK) (1)

SEC
server
pk,sk , VMAC [GPSK : Server]S ∃X. (X̂ = P̂ ∨ X̂ = Ŝ)∧

Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1, SK) (2)

Γ1 [GPSK : Server]S ∃η. P0 = (P̂ , η)∧
Mac(P0, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1, SK)∧
Receive(P0, msg1) < Send(P0, msg2)∧
FirstSend(P0, PNonce, msg2) (3)

Inst P0 −→ P [GPSK : Server]S Mac(P, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1, SK)∧
Receive(P, msg1) < Send(P, msg2)∧
FirstSend(P, PNonce, msg2) (4)

FS1 [GPSK : Server]S FirstSend(S, SNonce, msg1) (5)

FS2, (−2,−1) [GPSK : Server]S (Send(S, msg1) < Receive(P, msg1))∧
(Receive(P, msg1) < Send(P, msg2))∧
(Send(P, msg2) < Receive(S, msg2)) (6)

AA4 [GPSK : Server]S (Receive(S, msg2) < Send(S, msg3)) (7)

(−2,−1) AUTH
server
peer (8)



Formal Proof of AUTHpeer
server

AA1 [GPSK : Peer]P VerifyMac(P, mac2, PNonce.SNonce.Ŝ.CSL.enc2, SK)

(9)

SEC
server
pk,sk , VMAC [GPSK : Peer]P ∃X. (X̂ = P̂ ∨ X̂ = Ŝ)∧

Mac(X, PNonce.SNonce.Ŝ.CSL.enc2, SK) (10)

Γ2, (−1) [GPSK : Peer]P ∃η. S0 = (Ŝ, η)∧
∃CSS

′
, enc1

′
. (Send(S0, SNonce.Ŝ.CSL) <

Receive(S0, P̂ .Ŝ.PNonce.SNonce.CSL.CSS
′
.enc1

′
.mac1) <

Send(S0, PNonce.SNonce.CSL.enc2.mac))∧
mac1 = MAC[SK](P̂ .Ŝ.PNonce.SNonce.CSL.CSS

′
.enc1

′
)∧

mac = MAC[SK](PNonce.SNonce.CSL.Ŝ.enc2)∧
FirstSend(S0, SNonce, SNonce.Ŝ.CSL) (11)

Inst S0 −→ S [GPSK : Peer]P ∃CSS
′
, enc1

′
. (Send(S, SNonce.Ŝ.CSL) <

Receive(S, P̂ .Ŝ.PNonce.SNonce.CSL.CSS
′
.enc1

′
.mac1) <

Send(S, PNonce.SNonce.Ŝ.CSL.enc2.mac))∧
mac1 = MAC[SK](P̂ .Ŝ.PNonce.SNonce.CSL.CSS

′
.enc1

′
)∧

mac = MAC[SK](PNonce.SNonce.Ŝ.CSL.enc2)∧
VerifyMac(S, mac1, P̂ .Ŝ.PNonce.SNonce.CSL.CSS

′
.enc1

′
, SK)∧

FirstSend(S, SNonce, SNonce.Ŝ.CSL) (12)

Inst CSS
′
, enc1

′
, [GPSK : Peer]P ∃X. (X̂ = P̂ ∨ X̂ = Ŝ)∧

VMAC, MAC0 Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS
′
.enc1

′
, SK) (13)

Γ1, AA1, (−1) [GPSK : Peer]P New(X, PNonce) ∧ New(P, PNonce) (14)

AN1, (−1) [GPSK : Peer]P X = P (15)

AA1, (−3,−1) [GPSK : Peer]P Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS
′
.enc1

′
, SK)∧

Mac(X, P̂ .Ŝ.PNonce.SNonce.CSL.CSS.enc1, SK) (16)

Γ3, (−1) [GPSK : Peer]P CSS
′
= CSS ∧ enc1

′
= enc1 (17)

(−2,−1) [GPSK : Peer]P (Send(S, msg1) < Receive(S, msg2) < Send(S, msg3)) (18)

FS1 [GPSK : Peer]P FirstSend(P, PNonce, msg2) (19)

FS2, (12,−2,−1) [GPSK : Peer]P (Send(S, msg1) < Receive(P, msg1))∧
(Send(P, msg2) < Receive(S, msg2))∧
(Receive(S, msg2) < Send(S, msg3)) (20)

AA4 [GPSK : Peer]P (Receive(P, msg1) < Send(P, msg2)) (21)

(−2,−1) AUTH
peer
server (22)


