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Abstract. We extend distributed algorithmic mechanism design by con-
sidering a new model that allows autonomous nodes executing a dis-
tributed mechanism to strategically deviate from the prescribed proto-
col. Our goal is to motivate agents to contribute to a global objective and
resist disruption by a limited number of malicious irrational agents, aug-
menting market incentives with cryptographic primitives to make certain
forms of behavior computationally infeasible. Several techniques for dis-
tributing market computation among autonomous agents are illustrated
using a marginal cost mechanism for multicast cost sharing from [3].

1 Introduction

Standard distributed algorithmic mechanism design [1–3] uses a model that sep-
arates the computational entities implementing the algorithm from the strategic
entities that provide its inputs. In the standard model, there may be several
strategic agents who reside at each computational node in the network. The
agents provide some input to the node, possibly lying, and the node then faith-
fully executes the algorithmic mechanism. This model reflects the most impor-
tant characteristics of market situations, such as satellite television with tamper-
resistant receivers in customer homes, in which the mechanism designer has com-
plete control over the hardware and software used to implement the mechanism.
However, the standard model omits an important aspect of user behavior in sys-
tems such as network routing in which autonomously administered routers may
be configured in complex ways to serve the business objectives of their owners.
In Internet routing, a system administrator may choose to modify router soft-
ware if this improves local performance, regardless of whether the modification
deviates from published Internet routing standards. Further, malicious or care-
less administrators may do so in ways that are not even beneficial to themselves
(by standard measures). In this paper, we consider the consequences of employ-
ing hardware or software that is controlled by strategic agents. We assume that
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strategic agents control the computation at each local node that implements part
of a distributed algorithmic mechanism. For simplicity, and to aid comparison
between our “autonomous nodes ” model and standard distributed algorithmic
mechanism design, we investigate multicast cost sharing, a traditional problem
with known “tamper-proof nodes ” distributed solutions [3].

We use a network model that includes mostly selfish agents with some com-
pletely honest and a few malicious ones. We consider this a reasonable model
for many Internet applications, possibly closer to reality than either the trusting
distributed algorithmic mechanism design view or the security view that em-
phasizes worst-case scenarios. The vast majority of nodes on the Internet today
are corporations that make rational decisions designed to maximize their profits.
There are a few benevolent nodes (such as universities or government-subsidized
sites) and a small number of actively malicious ones.

We focus on the example of the marginal cost mechanism for multicast cost
sharing described by Feigenbaum et al. [3]. This mechanism shares the cost of a
multicast transmission, such as a movie, among a tree of participating nodes. We
may think of their distributed algorithm as being run by tamper-proof routers
or set-top boxes. We will refer to this protocol as “the FPS protocol.”

If the FPS protocol is implemented naively in the new model where the nodes
can implement the algorithm of their choice, then selfish agents can benefit from
cheats that are not possible in the model where the nodes must execute the
algorithm correctly. They can improve their welfare by telling different lies at
different steps in the protocol, lying about what they have received from others
or paying the incorrect amount at the end.

The multicast model includes a content provider that initiates the transmis-
sion and receives payments from each agent. This provides a convenient central
point for providing further economic motivations to the agents. One method we
use adds extra authentication to the protocol to allow each agent to “prove” that
it behaved honestly. The content provider audits every agent with some prob-
ability and fines those who cannot produce a “proof”. The content provider’s
computational burden and communication cost can be made constant by increas-
ing the size of the fines with the size of the network. It must do a small number
of local checks of one agent at a time. In other applications, where payments
may not all reach a central point, we expect the same idea to apply in a more
distributed fashion. We present two slightly different authenticated protocols,
each with different messages and incentives. The first one is a lighter protocol
whose main property is that honesty is an equilibrium – no agent is motivated
to deviate from it if it believes that all the others will execute it correctly. Fur-
thermore, as long as agents are selfish and keep to the protocol when there isn’t
a strictly better option, all agents execute the protocol correctly. The second
protocol contains an additional signed message and is much stronger: we show
that keeping to it is strictly more profitable than any alternative.

We examine security by introducing a malicious agent into the system and
considering how much it can cause the mechanism to fall below the social opti-
mum. We are also interested in how much such attacks cost, but do not expect



the malicious agent to be rational. We show that the FPS scheme in its original
model is quite secure against attack by a single agent, but that an unauthenti-
cated implementation is not at all secure in the model where nodes can deviate
from the protocol at will. We then show that our strongest authenticated scheme
is almost as secure as forbidding the agents to deviate from the protocol, and
that the presence of malicious nodes does not cause selfish ones to wish to de-
viate from the protocol. The only requirement is that all the malicious node’s
neighbors are honest.

In the next section we describe related work, then give some brief game
theory background and an overview of the distributed algorithmic mechanism of
[3]. In section 3.1 we describe our model which dispenses with the assumption
that the nodes executing the protocol can be trusted to do so correctly. In the
following section we give some examples that show that the new model allows
new cheating opportunities that can be exploited if we implement the mechanism
naively. In section 4 we present and analyze the two authenticated versions of
the protocol. In the final section we investigate the security properties of these
schemes.

2 Background and Related Work

Algorithmic mechanism design was introduced by Nisan and Ronen in [8]. This
involves applying ideas from Game Theory (specifically, mechanism design) to
solve algorithmic and network problems. They assume a central mechanism ad-
ministrator that can communicate freely with the nodes.

A different computational implementation of mechanism design, based on
secure function evaluation, is presented in [7]. The mechanism is administered
by two agents who are assumed not to collude.

Distributed algorithmic mechanisms are described in [1], [2] and [3]. The
mechanism is administered by the network nodes themselves. Several agents
inhabit each network node, and may lie to the node, but the network nodes
always implement their part of the distributed algorithm correctly. We aim to
extend their ideas to the case where the nodes are strategic (aiming to maximize
their resident user’s profit) and may implement any computationally feasible
algorithm.

Feigenbaum et al. ([3]) provide and analyze two distributed mechanisms for
multicast cost sharing. We will concentrate on the Marginal Cost Pricing mech-
anism, first presented in [6]. It is one of a class of mechanisms known as VCG
mechanisms that have many desirable properties, including that an agent maxi-
mizes its welfare by telling the truth. We first review some standard definitions
and results from game theory, then describe the centralized algorithm and dis-
tributed scheme from [3].

2.1 Game Theory background

Briefly, an agent has a dominant strategy if it has one strategy that is a best
response to all possible behaviors of others. A mechanism is strategyproof if it



is a dominant strategy to tell the truth. More detailed background is contained
in [8] and [9].

2.2 Feigenbaum et al.’s scheme

This section gives a much-simplified description of the distributed mechanism
of [3], in the special case that will be relevant for the rest of this paper.

We are interested in distributing a multicast transmission from a source node
to the agents on a network. The network is a tree consisting of a set of nodes
and a set of links, in which one agent resides at each node. Each link has a cost
known to the nodes at each end. For any set of receivers define the multicast tree
as the minimal subtree required to reach all those receivers. The cost of sending
the transmission to a set of receivers is the sum of the costs of the links in the
multicast tree.

Each agent derives some utility from receiving the transmission. The global
benefit gained is the sum of the utilities of the receiving agents. We define the
net worth to be the difference between global benefit and incurred link cost. This
is the net benefit of sending the transmission along the multicast tree.

A mechanism takes as input a description of the network (including link
costs) and a stated utility from each agent. The mechanism’s outcome is a set
of recipients and a payment vector stating how much each agent should pay the
content provider. We assume that each agent may lie to the mechanism about
its utility and that each agent seeks to maximize its utility minus its payment.

The mechanism design problem is to find a mechanism with the following
two properties:

– Every agent’s dominant strategy is to report its true utility to the mechanism
(i.e. it maximizes its true utility minus payment by doing so).

– The recipient set selected by the mechanism maximizes net worth.

The Marginal Cost Pricing Mechanism is a mechanism for solving this prob-
lem. The centralized scheme for implementing it is described below. The dis-
tributed scheme (described afterwards) is a distributed algorithm for implement-
ing the centralized scheme.

The centralized scheme The centralized scheme consists of the following
steps:

1. Each agent reports its utility to the mechanism.
2. The mechanism computes which agents receive the transmission.
3. The mechanism computes a payment for each agent.

Call a recipient set efficient if it maximizes net worth. In step 2, the mech-
anism selects the largest efficient set, based on stated utilities, and sends the
transmission to those agents. The largest efficient set exists because the union
of any two efficient sets is itself an efficient set.



To compute payments in step 3, the mechanism first computes for each sub-
tree how much the total agent utility derived exceeds the link cost incurred. This
quantity is called the welfare of the subtree. Let ui be agent i’s utility and ci be
the cost of the link joining the node where i resides to its parent in the tree.

Definition 1. The welfare W i of the subtree rooted at the node where i resides
is:

W i = ui +




∑

j resides at a
child of i’s node
and W j ≥ 0

W j




− ci (1)

Let the minimum welfare on any path between i’s node and the root (inclu-
sive) be Ai. If Ai < 0 then agent i does not receive the transmission. Otherwise,
it receives it and pays:

payi = max(0, ui −Ai) (2)

It is proved in [3] that agent i’s net benefit is exactly the marginal contri-
bution to the overall welfare provided by its having a nonzero valuation for the
transmission. For a proof that the mechanism is strategyproof, see [6].

The distributed scheme In [3], there is a distributed algorithm for imple-
menting the mechanism described above. First, each agent reports its utility to
its node. The nodes then execute a two-pass algorithm at the end of which every
node knows whether its resident agent receives the transmission and how much
the agent has to pay for it. The payments and recipient set are the same as in
the centralized scheme.

The first pass computes all of the W i bottom-up. Every node sends its welfare
to its parent. The parent calculates its welfare using its children’s welfares and
equation 1.

The second pass is for computing, for each node, the minimum welfare be-
tween that node and the root. This can easily be computed top-down: suppose
a node has resident agent i and it knows the minimum welfare Aparent(i) of any
node between its parent and the root. Then the minimum welfare on any path
between i’s node and the root is given by:

Ai = min(Aparent(i),W i) (3)

Payment is a function of Ai and utility ui, given by equation 2.
This is an efficient solution when the nodes are honest. In the next section

we allow the nodes themselves to be strategic, their interests aligned with those
of their resident agent. Our proofs of correctness rely on checking equations 1,
2and 3.



3 Cheating in a Different Network Model

3.1 The network model

In many settings where distributed algorithms are run, the strategic agents have
control over the computers that are implementing the algorithm. Television view-
ers may try to modify the set-top boxes in their homes, or the administrators of
autonomous computers on a network may alter the networking software for their
own ends. Then it is no longer reasonable to assume that each agent reports its
utility to its node which then runs the correct algorithm—an agent might alter
its node’s behavior to improve its own welfare beyond what it could achieve by
simply reporting a utility to it.

For the rest of this paper we will identify the game-theoretic agents with
their nodes. That is, each node is an agent that has complete control over the
messages it sends and receives. It can elect to implement the algorithm as it is
instructed by the mechanism designer, or it can implement any other computa-
tionally feasible algorithm and send whatever messages it chooses. We need to
design an algorithm so that each strategic node’s best strategy is to implement
the algorithm as instructed.

We will refer to the centralized game-theoretic model used in the first part of
section 2.2 as the game theory model, the distributed model where nodes always
implement the specified algorithm as the tamper-proof nodes model (this is the
model employed in [3] and the second part of section 2.2), and our new model
of selfish nodes as the autonomous nodes model.

In this paper we consider just the example of multicast cost sharing presented
in [3]. Each node derives some utility from receiving the transmission, which it
has to pay for, and its aim is to maximize utility minus price. We will show
that in this model a naive implementation of the FPS protocol is susceptible
to cheating, and propose authenticated versions that produce the right outcome
among selfish agents.

The content provider is also the administrator of the mechanism. This entity
receives payments and provides the transmission. It also enforces some of the
incentives of the mechanism, including levying fines and providing rewards. Our
aim is to design a scheme with minimal communication between the content
provider and the nodes.

The next section contains one scenario in which a user can benefit by ly-
ing under the autonomous nodes model. This does not contradict the result in
[3] that their distributed game is strategyproof. It is based on the observation
that the autonomous nodes model allows new ways of cheating that are not
possible the tamper-proof nodes model. Two other examples are contained in
Appendix A.

3.2 Some examples of agents behaving badly

In this example an agent sends one welfare value to its parent node, then sends
a different value to its child node. It succeeds in paying one unit less than it
should for the transmission and tricking its child into paying one extra.



In order for a deception to be successful, every other agent in the tree must
receive a consistent set of messages. For the cheating example shown, we also
provide the honest agents’ perspective, showing that in each case for each honest
agent there is a set of utilities that produces exactly the set of messages received
by that agent during the cheat.

3.3 Wrongfully getting the transmission while others pay extra

The true state of the network is shown in Figure 1. Node 0 is the root of the
distribution tree and we don’t consider its payments in this example. If all agents
behave truthfully, then all agents receive the transmission, agent 1 pays 1 and
agent 2 pays 6 (see equation 2).
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u1 = 2

W2 =  2

W1 = 1 A0 =  1

A1 =  1

Fig. 1. The truth. pay1 = 1 and pay2 = 6.

Figure 2 shows a successful cheat by agent 1, which effectively lies to node
0 about its child’s utility. Again both agents receive the transmission, but now
honest agent 2 pays 7 (believing that this is what it owes) while agent 1 pays
nothing. We assume that agent 2 does not communicate directly with node 0, and
that agent 2 does not see how much agent 1 pays. The cheat succeeds because
each of the honest agents has a consistent view of the network, shown in figures 3
(node 0’s view) and 4 (node 2’s view).

This attack is possible because agent 1 can lie to the source node about both
its utility and the utility of agent 2. In the centralized game, it could lie about
its own utility but not about another’s.

This examples shows that if agents are not forced to implement the FPS
algorithm then it is not a dominant strategy for them to do so faithfully with
their true utility as input. A rational agent can sometimes gain a greater payoff
by some other strategy not based on the FPS algorithm at all. The main ways
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Fig. 2. The cheat. Agent 1 pays 0 and agent 2 pays 7.

to cheat are to send inconsistent messages up and down the tree and to pay an
incorrect amount.

Appendix A contains two other examples of cheating. In the first, an agent
receives the transmission for free even though its subtree’s welfare is negative.
In the second, an agent pays less than it ought to. These examples demonstrate
that in order to check that an agent isn’t cheating, it is necessary to check at
least the agent’s received messages, the welfare it sent and its payment.

Proposition 1. In order to check whether a given agent has paid the correct
amount, it is necessary to check the consistency of that agent’s payment, the
welfare value that it sent to its parent, and all the messages that it received from
its children and parent.

4 Improvements

We introduce the threat of auditing by the content provider to motivate rational
agents to execute the protocol. In both the protocols described below, each agent
collects enough signed messages during the protocol to “prove” that it didn’t
cheat (in the second protocol, some of this “proof” is stored at the agent’s
children). Proposition 1 shows the minimum that the content provider must
check for each agent. At the end of the protocol, the content provider audits every
agent with some probability which was common knowledge from the beginning.
It imposes a large fine on those who can’t prove that they were honest. We make
the fine large enough that even a small probability of incurring it motivates risk-
neutral rational agents to execute the algorithm correctly, including carrying out
some checks on others’ messages.

The first protocol (protocol A) is designed for agents that would deviate
from the protocol only if it strictly benefitted them. We prove that honesty is
an equilibrium, i.e. that if each agent assumes that all the others will be honest,
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Fig. 3. View of agent 0. pay1 = 0 and pay2 = 7

it maximizes its welfare by implementing the protocol correctly. We then show
the stronger result that if each agent assumes that all the others only deviate
from the protocol in ways that strictly improve their welfare, it maximizes its
welfare by implementing the protocol correctly. We also prove that an agent is
only fined if it has actually cheated, so honest agents never pay more than their
utility.

The second protocol (protocol B) adds an extra message and some extra in-
centives to the first one. This protocol works correctly for any welfare-maximizing
agents, because following it is strictly better than diverging from it in any com-
putationally feasible way.

Both protocols have the property that when all the agents are rational there
should be no cheating. In both cases an agent may cause the protocol to abort
if it detects another cheating, in which case no transmission is sent and the net
worth is zero. This may seem to be an unduly harsh response, but we assume
that the protocol could be restarted, possibly after excluding the (irrational)
node that had caused the problem. However, all the following analysis is for
one run of the protocol. A session number or timestamp would be needed for
multiple runs.

The issue of how to guarantee that the transmission actually goes to the
correct set of recipients is also beyond the scope of our discussion. We also don’t
consider collusion among agents, because the underlying Marginal Cost Pricing
mechanism does not prevent collusion. See [1] for more on the issue of collusion.

4.1 Model of the agents and authentication

We model four different types of agents. Reporting of other agents’ cheats is
considered part of executing the protocol. The agents are:

honest Always follows the protocol correctly.
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Fig. 4. View of agent 2. pay1 = 1 and pay2 = 7.

selfish-but-agreeable Maximizes its own welfare. Deviates from the protocol
only if it strictly improves its welfare.

selfish-and-annoying Maximizes its own welfare. Has no preference for follow-
ing the protocol unless that is the only action that maximizes its welfare.

malicious May deviate arbitrarily from the protocol. Isn’t deterred by fines.

Selfish-but-agreeable is a reasonable model for many applications, because most
users of a device (or software) that implemented the desired algorithm would
bother meddling with the device only if doing so was beneficial.

In this section we will include only honest and selfish agents. We consider
security issues in section 5 by adding malicious agents.

We assume an idealized version of digital authentication. Informally, we as-
sume a public key infrastructure in which the content provider knows everyone’s
public key and everyone knows their children’s, parent’s and grandparent’s pub-
lic keys. The idealized signatures have the following properties (based on those
in [5])

– Signed messages sent by an honest agent to a parent, child or grandchild
cannot be altered or manufactured by others.

– Any receiver can identify the agent that originated a signed message, pro-
vided the originator is honest and is a parent, child or grandparent of the
recipient.

– Signed messages sent by an honest agent to the content provider cannot be
altered or manufactured by others.

– The content provider can identify the agent that originated a signed message,
provided the originator is honest.

The assumptions about agents are expressed only in terms of honest agents’
properties because a non-honest agent could release its private signing key to



others. We will show that both types of selfish agent will keep their keys se-
cret given our incentives, so the two conditions stated above will apply to their
signatures also.

We write sigi(m) to mean the message m signed with the private key of agent
i, and sigi((m1, m2)) to mean the messages m1 and m2 concatenated and signed
by i.

The content provider knows the network topology, all the network costs and
what payments were received from what nodes. It has the authority to impose
large fines on the participants and enough money to offer them significant re-
wards. More specifically, we assume there is a value C greater than the amount
an agent can gain by cheating. This could be any amount greater than the maxi-
mum utility that any agent derives from receiving the transmission. The provider
has some way to charge this amount, or multiples of this amount, as a fine. For
example it could insist that every participant deposits some multiple of C as a
bond before joining the network (as in [4]).

4.2 An authenticated protocol (protocol A)

Protocol Description Assume every node knows its parent, all of its children
and the costs of the network links adjacent to itself. We have already assumed
that each node can recognize the signatures of its children, parent and grand-
parent. If some child fails to respond it will notice. All other information must
be gained by receiving messages.

See Figure 5 for a diagram of protocol A. The idea is that at the end of this
protocol each agent should be able to “prove” to the content provider that it paid
the correct amount. The bottom-up pass is identical to the one in section 2.2,
except that agents sign the welfare that they send up. In the top down pass,
each agent j sends to each child k:

sigj(A
j ,W k)

The first part of this signed message is just the message sent in the top-down
pass of the protocol in 2.2. The second part provides k with a verification of the
welfare value that k itself sent up the tree in the first pass.

At the end of the first pass each node checks that it has received a correctly
signed message of the correct form from all of its children. In the second pass, it
similarly checks its parent’s message. If any agent detects a protocol violation by
another, such as a signature that doesn’t verify or a failure to send a message of
the correct form, it immediately notifies the content provider and the protocol
is stopped.

Recall that C is a quantity greater than the amount an agent could gain
by cheating. If an agent can provide two conflicting messages both signed by
another (such as two different signed welfares) and it reports this, then the
reporting agent receives a reward C and the agent that signed two conflicting
messages receives a penalty C. If an agent releases its private signing key (which
is a protocol violation) then an honest agent is allowed to use that key to sign
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Fig. 5. Protocol A, messages to and from j

two conflicting messages, claim the reward and cause the agent that released its
key to be fined.

At the end of this protocol each agent has a “proof” that it paid the correct
amount, consisting of the messages it received during the protocol (see Defi-
nition 2). The content provider may audit each proof with some probability q
(which is common knowledge) at the end of the protocol and if an agent fails to
produce the appropriate proof that agent is fined C/q.

Definition 2. A proof of paying Proofj for node j with parent p is a pair
consisting of the signed messages that j received during the protocol.

Proofj = 〈sigp(A
p,W j), {sigk1

(W k1), . . . , sigkl
(W kl)}〉

where k1, . . . , kl are all j’s children.

A proof of paying Proofj determines what j should pay, because it allows the
content provider to compute j’s utility uj and contains a record of the minimum
welfare on the path from j to the root. Hence it makes sense to check whether
j did actually pay the amount computed from the proof. A proof of paying is
correct if the agent chose a valid welfare (one that corresponded to a non-negative
utility) and it actually paid the amount it should have paid.



Definition 3. The utility derived from a proof of paying Proofj is uj = cj +
W j −∑l

h=1 W kh . The proof Proofj is correct if uj ≥ 0 and j paid

payj =
{

0 if min(W j , Ap) < 0
max(0, uj −min(W j , Ap)) otherwise

This corresponds to satisfying equations 1 and 2.
Our content provider is not like the game-theoretic central authority that

inputs everyone’s utility and computes the outcome. Each audit of each agent
uses only local information from one agent’s proof of paying. If the content
provider is able to impose large fines then it can set its probability of auditing
very low, meaning that it has to audit very few if any agents in each run of
the protocol. Hence there can be very little communication between the content
provider and the agents.

Why selfish agents’ signatures are reliable An agent’s expected welfare
decreases if it releases its private signing key, since another agent might use the
key to sign conflicting messages, then report these conflicting messages to the
content distributor, collect the reward C and cause the agent that released its
private signing key to be fined C. Since receiving a reward C is greater than any
benefit gained by cheating, any agent that learnt another’s signing key would
report it, and the agent whose key was revealed would lose more than it could
gain by cheating.

Why honesty is an equilibrium We will show that if every other agent is
honest, a single selfish agent maximizes its welfare by executing the protocol
correctly also.

Suppose initially that the content provider’s checking probability is 1, i.e. all
nodes must always send in their proof of paying at the end of the protocol. In
this case it is easy to show by case analysis that a node with honest ancestors
and children cannot gain by cheating.

Lemma 1. Let j be a node with parent p and children k1, . . . , kl. Suppose all
nodes other than j are honest. Assume that the content provider checks every
node with probability 1 and that its fines are more than j could gain by cheating.
Then j’s welfare is maximized by implementing the protocol correctly with its
true utility.

Proof. Since j’s neighbors are honest we can assume that j will not receive any
contradictory signed messages, forged signatures, or other protocol violations
that it would be obliged to report to the content provider. It cannot benefit
by falsely reporting anyone to the content provider because it cannot fabricate
a pair of contradictory signed messages and any other kind of violation stops
the protocol and gives j a welfare of zero. If j sends two contradictory signed
messages to a neighbor, then the neighbor will report it and j will receive a
fine greater than the money it could have made by cheating. If it fails to send



any message for some part of the protocol, the protocol will time out or fail to
terminate and j will receive a welfare of zero. Hence j maximizes its payoff by
sending exactly one message for each of the three classes of message it is supposed
to send in the protocol, namely W j to its parent and W k1 , . . . ,W kl and Aj to its
children. It also chooses a payment payj at the end of the communication steps.
We consider each of these messages in turn and show that j cannot benefit by
lying about them.

Aj: This message is sent down the tree and no other message is received from
j’s children afterwards. It consequently doesn’t affect Proofj or whether j
receives the transmission, so j does not benefit by lying about it.

W k1 , . . . ,W kl : By the same argument, j has no motive to lie about these either.
W j and payj: Choosing a value of W j fixes j’s utility given its children’s wel-

fares and its uplink cost (by the formula in definition 3). Since all the other
agents in the tree are honest, the value of A that j receives from its parent
is the same as the value it would have received in a correct execution of the
protocol in which it sent the same value of W j . Likewise, since j’s parent
is honest, Proofj contains exactly the value of W j that j sent. The content
provider will ensure that Proofj is correct, namely that the signed values in
it are consistent with j’s payment. Therefore j’s payment is fixed by Proofj
(via the formula in definition 3) to be exactly the amount it would have paid
in a correct execution of the protocol with utility as given in definition 3.

This shows that j maximizes its welfare by executing the protocol correctly
with some utility. Since truth-telling is a dominant strategy when the protocol is
executed correctly by everyone, j maximizes its welfare by using its true utility.
♦

Lemma 2. Let j be a node with parent p and children k1, . . . , kl. Suppose all
nodes other than j are honest. Assume that the content provider checks every
node with probability q and that its fines are more than 1/q times what j could
gain by cheating. Then j’s expected welfare is maximized by implementing the
protocol correctly with its true utility.

Proof. By an argument similar to the proof of lemma 1, if j has a correct proof
of checking Proofj at the end of the protocol then its welfare is no greater than
it would have been by correctly executing the protocol with its true utility. If
it doesn’t have a correct proof of checking at the end then its expected welfare
is negative because the auditor’s fine is so high. Hence its best strategy is to
execute the protocol correctly and ensure a correct proof of checking. By the
strategyproofness of the underlying mechanism, it should choose its true utility.
♦
Equilibrium is an important and often-studied concept in game theory. How-

ever, we would like show the stronger condition that truth telling is still a dom-
inant strategy. This is not quite the case, but if it is common knowledge that all
agents are restricted to being selfish-but-lazy then it is a best strategy to follow
the protocol truthfully.



Why agents follow the protocol if others are only selfishly dishonest
We show that an agent maximizes its payoff by being truthful, assuming that
all the others are honest or selfish-but-agreeable.

The protocol is designed so that if some agent deviates from the protocol then
any other agent that detects this will be motivated to report it, either to receive
the reward or to avoid being fined for the lack of a correct proof of paying. Every
cheat not detectable by others risks a fine from the content provider. Hence no
agent is motivated to deviate from the protocol.

We will show first that honest agents do not incur fines, so the protocol still
satisfies the voluntary participation constraint.

Lemma 3. If an agent j has a chance of being fined at the end of the protocol,
then j failed to follow the protocol.

Proof. The agent is fined either for not having a correct proof of paying or
because another agent a could produce two contradictory messages signed by j.
In the first case, j has clearly not followed the protocol since it was supposed
to report any incorrect signatures or missing or badly formed messages as soon
as it received them. If it received a complete set of well-formed, correctly signed
messages, then this always constitutes a correct proof of paying for some payment
payj given by definition 3. In the second case, j either signed two contradictory
messages or released its private key (which are certainly protocol violations), or
another agent succeeded in forging j’s signature, which we assume is impossible.
♦

Corollary 1. An agent cannot gain a reward when no other agent cheated.

Lemma 4. If the protocol completes without any agent reporting a failure, then
for each agent j there is exactly one correct proof of paying that j can produce.

Proof. An agent with no correct proof risks being fined, so as long as the expected
value of the fine is greater than the maximum profit it could make by cheating,
the node will ensure that it has at least one correct proof.

An agent with two or more different proofs all consistent with its payment
must have at least two contradictory signatures from some other agent. There-
fore, as long as the reward for reporting contradictory signed messages is greater
than the maximum profit it could make by cheating, the agent will report it and
take the reward rather than continuing with the protocol. ♦
Lemma 5. Agents are not motivated to send false messages down the tree.

Proof. The messages that an agent sends down the tree to not affect its proof
of paying and consequently don’t alter how much it has to pay. Nor do they
affect whether the agent gets the transmission, since no information from these
messages is transmitted back to the source. ♦

An agent also has no motive for sending the correct values down the tree,
which is why we allow only selfish-but-agreeable agents.



Lemma 6. If the other agents deviate are selfish-but-agreeable, and if the pro-
tocol completes without any agent reporting a failure, then an agent j with one
correct proof of checking Proofj has the same welfare at the end of the protocol
as it would have had if it had executed the protocol honestly with utility uj as
derived from Proofj.

Proof. By lemma 5 (and induction down the tree) we can assume that the signed
values of A and W j that j receives are the true ones that were correctly calculated
from the welfares sent up the tree. By lemma 4 and the definition of correctness,
each welfare value sent up the tree must have been consistent with some valid
(i.e. non-negative) utility. Therefore the value that the auditor computes for j
to pay based on Proofj is exactly what it would have paid had it been honest,
given the utilities of the agents above and below it as derived from their proofs.
♦

Theorem 1. Assuming it is common knowledge that all agents are honest or
selfish-but-agreeable, each agent implements Protocol A correctly with its true
utility.

Proof. If the protocol does not complete, all agents who have not reported an-
other’s cheating receive a welfare of zero. Reporting another agent for cheating
is always more profitable than cheating, but only if the report is true (by Corol-
lary 1). Hence agents truthfully report a protocol failure. By lemma 4, if there
is no protocol failure then each agent has only one proof of checking and by
lemma 6, each agent has the same welfare as it would have if it had executed
the protocol honestly with whatever utility the proof implies. Since it’s a best
strategy to use the true utility in the underlying mechanism, it is a best strategy
to use the true utility in this scheme also. ♦

This result would not be true if we included malicious or selfish-and-annoying
nodes. If an agent cheats without benefiting itself, such as by sending the wrong
messages down the tree, then another agent (even a selfish-but-agreeable one)
can still profit by lying.

4.3 A stronger authenticated protocol (protocol B)

In the previous section we had to make the assumption that agents would deviate
from the protocol only if it strictly benefited them to do so. In this section
we add an extra message and an extra check to the protocol to ensure that
implementing it correctly (with some utility) is strictly better than any kind of
cheating. This means the protocol can withstand selfish-but-annoying agents.
The main difference is that the protocol ensures that agents send the correct
messages down the tree, rather than relying on the fact that an agent’s downward
messages don’t affect its own welfare.
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Fig. 6. Protocol B, messages to and from j

Protocol Description Figure 6 shows a diagram of protocol B. This protocol
is very similar to protocol A, except that the top-down pass has one additional
message: each node j with parent p sends to each child k not only sigj(Aj ,W k)
but also sigp(Ap,W j), which is the message that it would have received from its
parent in protocol A. This is enough to “prove” to j’s child (and to the auditor)
that j computed Aj correctly (satisfying equation 3). We will call this pair of
messages k’s proof of parent and denote it by ParentProofk. Child node k checks
the signatures on this proof and checks that the values satisfy equation 3.

We retain the same checking, fines and rewards as for protocol A (including
the fine for signing contradictory messages) and add one: when the content
provider checks Proofj it also chooses one of j’s children k at random and requests
ParentProofk. It checks that the signatures and value of Aj are correct and that
the value of W k is the same as that in Proofj . If all of these checks succeed, j
receives a bonus of 1. If not, k is fined an amount Cl/q, where l is the number
of children.

Why rational agents follow the protocol

Lemma 7. If an agent j has a chance of being fined at the end of the protocol,
then j failed to follow the protocol.



Proof. Same as Lemma 3 ♦
Corollary 2. No agent can gain a reward when no other agent has cheated.

Lemma 8. For each step of the protocol, each agent sends at most one message.

Proof. Direct from the fine for signing contradictory messages and the reward
for the agent who reports it. ♦
Lemma 9. If the protocol completes without any agent reporting a failure, then
for each agent i there is exactly one correct proof of paying and exactly one
correct proof of parent that i can produce.

Proof. Similar to Lemma 4. ♦
Lemma 10. Sending the correct messages down the tree is strictly more prof-
itable than sending incorrect ones.

“Correct” means consistent with the values received from the agent’s parent and
children.

Proof. Consider agent j with child k and parent p. By lemma 9 either the proto-
col will be interrupted by someone reporting cheating, or k will receive a correct
proof of parent. If the protocol is interrupted by someone other than j then j
gets a welfare of at most zero. So suppose k receives a correct proof of parent. By
lemma 8, j sent each part of this proof at most once. It is impossible for j or k to
alter the message received from p, hence j must have calculated Aj correctly. By
lemma 8 again, k sent only one welfare value up the tree. Since j cannot forge
k’s signature, and since the definition of correctness for proofs of parent includes
consistency with the parent’s proof of paying, j must have sent the correct value
of W k down the tree. In this case j has positive expected welfare because there
is some chance that it will be audited and receive the small bonus for having
given its child a correct proof of parent. Hence it is strictly better for j to send
the correct messages down the tree than any incorrect ones. ♦
Lemma 11. Suppose the protocol completes without any agent reporting a fail-
ure and that agent j with child k has one correct proof of checking Proofj which
implies a utility of uj. Then j has the same welfare at the end of the protocol as
it would have had if it had executed the protocol honestly with utility uj, except
possibly for the extra bonus for having provided a correct proof of parent to k,
which is independent of uj.

Proof. Similar to lemma 6, using lemma 10. ♦
Theorem 2. Assuming it is common knowledge that all agents are honest,
selfish-but-agreeable or selfish-and-annoying, each agent implements Protocol B
correctly with its true utility.

Proof. Similar to Theorem 1. ♦



5 Security Perspective

We are interested in designing systems which assume that most agents are self-
ish but are still robust against occasional malicious nodes. Useful properties to
consider include reducing the extent to which the malicious node(s) can reduce
the group welfare, increasing the cost of being malicious and making sure that
other nodes continue to behave correctly in the presence of malicious ones.

In this section we consider what can be achieved by an adversary trying
to reduce the group welfare while unconcerned about its own. In a traditional
security model we would assume that this adversary could compromise several
nodes at once, but since this scheme is susceptible to collusion anyway that seems
to be too strong a model. Hence for this section we consider one adversary that
controls only one node.

We consider first the security of the original FPS scheme in the tamper-proof
nodes model as a basis for comparison. We then consider the unauthenticated
scheme in the autonomous nodes model. Finally we compare these to the behav-
ior of protocol B and find that, except for denial of service attacks, its security is
almost as good as that in the tamper-proof nodes model, as long as all malicious
nodes have honest neighbors. The only shortcoming is that protocol B does not
prevent a malicious node from stating a negative utility, then executing the pro-
tocol correctly. We show that this possibility does not encourage selfish nodes
to change their behavior. Such a malicious node would eventually be audited by
the content provider and its cheating would be detected.

When evaluating the success of the adversary, we consider the difference
between the net worth if it had behaved truthfully and the net worth after it
cheated. We exclude the utility of the compromised node from the calculation.
We will also consider the cost incurred by the adversary.

5.1 Security in the tamper-proof nodes model

The tamper-proof nodes model is susceptible to collusion among nodes (see [1])
but is quite secure against single malicious nodes. The security in this model is
our basis for comparison of protocol B’s security. We show that a single adversary
can significantly reduce the group welfare but only by incurring a large cost to
itself.

Lemma 12. Let the adversary be node i. Suppose it wasn’t going to receive the
transmission by bidding zero. Then it cannot reduce the group welfare by more
than it pays.

Proof. Let Ai
0 be the minimum welfare of any node from i to the root (inclusive)

when i bids 0. Since i does not receive the transmission, Ai
0 must be negative.

If i bids less than −Ai
0 then it does not receive the transmission and the set

of receivers is the same as if it had bid zero. Hence the group welfare is also
unchanged. If it bids ui ≥ −Ai

0 then the minimum welfare Ai of any node from i
to the root is ui + Ai

0 so the agent pays payi = ui −Ai = −Ai
0 (See equation 2).



The difference in group welfares between bidding zero and bidding ui, excluding
the welfare of agent i, is the cost of including the subtree tree whose true welfare
is −Ai

0. This is exactly what i pays. ♦
Lemma 13. Let the adversary be i. Suppose it was going to receive the trans-
mission by bidding zero. Then it cannot reduce the group welfare.

Proof. Overbidding does not alter where the transmission is sent and conse-
quently doesn’t affect the group welfare. Underbidding is impossible. ♦

5.2 Security of the original protocol in the autonomous nodes
model

A naive implementation of the FPS protocol in the autonomous nodes model
is not secure. The method of attack and the amount of damage an agent can
do depends on whether it would have received the transmission by truthfully
bidding zero or not.

If adversary i would have received the transmission by executing the protocol
correctly with a utility of zero, then it cannot reduce the group welfare by more
than W i. It can easily prevent its descendants from receiving the transmission.
Its interference in other parts of the tree is achieved only by altering the value
of W i that it sends up. In the worst case it can set this to zero, causing a tree
of total welfare at most W i not to receive the transmission. This attack costs i
zero.

If a would not have received the transmission by executing the protocol cor-
rectly with a utility of zero, then it can reduce the group welfare by a large
amount (minus the lowest node welfare on its path to the root) by overbid-
ding. Furthermore, it can avoid paying anything by transferring the cost of its
overbidding to its descendants.

5.3 Security of protocol B

We will show that, even if an agent doesn’t care about maximizing its welfare,
it can’t undetectably harm the system much more than it could in the tamper-
proof nodes model, as long as all its neighbors are all honest. It can still pretend
it has a negative utility in some cases by declaring that the welfare of its node
is 0, but we will show that this possibility doesn’t change the behavior of the
selfish nodes in the tree and can eventually be detected by the content provider.

A malicious node can perform denial of service attacks by not sending mes-
sages when it is its turn, or by falsely reporting that another agent has cheated.
Cheating in a detectable fashion could also be regarded as a denial of service
attack since it stops the protocol. It could also release its private key to other
(selfish) agents, allowing them to print contradictory messages that appear to
have been signed by the malicious node and collect the reward for reporting this.
This would be expensive for the malicious node. We assume that if the protocol
is aborted in this way then it is restarted, with some clever way of ensuring



that messages from different protocol runs can’t be confused. Hence a denial-of-
service attack could be annoying but is unlikely to last very long because the
content provider could eventually exclude the malicious node from the network.

We will show that apart from these denial-of-service attacks, a malicious node
that isn’t reported for cheating must have executed the protocol correctly with
some utility, which may be negative.

Lemma 14. Let j be a malicious agent with children k1, . . . , kl and parent p. If
k1, . . . , kl and p are honest and the transmission is sent then j must have sent
consistent messages.

Proof. There is always some utility consistent with the welfare j sent, according
to equation 1. The honest children check that the values of Aj sent down were
consistent with that welfare, i.e. satisfying equation 3. ♦
Note that j needn’t have paid the correct amount, relying on the chance of not
being checked. It also may have sent messages consistent only with a negative
utility. We show next that the possibility of negative utilities doesn’t cause the
selfish agents to change their (honest) behavior.

Lemma 15. Assume the game theory model with exactly one agent at each node,
but let there be some (malicious) agents that are allowed to state negative utilities.
Then it is still a dominant strategy for the other agents to state their true utility.

Proof. Without loss of generality consider the strategy of agent 1 and suppose
that agents 2 . . .m, with uplink costs c2, . . . , cm respectively, make negative bids
u2, . . . , um respectively (and there are no other negative bids). Then the welfares
of each subtree and the value of A1 are the same as they would be in the tree
where the uplink costs of agents 2 . . . m were c2+u2, . . . , cm+um and they stated
utilities of zero. Therefore how much agent 1 pays and whether it receives the
transmission is the same as in that case, so its best strategy is the same, i.e. to
state its true utility. ♦
Lemma 16. If there may be honest, selfish and malicious agents in the tree,
and all malicious ones have only honest neighbors, then every selfish agent’s best
strategy is to follow the protocol correctly.

Proof. Similar argument to lemma 11. ♦
Theorem 3. If there may be honest, selfish and malicious agents in the tree,
and all malicious ones have only honest neighbors, then every selfish agent’s best
strategy is to follow the protocol correctly with its true utility.

Proof. Direct from lemmas 15 and 16. ♦
A malicious agent can still reduce the group welfare significantly without

being detected, but only by executing the protocol correctly (with a possibly
false and/or negative utility). Even the negative utilities are detectable by the
auditor if it happens to audit the malicious node, so that node could eventually
be caught and excluded from the network. The important point is that the
possible presence of some malicious nodes doesn’t cause the rest of the nodes to
deviate from their honest strategy.



6 Conclusions and Further Work

We illustrate some general techniques by transforming a distributed mechanism
from one that assumes all nodes faithfully implement a specified algorithm into
one that assumes nodes are strategic in all of their actions. The transforma-
tion involves some cryptography and some extra economic incentives. Our two
authenticated protocols are designed for two slightly different agent models. Pro-
tocol A works correctly if we assume that it is common knowledge that agents
deviate from the protocol only if it strictly improves their welfare. Protocol B
is appropriate for agents that are selfish but will not follow the protocol unless
they have some reason to do so. We prove that it is strictly better to implement
the correct algorithm than to try to cheat.

We also evaluate the robustness of protocol B when malicious agents with
honest neighbors are present, showing that these malicious agents can only re-
duce global welfare within limits and cannot give other agents an incentive to
deviate from the protocol. We compare the security of protocol B to that of the
FPS protocol in the tamper-proof nodes model and show that it is almost as
strong, as long as malicious nodes have all honest neighbors. This is a significant
improvement over a naive implementation of the tamper-proof nodes algorithm
in the autonomous nodes model.

We hope to extend our ideas to other Internet applications such as BGP
([2]) by distributing the auditing functions. A node expecting to be paid by
another could probabilistically demand a proof that it is being paid correctly.
The challenge is to try to distribute the punishment and reward ideas without
giving agents too many new ways to cheat the system. If misbehaving nodes
are punished by excluding them from the network and routing around them,
then this not only provides an incentive for rational agents but also quarantines
malicious nodes and limits their impact on the global system.
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A Other cheating examples

A.1 Second cheat: Getting the transmission for less while others
pay extra

This attack relies on agents’ confusion about the costs of links they are not
adjacent to.

We assume:

– agent 2 does not communicate directly with agent 0 (it does communicate
indirectly via node 1),

– each agent knows the link costs of only those edges it is adjacent to.

We dispense with the assumption that payments are secret — this attack
succeeds even if every agent can see every other’s payment.

The true state of the network is shown in Figure 7. Here the tree’s net welfare
is negative, so no transmission is sent. Figure 8 shows the attack, where Agent
1 lies so as to receive the transmission for free, while making agent 2 pay for
it and causing the content provider to lose revenue. Agent 1 gains by one unit
because it receives for free a transmission it values at one.

Figures 9 and 10 demonstrate that each of the honest agents receives a con-
sistent view of the network. Agents 0 and 2 could not detect the cheat even if
they could communicate about their supposed values for u1 and u2 (but not if
they could compare link costs). Figure 10 shows that agent 2 can be allowed to
observe that agent 1 doesn’t pay. In that network, A1 = A2 = 1 but u1 = 0 < A1

so agent 1 pays nothing. Also, agent 1 lies consistently in the sense that the W 1

it sends up the tree is equal to the value of A1 that it sends down. That is,
watching agent 1’s incoming and outgoing messages to check for consistency
would also not reveal that it was cheating.
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Fig. 7. 2nd cheat: The truth. No transmission is sent.

A.2 Third cheat: Short changing the content provider

In this example a cheater succeeds in paying less than it ought to for a transmis-
sion. It first lies consistently about its utility, then pays an amount inconsistent
with that lie. This is interpreted by the other agents as implying that one of the
children of the cheater had a higher utility than it really did.

The cheat works even if we assume all of the following:

1. link costs are not secret,
2. payments are not secret,
3. each agent i is magically forced to lie consistently, i.e. to send down a value

for Ai that is truly min{Aparent(i),W i} where W i was the welfare it sent.

The point here is that the node can cheat just by paying a wrong amount, so
any solution must include scrutiny of each node’s inputs, welfare and payment.

Figure 11 shows the true state of the network. Every agent receives the
transmission, the two leaf agents pay 1 each and agent 1 pays 2. Figure 12 shows
a successful cheat by agent 1: it first lies consistently about its utility, effectively
inflating it by two, so every other agent in the tree believes the total welfare to
be two greater than it really is. It then pays zero, leading every other agent to
believe that one of the leaf agents bid two more than it truly did. The network
states assumed by agent 3 (and possibly agent 0) are shown in Figure 13. The
perspective of agent 2 is like Figure 13 with the roles of agents 2 and 3 reversed.
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Fig. 8. 2nd Cheat: The cheat. Agent 1 pays 0, agent 2 pays 4.
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Fig. 9. 2nd Cheat: View of agent 0. pay1 = 0, pay2 = 4.
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Fig. 10. 2nd Cheat: View of agent 2. pay1 = 0, pay2 = 4.
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